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INTRODUCTION

Strain imaging (“elastography”) is a new technique for 
tissue characterization, providing a noninvasive modality 
for imaging the mechanical properties of  tissues. 
Inflammation and neoplastic infiltration lead to changes 
in normal tissue structure causing an alteration of  its 
elasticity (harder or softer). The elasticity modulus is a 
measure of  the “stress” applied to the tissue structures, 
relative to the “strain” or deformation produced, while 
the ultrasound (US) technique used is called real-time 
tissue elastography (RTE). This method measures 
compression-induced tissue deformation (strain) within 
a region of  interest (ROI) which is visualized using 
a transparent color overlay on the B-mode image. 

The measurement algorithm is based on the extended 
combined autocorrelation method.[1] Elastography, as 
a study of  tissue stiffness, can orient the diagnosis 
toward different pathological entities, based on their 
elastographic nature.[2]

One of  the advantages of  EUS elastography (EUS-RTE) 
is being able to better characterize lesions by the evaluation 
of  tissue stiffness in various locations only accessible from 
the gastrointestinal (GI) tract. Elastography is not expected 
to replace biopsy but can be an adjunct to the EUS 
examinations, due to its ease of  use, noninvasiveness, and 
low cost.[2-4]

ABSTRACT

Strain elastography as used in EUS (EUS-real-time tissue elastography [RTE]) is a qualitative technique and provides 
information on the relative stiffness between one tissue and another. This article reviews the principles, technique, and 
interpretation of EUS-RTE in various organs. It includes information on how to optimize the technique as well as a discussion 
on pitfalls and artifacts. We also refer to the article describing RTE using conventional ultrasound transducers.
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EUS-RTE techniques offer greater sensitivity for 
deeper structures and better spatial resolution than 
manual palpation and have the potential for early-stage 
differentiation of  benign and malignant tissue. In 
this paper, we describe applications of  EUS-RTE, 
including how to optimize the technique. Pitfalls and 
artifacts are also discussed. Its application to the 
study of  pancreas, GI tract, and lymph nodes is most 
studied.

STRAIN‑BASED ELASTOGRAPHY – HOW 
DOES IT WORK?

Strain elastograms can be generated by palpation 
with the endoscope transducer or by holding the 
transducer still, allowing the internal physiological 
pulsations from cardiac or respiratory contractions to 
generate the strain. The latter is the mechanism used 
in EUS. However, since displacements are measured 
only in an axial direction, better results are generally 
obtained when a simple uniaxial stress is applied. Care 
must be taken in interpretation when using the tightly 
curved array transducer since the region immediately 
in front of  the transducer face could be subjected to 
more stress than the lateral portions of  the sector. 
In this case, narrowing the size of  the elastography 
ROI sector will improve the uniformity of  strain 
image [Figure 1].[5]

Figure 1. Reducing region of interest sector size to improve uniformity. 
Using a tightly curved array transducer to image this tissue‑mimicking 
phantom, the material in front of the transducer face has been stressed 
more that the lateral margins resulting in a greater strain (red color) 
at the center of the sector, and less strain (blue color) induced at the 
lateral margins. Narrowing the sector size of the elastography region 
of interest (indicated by the red lines) will improve uniformity of the 
stress field. Using the smaller sector region of interest, the probe can 
be moved to interrogate the mid‑portion and two lateral sector regions 
separately. Depth‑dependent stress attenuation can also be observed in 
the central part in this phantom with homogeneous elasticity

In short, in US systems available for EUS-RTE, hard 
tissue (minor strain) is visualized by dark blue, whereas 
soft tissue (distinct strain) is visualized by red. As 
indicated by the color bar in EUS-RTE images, green 
and yellow are the representative for intermediate tissue 
elasticity [Figure 1]. The color map may be changed due 
to the individual preferences of  an operator (see below, 
color map).

DESCRIPTION OF QUALITY PARAMETERS

Strain graph display and “press indicator”
The strain graph display provides feedback to a user 
on the degree and uniformity of  his/her compression 
technique. The scale of  “%strain” on the Y-axis and 
the amplitude and speed of  movement should be 
adjusted so that a sine curve is described that remains 
between the recommended values 0.5% and 1.0%. 
Once in freeze mode, the strain graph can be used 
to guide selection of  the most relevant frames for 
analysis, during the release of  stress leading to tissue 
decompression [Figure 2a]. The “stress indicator” 
provides feedback to the operator in a different way. It 
gives an indication of  the tissue displacement between 
consecutive US frames. A value of  3 or 4 indicates 
sufficient amplitude and speed of  movement to give the 
desired contrast in strain within the ROI [Figure 2b]. 
This quality parameter has been replaced by the strain 
graph display in more recent versions; however, the 
press indicator may provide useful feedback when 
relying on physiological sources of  stress to secure 
adequate strain in the ROI.

“Knobology”
Adjustment of console controls
• Reference frequency: Up and down toggle adjustment 

for high/low-frequency selection. As with the B-mode 
image, a higher frequency offers higher strain image 
resolution, but a lower frequency will offer a better 

Figure 2. Quality parameters. (a) Strain graph display scale should be 
set to between 0.5% and 1.0%. (b) Press indicator: A value of 3 or 4 is 
recommended, but this feedback is now replaced by the strain graph 
display in recent versions of the software

ba



Dietrich, et al.: Elastography, how to do it

22 ENDOSCOPIC ULTRASOUND / VOLUME 7 | ISSUE 1 / JANUARY-FEBRUARY 2018

stress penetration depth. In EUS-RTE, the lower 
frequency is normally the appropriate selection for 
the study of  all but the smallest or most superficial 
lesions

• Color blend: Rotary control around the periphery of  
the Elasto on/off  knob. It controls the intensity of  the 
color display and reduces the transparency of  the color 
overlay. A semi-transparent setting (around 26%) will 
allow assessment of  the spatial relationship between 
the strain map and the B-mode image. A higher, less 
transparent setting will give a stronger impression of  
the stiffness distribution.

Image menu adjustments
• Frame reject is a filter that removes noisy, poor‑quality 

frames from the elastography sequence (experienced 
when pre- and post-compression frames are not 
correlated because of  movement of  the scan plane or 
signals are too weak). Selecting a low value will allow 
more "noisy" frames, while a higher value may return 
fewer frames where the tissue stiffness is imaged.

• Noise reject is a filter that removes noisy pixels within 
each frame (rejects regions where echo signal amplitude 
is not strong enough for correlation – e.g., within 
cysts or other hypoechoic areas). The rejected pixels 
are coded black. If  no strain image is displayed, a 
reduction of  noise reject may allow imaging at the cost 
of  signal-to-noise ratio.

• Persistence setting can be used in conjunction with the 
frame and noise rejection controls to improve image 
quality. Increasing the persistence prolongs the time 
each frame is displayed on the screen and provides an 
overlap between consecutive frames which creates a 
more stable, but less responsive color display (reduces 
“flashing”).

• Density controls the line density. As with B‑mode 
imaging, a lower line density will result in a higher frame 
rate with better temporal but lower spatial resolution, 
and vice versa. Increasing the line density usually 
increases elastogram resolution when imaging a small 
ROI in a tissue with little movement.

• Frame rate provides additional control of  frame rate with 
high, medium, and low selections. This allows the operator 
to adjust the frame rate of  the elastography images to 
suit his/her compression speed and amplitude to achieve 
acceptable levels of  strain between frames (which can be 
monitored from the strain graph display).

• Color map: Elastograms are usually imaged as color 
maps superimposed on the B-mode image. Grayscale, 
single color, and rainbow color maps among others 
are available. Most users apply the default color map 

where red is soft, yellow and green intermediate, 
and blue hard; however, the color maps can be 
inverted, so careful investigation of  the labels used 
for the displayed color bar is necessary for correct 
interpretation of  the elastogram. The color map 
transparency relative to the B-mode image can be 
selected by adjusting the “blend” and is given on 
screen as a percentage.

• E‑Dyn (1–8) adjusts the dynamic range of  the color 
map, E-Dyn = dynamic range for elastography image. 
The default value of  4 is most commonly used. With 
higher values, a larger proportion of  the strains 
recorded will be imaged as green and only the more 
extreme strain values will be displayed as blue (hard) 
or red (soft). If  the E-Dyn is reduced, a smaller 
amount of  recorded strains are colored green, and 
the strain values are increasingly colored as blue or 
red.[6]

These strain imaging parameters are available in the 
HITACHI RTE version of  elastography. They may not 
all be accessible to the examiner in all versions of  EUS 
elastography. Similar versions of  strain elastography are 
available in Aloka/Olympus scanners depending on the 
US unit used.

HOW TO USE REAL‑TIME TISSUE 
ELASTOGRAPHY?

Region of interest size
RTE displays the relative stiffness of  tissue, so it is 
important to include a sufficient quantity of  normal 
or reference tissue surrounding the lesion of  interest 
in the ROI. The best image quality was recorded in 
phantom experiments when the “lesion” of  interest 
covered 25%–50% of  the ROI.[6] In the case of  a large 
lesion, the ROI can be placed toward the edge of  the 
lesion so that surrounding normal tissue is included in 
the evaluation.

With the curved transducer of  the EUS scope, the 
edges of  the image sector are clipped in the dual 
display, so returning to a single, full-screen elastography 
image allows a wider ROI to be used and may improve 
the ratio of  lesion to reference tissue in the ROI, 
particularly important when trying to image large 
pancreatic tumors.

Checking reproducibility
To assess the quality and reproducibility of  the 
elastography image, the image can be frozen and the 
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stored cine loop reviewed frame by frame. A consistent 
color pattern obtained in a number of  consecutive 
frames indicates a good reliable technique.

Methods for assessment of tissue stiffness
Assessment and classification of  lesions can be made 
based on the pattern of  strain distribution within the 
ROI. Early EUS-RTE studies used a combination of  
color and color pattern homogeneity to differentiate 
benign and malignant lesions;[7,8] however, better 
results have been subsequently obtained when the 
strain ratio (SR), where the strain within the lesion 
is compared to normal reference tissue within the 
same ROI, or a strain histogram, which quantifies the 
distribution of  strain values within the ROI, is obtained.

QUANTIFYING STRAIN 
DIFFERENCES ‑ STRAIN RATIO, STRAIN 
HISTOGRAMS

Definition
SR is defined as:

( )
( )

Mean strain of reference area B
SR (B/ A) =

Mean strain in lesion of interest A  (1)

SR is a tool used for quantifying relative tissue stiffness, 
normally used to measure the stiffness of  a discrete 
mass lesion. With the assumption that the stress is 
uniformly distributed throughout the field of  view, 
the strain in the ROI can be compared to an ROI in 
normal surrounding reference tissue that experiences 
similar stress. This semi-quantitative measurement is 
known as the SR (also known as fat-lesion ratio when 
applied to the breast). Havre et al. showed that the 
SR can provide reliable and reproducible results in a 
tissue-mimicking phantom and that best results were 
obtained when the reference tissue area was selected 
at a similar distance from the transducer as the ROI. 
In a homogeneous phantom material, the size of  
the reference tissue ROI did not influence the SR 
measurement significantly.[9] In a more inhomogeneous 
soft tissue in vivo, designating a small reference area is 
likely to cause selection bias; therefore, when possible, 
select a similar size ROI as that of  the “lesion” but 
avoiding probable strain artifacts.

How to do it?
First, an ROI that best circumscribes a relevant area 
of  the lesion (A) is selected and positioned. Second, 
the reference area (B) is sized and positioned over a 

relevant reference tissue that was subject to similar 
stress as the “lesion.” The mean strain of  both these 
areas is expressed as a percentage (%) and the SR 
calculated as mean strain in reference (B) divided 
by mean strain in the “lesion” (A) as presented in 
Eq. (1) [Figures 3 and 4].

Explanations
• SR is calculated using the raw strain data. It is not 

affected by display parameters, which change the 
displayed colors in the elastogram. Thus, changing the 
E-Dyn of  the elastogram may change the displayed 
colors but neither the strains recorded nor the SR

• SR is a quantification method useful for comparing the 
difference in strains in different areas within the same 
ROI. Therefore, the choice of  the reference area is 
crucial for the cutoff  values used to differentiate between 
malignant and benign lesions. To compare the SR of  focal 
lesions between patients, a similar protocol for selecting 
the reference tissue should be in place, e.g. normal 
parenchymal tissue or fat. As defined in the first study 
applying SR in EUS-RTE,[10] most authors use very small 
soft (red colored) reference areas between the lesion and 
the adjacent gastroduodenal wall as reference tissue. As 
explained below, this approach is prone to artifacts.

What to avoid?
• Reference ROI should be positioned at similar distance 

from the transducer surface as the lesion[9] and not 
placed directly above or beneath the lesion as soft tissue 
will strain more when it is adjacent to hard tissue

• Visible blood vessels should be avoided in the ROI as 
the movement of  blood gives an artificial effect of  large 
displacement or “softness”

• Tissue boundaries that allow normal tissue movement, 
such as pleura, peritoneum, and bowel wall, should be 
avoided in the ROI as slippery boundaries between 
tissues may show high strain (red color) as well as low 
strain (blue coloring) beyond the boundary [Figure 4]

• If  the lesion shows a heterogeneous elastogram, as a 
general rule, the lesion ROI should include as much 
of  the lesion as possible to measure the mean stiffness 
of  the lesion. However, sometimes, the examiner must 
select a relevant section of  the tumor as heterogenicity 
may be caused by necrosis and vessels or be due to 
inhomogeneous stress distribution. Therefore, the 
observer should interpret the elastogram.

Tips and tricks
The system can be set up to store the raw strain 
data with the image. This allows SR measurements 
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on images that are retrieved from the hard disc at a 
later time. The elastography ROI can be re-sized on a 
frozen image. ROI A and B size and position can also 
be readjusted.

Histograms
Histogram analysis is typically used in diffuse diseases 
such as chronic hepatitis and pancreatitis, where the 
color pattern displayed in the elastogram is related to 
the fibrous structure caused by chronic disease. From 
this mosaic pattern, the distribution of  recorded strains 
can be displayed as a histogram (Gaussian distribution 
curve) from which a number of  statistical parameters 
can be derived for quantitative evaluation. The key 
parameters (features extracted from the strain image) 
are mean strain (MEAN); standard deviation (SD) of  
the mean; percentage of  blue area (%AREA); and 
complexity of  the blue areas (COMP) (relation between 
the circumference and the area of  blue patches). The 
shape of  the histogram described mathematically by 
skewness and kurtosis also reflects the distribution and 
tells us something about the homogeneity or otherwise 
of  the tissue stiffness recorded [Figure 5].[11-14]

PANCREAS

The internal structure of  the smoothly contoured normal 
pancreas is homogenously isoechoic as compared to 
the healthy liver parenchyma.[15-18] It has a reproducibly 
soft (homogenously green) elastogram in most cases. 
With increasing age, pancreatic tissue becomes significantly 
harder, but not approaching the tissue stiffness as 

measured using histogram analysis in patients with chronic 
pancreatitis.[19] In acute pancreatitis, the necrotic zones 
appear softer as compared to the stiffer surroundings. 
A small ductal adenocarcinoma shows an almost 
unequivocally very stiff  pattern in comparison to the 
surrounding pancreatic parenchyma [Figures 3 and 5]. 
Ductal adenocarcinoma can be excluded with high 
accuracy when a predominantly soft (green) pattern is 
seen. The negative predictive value is >95%.[2] Stiffer 
neuroendocrine tumors compared to the pancreatic 
parenchyma are typical, especially if  malignant; 
therefore, the positive predictive value is low. Chronic 
circumscript pancreatitis can be differentiated from 
ductal adenocarcinoma of  the pancreas by a difference 
in the elastography appearance in most cases. The 
important results are based on semi-quantitative 
analysis, which has shown high strain for the average 
hue histograms in chronic pancreatitis as compared 
to pancreatic adenocarcinoma.[12,13] Early stages of  
autoimmune pancreatitis also show a characteristically 
diffuse stiff  pattern in the whole pancreatic parenchyma, 
not just in the focal mass.[20] The combined approach 
using EUS elastography and contrast-enhanced EUS is of  
importance.[21,22] In patients with early stages of  chronic 
pancreatitis, the honeycomb parenchymal pattern is also 
reflected in elastographic images [Figure 6]. Moreover, in 
chronic pancreatitis, histogram parameters and SR were 
shown to be closely correlated with a pathological fibrosis 
score,[23] number of  B-mode criteria and diagnostic 

Figure 3. Strain ratio measurement as applied to the pancreas. Region 
of interest A is placed within the pancreatic mass and region of interest 
B in adjacent parenchyma or fat layer. Tissue‑lesion ratio = B/A shown 
in a small solid and malignant pancreatic tumor

Figure 4. Real‑time tissue elastography with strain ratio measurement 
as applied to the liver. Region of interest A is placed within the 
hyperechoic liver mass and region of interest B in adjacent liver 
parenchyma. The Strain ratio of 1.3 indicates nearly equal elasticity 
of the lesion (which turned out to be focal fatty infiltration) and 
surrounding “normal” liver tissue. Due to respiration‑induced 
movements, both slipping boundaries between liver and peritoneal 
space show a high strain (red lines, arrows) and should not be used 
as a reference area for strain ratio measurements
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certainty,[24] and probability of  pancreatic exocrine 
insufficiency. In pancreatic applications, quantitative 
elastography (SR, histogram analysis) may improve 
specificity compared with qualitative elastography.[25] For 
more examples, we refer to the EFSUMB website.[26]

LYMPH NODES

EUS-RTE has been shown to have high sensitivity and 
specificity for lymph node characterization [Figure 7][27] 
and has been used to improve nodal staging of  upper 
GI malignancy.[28-30]

Sensitivity of  EUS-FNA depends on the appropriate 
selection of  the lymph node and targeting of  the 
area of  focal infiltration within the node for biopsy. 
EUS-RTE has the potential to further improve 
the accuracy of  EUS-FNA by identifying the most 
suspicious lymph nodes for needle sampling. The lymph 
node architecture using elastography has not been 
studied in detail.[14,31-36] Endobronchial elastography has 
been introduced mainly for lymph node evaluation.[37,38]

SUBEPITHELIAL LESIONS

Subepithelial lesions are classified according to their 
location, size, echogenicity, and other criteria including 
EUS-RTE. For the prognosis, the most important 
question is whether a subepithelial lesion is benign or 
malignant. Small GI stromal tumor (GIST) typically shows 
a homogeneously stiff  elastogram. Depending on their 
size and age, GIST may develop degenerative changes 
that result in anechoic or hyperechoic areas [Figure 7].[39] 
In lipoma, EUS-RTE often shows homogeneously softer 
tissue, but hard(er) lipoma may also occur.[40]

TUMOR STAGING

EUS-RTE in the upper and lower GI tract has 
facilitated tumor staging. The differentiation between 
stages T2 and T3 may be possible using EUS-RTE 
based on the assumption that acute inflammatory 
changes appear “softer” than the usually “harder” 
tumor images. However, elastography imaging of  acute 
inflammation may also appear harder than surrounding 
tissue. Elastography has also proven to be useful in the 
discrimination between adenoma and adenocarcinoma 
of  the rectum. For more information, we refer to 
recently published reviews.[32,33,35]

Figure 5. Histograms display the distribution of recorded strains (%) 
within an elastography region of interest of a small solid and malignant 
pancreatic tumor [same lesion as in Figure 3]

Figure 6. Elastographic honeycomb pattern in a patient with early 
chronic pancreatitis

Figure 7. Reactive periduodenal lymph node (region of interest A). In 
comparison to the softest area available in the vicinity of the lymph 
node (region of interest B), a strain ratio of 4.4 was calculated
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ELASTOGRAPHY‑GUIDED BIOPSY

So far, the use of  elastography-guided biopsy has not 
been evaluated in studies. We recommend this technique 
under circumstances when tumor stiffness might be 
different from surrounding parenchyma or tissue. As an 
example, this can be done to identify focal and stiffer 
malignant infiltration in lymph nodes by differentiated 
carcinoma, which tends to metastasize focally.[31-35,37,41,42] 
We use elastography always before biopsy as an “add-on” 
adjunctive tool since there is no negative impact but 
eventually additional value in targeting the needle.

OTHER APPLICATIONS

Publications describe the use of  EUS elastography in 
many other applications, including anorectal applications 
in fecal incontinence.[43,44] For other applications, we 
refer to published guidelines[1,26,45-55] and comments on 
the guidelines.[56-59] Shear wave elastography has been 
established for the liver,[1,45,46,49,60] breast,[46,48] thyroid,[61-63] 
and prostate,[46,64] but this technique is not included in 
the current review.

CONCLUSION: BENEFITS AND 
LIMITATIONS OF STRAIN ELASTOGRAPHY 
IN CLINICAL APPLICATIONS

Strain-based elastography enables visualization and relative 
quantification of  tissue stiffness in areas inaccessible to 
palpation. As a diagnostic tool, strain elastography has 
shown to be beneficial in evaluation of  focal lesions in 
the breast, thyroid, lymph nodes, and pancreatic lesions. 
However, for many applications where the distinction 
between malignant and benign entity is of  importance, 
consecutive series have shown that the specificity of  the 
method is not satisfactory as a single modality. Several 
reports have concluded that strain elastography is most 
effectively used as an adjunct to B-mode US with 
Doppler or contrast-enhanced US.[46,65] Within a limited 
clinical scenario, such as colorectal adenoma and early 
carcinoma, the method has performed better than US 
and magnetic resonance imaging in diagnostic accuracy.[66]

Strain elastography is performed using the probe or 
internal tissue movements to calculate local strain. This 
strain is displayed as a color image. The main limitations 
of  this method are that the applied stress is unknown, 
and therefore, the absolute value of  the elasticity or 
Young’s modulus of  the tissue cannot be calculated. The 

method relies on an even distribution of  stress over the 
ROI, but this is sometimes difficult to obtain in practice. 
Anisotropy of  tissues in vivo can cause variable stress 
distributions and thus variable strains. The boundaries 
of  tissue and the movement between organs also give 
challenges to this imaging method.
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