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Abstract

Background: Cardiac surgery–associated acute kidney injury (CSA-AKI) is a major complication that results in
increased morbidity and mortality after cardiac surgery. Most established prediction models are limited to the
analysis of nonlinear relationships and fail to fully consider intraoperative variables, which represent the acute
response to surgery. Therefore, this study utilized an artificial intelligence–based machine learning approach
thorough perioperative data-driven learning to predict CSA-AKI.

Methods: A total of 671 patients undergoing cardiac surgery from August 2016 to August 2018 were enrolled. AKI
following cardiac surgery was defined according to criteria from Kidney Disease: Improving Global Outcomes (KDIGO).
The variables used for analysis included demographic characteristics, clinical condition, preoperative biochemistry data,
preoperative medication, and intraoperative variables such as time-series hemodynamic changes. The machine
learning methods used included logistic regression, support vector machine (SVM), random forest (RF), extreme
gradient boosting (XGboost), and ensemble (RF + XGboost). The performance of these models was evaluated using
the area under the receiver operating characteristic curve (AUC). We also utilized SHapley Additive exPlanation (SHAP)
values to explain the prediction model.

Results: Development of CSA-AKI was noted in 163 patients (24.3%) during the first postoperative week. Regarding the
efficacy of the single model that most accurately predicted the outcome, RF exhibited the greatest AUC (0.839, 95%
confidence interval [CI] 0.772–0.898), whereas the AUC (0.843, 95% CI 0.778–0.899) of ensemble model (RF + XGboost)
was even greater than that of the RF model alone. The top 3 most influential features in the RF importance matrix plot
were intraoperative urine output, units of packed red blood cells (pRBCs) transfused during surgery, and preoperative
hemoglobin level. The SHAP summary plot was used to illustrate the positive or negative effects of the top 20 features
attributed to the RF. We also used the SHAP dependence plot to explain how a single feature affects the output of the
RF prediction model.
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Conclusions: In this study, machine learning methods were successfully established to predict CSA-AKI, which
determines risks following cardiac surgery, enabling the optimization of postoperative treatment strategies to minimize
the postoperative complications following cardiac surgeries.
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Introduction
Cardiac surgery–associated acute kidney injury (CSA-
AKI) is a complication following cardiac surgery and is
associated with increased morbidity and mortality as
well as prolonged hospital stay and higher medical costs
[1, 2]. One meta-analysis of global incidence and out-
comes of CSA-AKI during the period 2004–2014 indi-
cated that the incidence was approximately 22% for all
stages of AKI. The pooled short- and long-term mortal-
ity rates were 10.7% and 30%, respectively, and increased
with the severity of AKI [1]. Even a slight increase in
serum creatinine after cardiac surgery is related to a sig-
nificant increase in 30-day mortality [3].
The pathophysiology of CSA-AKI is multifactorial and

remains incompletely understood. Hypoperfusion,
ischemia-reperfusion injury, neurohormonal activation,
inflammation, nephrotoxin exposure, and cardiopulmo-
nary bypass (CPB)–related nonpulsatile perfusion are
known to be contributing factors [4, 5]. All of the afore-
mentioned events may occur perioperatively [6]. To ap-
propriately manage CSA-AKI, a precise prediction
model for identifying high-risk patients is required to
optimize the postoperative treatment strategy. Several
previously published prediction models have shown rea-
sonable ability to discriminate patients with the risk of
severe AKI or AKI requiring dialysis [7–14]. However,
the definitions of AKI in these models have been incon-
sistent, and only a handful of models have used intraop-
erative variables, which may critically affect the
prediction of AKI. No unified definition of AKI has been
reported in the literature until the development of Risk,
Injury, Failure, Loss, End-Stage Kidney Disease (RIFLE)
and Acute Kidney Injury Network (AKIN) criteria [15].
The Kidney Disease: Improving Global Outcomes
(KDIGO) criteria for AKI staging is modified by AKIN
and demonstrates more sensitive AKI detection [16].
The first model for the prediction of all AKI stages, in-
cluding less severe stage 1 cases, was developed using
consensus KDIGO criteria in a prospective study [17].
All risk models were developed using the logistic regres-
sion method, which requires the statistical assumption
of a linear relationship between the variables and out-
come. Moreover, logistic regression requires independ-
ent variables and selects small subsets of input variables
based on their statistical significance for multiple regres-
sion models. But some variables that have causal effects

on the output variable may not be statistically significant
[18]. We might reduce the available information and
miss unexpected relationships that could be utilized to
improve predictive power if we excluded the variables
only due to statistical assumptions.
To analyze numerous variables with nonlinearity and

complex relationships that may be associated with CSA-
AKI development, an alternative and effective approach
is required for the development of precise prediction
models. Machine learning has been applied in areas of
medicine such as outcome prediction, diagnosis, medical
image interpretation, and treatment [19, 20]. Machine
learning techniques require no assumptions regarding
input variables and their relationships with the output.
The advantage of completely data-driven learning with-
out reliance on rules-based programming is that ma-
chine learning constitutes a reasonable approach.
Therefore, this study applied machine learning methods
to develop a model for the accurate prediction of CSA-
AKI. Preoperative variables and intraoperative time-
series physiological data were used to optimize the pre-
diction model.

Methods
Study population
We retrospectively reviewed the medical records of 671
patients who underwent coronary artery bypass (CABG),
valve replacement surgery, and a combination of both
treatments at Far Eastern Memorial Hospital (FEMH),
New Taipei City, from August 2016 to August 2018. In-
stitutional Review Board approval from FEMH (106159-
E) was obtained prior to the commencement of this
study, and informed consent was waived because the re-
search involved no more than minimal risk to patients.
The waiver does not adversely affect the rights and wel-
fare of the participants.

Data collection and preprocessing of data
We collected data on demographic characteristics, clin-
ical condition, preoperative biochemistry data, preopera-
tive medication, and intraoperative time-series
hemodynamic features (systolic blood pressure [SBP],
diastolic blood pressure [DBP], mean arterial blood pres-
sure [MAP], and heart rate [HR]) from electronic med-
ical records and records on intraoperative variables at
FEMH. All data except for the time-series features were
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collected through manual review of the medical records.
Time-series data were obtained from electronic records
saved at the database. Patients with an estimated glom-
erular filtration rate (eGFR) < 60mL/min/1.73 m2 for
more than 3months were defined as having chronic kid-
ney disease (CKD). Furthermore, eGFR was calculated
for all patients using the Chronic Kidney Disease Epi-
demiology Collaboration creatinine (CKD-EPI) equation
[21]. For the time-series features (SBP, DBP, HR), the
240-min period after the beginning of the operation was
used for analysis. The mean arterial pressure (MAP) was
calculated using the equation: MAP =DBP + 0.01exp
(4.14–40.74/HR) (SBP-DBP) [22]. We also used the aver-
age real variability (ARV) index to represent short-term,
reading-to-reading, within-subject variability in blood
pressure [23]; this provided a more accurate estimator of
variance compared with other measures of dispersion,
including standard deviation (SD), coefficient of vari-
ation (CV), and weighted SD [24]. Before ARV calcula-
tion, we excluded data for 10 min after the operation
began because of excessive noise signals and data from
50 to 100 min after the operation because many patients
underwent extracorporeal circulation during that time
interval (Fig. 1). The other time-series data comprised
180 readings. We calculated the ARVs of SBP, DBP, and
HR using the following formula:

ARV ¼ 1
P

Wk

Xn

K¼2
Wk� j BPk − BPk − 1 j :

where n is the number of BP readings, and Wk is the
time interval between BPk and BPk−1. A total of 179 real
variabilities existed for the time-series features in each
patient. We used principal component analysis (PCA) to
reduce the dimensionality from 179 to 10 for the real
variability (RV) data calculated using SBP, DBP, and HR.

We directly used PCA to reduce the dimensionality of
the absolute value of MAP instead of RV. Moreover, we
used the maximal RVs of time-series features as predict-
ive variables.
Among all the variables, the overall rate of missing

data was 0.16%. The missing data were inputted as the
average values or modes for the variables.

Definition of cardiac surgery–associated acute kidney
injury
Development of postoperative AKI was defined accord-
ing to KDIGO criteria during the first 7 days after oper-
ation [16]. Postoperative AKI was defined as either at an
increase of at least 50% within 7 days or 0.3 mg/dL eleva-
tion within 48 h compared with the reference serum cre-
atinine level. The serum creatinine level measured
before surgery was used as the reference value.

Machine learning
The data were randomly divided, with 70% used for
training and 30% for validation. To overcome the imbal-
ance of data in the training set, we copied the positive
cases 5 times to prevent overfitting. All analyses were
developed in Python (version 3.5). We attempted the fol-
lowing supervised machine learning methods to develop
the predictive models, which are the most popular and
up-to-date machine learning methods used for the prob-
lem of classification: logistic regression, simple decision
tree, random forest (RF), support vector machine (SVM),
eXtreme Gradient Boosting (XGboost), and ensemble
(RF + XGboost). The logistic regression model accur-
ately predicts the probability of the binary dependent
variable using maximum likelihood estimation to deter-
mine the regression coefficient. Tree-based learning al-
gorithms include the simple decision tree, RF, and
XGboost. A decision tree method is a tree-like model of

Fig. 1 Time period obtained during operation for ARV calculation. We obtained data for the 240min after operation except the initial 10 min
(due to noise signals) and the period between 50 and 100min after operation due to extracorporeal circulation
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decisions that can predict the best choice mathematic-
ally. We used an optimized version of the Classification
and Regression Trees algorithm to develop the simple de-
cision tree [25]. We used the Gini index as a metric to
identify the split point. The Gini index is the probability of
randomly classify incorrectly in the dataset. The weakness
of the simple decision tree is instability and a risk of over-
fitting, and thus RF and XGboost are created to improve
the prediction. RF is an ensemble classifier that combines
multiple decision trees through majority voting [26, 27].
XGboost is an optimized distributed gradient boosting li-
brary that provides superior prediction through the con-
version of a set of weak learners to strong learners. The
algorithm is powerful by some innovations, such as the
approximate greedy search, parallel learning, and hyper-
parameters [28]. We also attempted SVM, an algorithm
for identifying a high-dimensional boundary that distinctly
classifies data points.
To evaluate the prediction and accuracy of various

machine learning models, we calculated and compared
areas under the receiver operating characteristic curve
(AUC). The correct interpretation of a prediction model
for machine learning is a challenge. We used SHapley
Additive exPlanation (SHAP) values to provide consist-
ent and locally accurate attribution values for each fea-
ture within each prediction model [29]. This is a unified
approach for explaining the outcome of any machine
learning model. SHAP values evaluate the importance of
the output resulting from the inclusion of feature A for
all combinations of features other than A.

Results
We reviewed the medical records of 671 patients under-
going cardiac surgery from August 2016 to August 2018.
The demographics and perioperative variables are listed
in Table 1. We divided the patients randomly and allo-
cated 70% of them to the training set and the remaining
30% to the test set. Among the patients, 250 (37.3%) re-
ceived CABG, 347 (51.7%) received valve replacement
surgery, and 74 (11%) underwent combined CABG and
valve surgery. For the time-series features (SBP, DBP,
MAP, HR), we calculated the ARVs of the time-series
features, and the data are listed in Table 1. For all vari-
ables, the differences between the training set and the
test set were nonsignificant. The clinical characteristics
and perioperative variables for patients who developed
CSA-AKI or did not are listed in Additional file 1.
We utilized the following machine learning methods

with all the variables as input variables, including logistic
regression, simple decision tree, RF, SVM, XGboost, and
RF + XGboost to predict postoperative AKI, and the
AUCs are presented in Fig. 2. Regarding the efficacy of
the single model for outcome prediction, RF exhibited
the largest AUC (0.839, 95% confidence interval [CI]

0.772–0.898). The AUC (0.843, 95% CI 0.778–0.899) for
the ensemble model was larger than that for the RF
model alone. The simple decision tree exhibited the
smallest AUC (0.78, 95% CI 0.71–0.85).
Figure 3 presents a simple decision tree model for

classifying patients into with or without AKI. The Gini
index in the terminal leaf exceeded 0.45 in 3 of 7 leaf
nodes, which implied that the classification was
inaccurate.
The importance matrix plot for the RF method is

shown in Fig. 4 and reveals that the top 5 most import-
ant variables contributing to the model were intraopera-
tive urine output, pRBC transfusion during surgery,
preoperative hemoglobin (HGB), preoperative serum
creatinine, and preoperative eGFR. Of the top 20 most
important features, 14 were intraoperative variables and
8 were time-series variables.
To identify the features that influenced the prediction

model the most, we depicted the SHAP summary plot of
RF (Fig. 5) and the top 20 features of the prediction
model. This plot depicts how high and low features’
values were in relation to SHAP values in the training
dataset. According to the prediction model, the higher
the SHAP value of a feature, the more likely AKI be-
comes. The SHAP dependence plot (Fig. 6) can also be
used to understand how a single feature affects the out-
put of the RF prediction model. The y-axis values indi-
cated the SHAP values of features, and the values of
features for the x-axis were in the SHAP dependence
plot. We could visualize how the feature’s attributed im-
portance changed as its values varied in the plot. SHAP
values for specific features exceeding zero represent an
increased risk of AKI development.

Discussion
In this retrospective cohort study, we developed and val-
idated machine learning algorithms using 94 preopera-
tive and intraoperative features to predict CSA-AKI. The
RF model exhibited the best performance for single-
model prediction, whereas the RF + XGboost model ex-
hibited the greatest AUC among the models we tested.
The RF and XGboost models are bootstrapping method
applications, which can improve the predictive power
when available datasets are small. Over half of the top
20 features on the importance matrix plot and the SHAP
summary plot of RF were intraoperative features, which
implies that the major effects of intraoperative condition
on early kidney function decline following cardiac sur-
gery. This study demonstrated the value of intraopera-
tive data, which reflected acute physiological responses
during surgery relevant to CSA-AKI prediction; the pre-
viously used prediction models emphasized preoperative
conditions.
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Table 1 Patient characteristics and perioperative variables

Variables All Training set Test set p value

Patient population, n 671 469 202

Demographic data

Age (years) 63 (53–70) 62 (53–69) 63 (53–71) 0.323

Male, n (%) 454 (67.7) 323 (68.9) 131 (64.9) 0.307

BMI (kg/m2) 24.8 (22.5–27.8) 24.8 (22.5–27.6) 24.8 (22.7–27.4) 0.956

Allergy, n (%) 598 (89.1) 42 (9.0) 31 (15.3) 0.015

ABO, n (%)

Type A 196 (29.2) 135 (28.8) 61 (30.2) 0.715

Type B 144 (21.5) 110 (23.5) 34 (16.8) 0.055

Type AB 42 (6.3) 30 (6.4) 12 (5.9) 0.823

Type O 289 (43.1) 194 (41.4) 95 (47.0) 0.174

Smoking, n (%) 244 (36.4) 171 (36.5) 73 (36.1) 0.937

Surgery type

CABG only, n (%) 250 (37.3) 166 (35.4) 84 (41.6) 0.128

Valve surgery only, n (%) 347 (51.7) 246 (52.5) 101 (50.0) 0.560

Combined CABG + valve surgery, n (%) 74 (11.0) 57 (12.2) 17 (8.4) 0.156

Minimally invasive surgery, n (%) 336 (50.1) 237 (50.5) 99 (49.0) 0.717

Preoperative condition

ER stay > 1 day, n (%) 59 (8.8) 42 (9.0) 17 (8.4) 0.821

Previous cardiac surgery, n (%) 96 (14.3) 59 (12.6) 37 (18.3) 0.052

Preoperative ventilator support, n (%) 45 (6.7) 33 (7.0) 12 (5.9) 0.603

Preoperative IABP, n (%) 19 (2.8) 10 (2.1) 9 (4.5) 0.096

Cardiogenic shock, n (%) 24 (3.6) 14 (3.0) 10 (5.0) 0.209

Arrhythmia, n (%) 138 (20.6) 93 (19.8) 45 (22.3) 0.472

Medical history

Family history of CAD, n (%) 80 (11.9) 59 (12.6) 21 (10.4) 0.423

Diabetes mellitus, n (%) 215 (32) 152 (32.4) 63 (31.2) 0.756

Dyslipidemia, n (%) 258 (38.5) 177 (37.7) 81 (40.1) 0.564

HTN, n (%) 453 (67.5) 313 (66.7) 140 (69.3) 0.515

TIA, n (%) 23 (3.4) 13 (2.8) 10 (5.0) 0.155

Cerebrovascular accident, n (%) 39 (5.8) 27 (5.8) 12 (5.9) 0.926

Infective endocarditis, n (%) 34 (5.1) 21 (4.5) 13 (6.4) 0.289

COPD, n (%) 73 (10.9) 49 (10.4) 24 (11.9) 0.584

PAOD, n (%) 17 (2.5) 13 (2.8) 4 (2.0) 0.549

Chronic kidney disease, n (%) 207 (30.8) 136 (29.0) 71 (35.1) 0.114

Congestive heart failure, n (%) 131 (19.5) 93 (19.8) 38 (18.8) 0.760

Myocardial infarction, n (%) 104 (15.5) 70 (14.9) 34 (16.8) 0.531

Baseline laboratory findings

Serum creatinine (mg/dL) 0.91 (0.71–1.16) 0.90 (0.70–1.14) 0.95 (0.73–1.28) 0.128

eGFR (CKD-EPI: mL/min/1.73 m2) 78.0 (53.2–99.7) 80.6 (55.6–100.9) 73.0 (47.4–98.4) 0.057

Hgb (g/dL) 13.2 (11.4–14.6) 13.3 (11.5–14.6) 13.1 (11.4–14.3) 0.403

Preoperative LVEF (%) 62.0 (47.0–69.0) 62.0 (49.0–70.0) 61.0 (44.0–68.3) 0.323

LVEDD (mm) 51.6 (46.0–56.0) 51.6 (46.0–56.0) 51.6 (45.0–56.0) 0.864
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Table 1 Patient characteristics and perioperative variables (Continued)

Variables All Training set Test set p value

Number of diseased coronary vessels, n (%)

One vessel disease 68 (10.1) 48 (10.2) 20 (9.9) 0.896

Two vessel disease 59 (8.8) 40 (8.5) 19 (9.4) 0.713

Three vessel disease 255 (38.0) 175 (37.3) 80 (39.6) 0.575

CCS Angina Score, n (%)

Score 0 125 (18.6) 88 (18.8) 37 (18.3) 0.892

Score 1 134 (20.0) 97 (20.7) 37 (18.3) 0.482

Score 2 356 (53.1) 243 (51.8) 113 (55.9) 0.326

Score 3 50 (7.5) 37 (7.9) 13 (6.4) 0.511

Score 4 6 (0.9) 4 (0.9) 2 (1.0) 0.862

NYHA functional class, n (%)

Class I 113 (16.8) 84 (17.9) 29 (14.4) 0.259

Class II 365 (54.4) 251 (53.5) 114 (56.5) 0.486

Class III 161 (24.0) 109 (23.2) 52 (25.7) 0.486

Class IV 32 (4.8) 25 (5.3) 7 (3.5) 0.298

ASA Physical Status Classification, n (%)

Class I 10 (1.5) 7 (1.5) 3 (1.5) 0.994

Class II 119 (17.7) 84 (17.9) 35 (17.3) 0.856

Class III 485 (72.3) 337 (71.9) 148 (73.3) 0.708

Class IV 51 (7.6) 38 (8.1) 13 (6.4) 0.455

Preoperative medications

Beta blockers, n (%) 297 (44.3) 212 (45.2) 85 (42.1) 0.455

ACEi, n (%) 68 (10.1) 51 (10.9) 17 (8.4) 0.333

ARB, n (%) 138 (20.6) 93 (19.8) 45 (22.3) 0.472

Intravenous nitroglycerin, n (%) 20 (3.0) 14 (3.0) 6 (3.0) 0.992

Anticoagulants, n (%) 162 (24.1) 105 (22.4) 57 (28.2) 0.106

Steroids, n (%) 26 (3.9) 19 (4.1) 7 (3.5) 0.718

Aspirin, n (%) 181 (27.0) 127 (27.1) 54 (26.7) 0.926

Lipid-lowering agents, n (%) 268 (39.9) 185 (39.4) 83 (41.1) 0.690

Dobutamin, n (%) 7 (1.0) 4 (0.9) 3 (1.5) 0.460

OHA, n (%) 162 (24.1) 115 (24.5) 47 (23.3) 0.728

Insulin, n (%) 39 (5.8) 22 (4.7) 17 (8.4) 0.059

Intraoperative variables

Operation time (mins) 225.0 (190.0–270.0) 225.0 (195.0–270.0) 220.0 (180.0–261.3) 0.101

Elective, n (%) 625 (93.1) 439 (93.6) 186 (92.1) 0.577

Robotic technology assisted, n (%) 7 (1.0) 4 (0.9) 3 (1.5) 0.460

Cross clamp time (mins) 44.0 (0.0–70.0) 46.0 (0.0–70.5) 40.5 (0.0–67.3) 0.179

Perfusion time (mins) 95.0 (0.0–132.0) 97.0 (0.0–136.0) 93.0 (0.0–124.3.0) 0.096

Lowest core temperature (°C) 33.0 (32.0–37.0) 32.0 (32.0–37.0) 34.0 (32.0–37.0) 0.704

Cardioversion, n (%) 192 (28.6) 131 (27.9) 61 (30.2) 0.551

Intraoperative IV fluid infusion (mL/kg/h) 11.2 (8.4–15.2) 11.0 (8.4–15.2) 11.8 (9.0–15.2) 0.302

Intraoperative urine output (mL/kg/h) 2.2 (1.2–3.8) 2.2 (1.3–3.7) 2.2 (1.2–4.0) 0.765

Intraoperative estimated blood loss (mL/kg/h) 2.5 (1.7–3.6) 2.5 (1.7–3.5) 2.6 (1.7–3.7) 0.547

Cardiopulmonary bypass utilization, n (%) 471 (70.2) 336 (71.6) 135 (66.8) 0.211

Tseng et al. Critical Care          (2020) 24:478 Page 6 of 13



Table 1 Patient characteristics and perioperative variables (Continued)

Variables All Training set Test set p value

pRBC transfusion during surgery (units) 3.0 (0.0–6.0) 3.0 (0.0–6.0) 4.0 (0.0–6.25) 0.302

FFP transfusion during surgery (units) 0.0 (0.0–3.0) 0.0 (0.0–3.0) 0.0 (0.0–3.0) 0.979

PLT transfusion during surgery (units) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–6.0) 0.151

Time-series features (ARV)

ARV of HR (beats/min) 3.7 (2.7–5.2) 3.7 (2.7–5.2) 3.5 (2.5–5.3) 0.979

ARV of SBP (mmHg) 7.3 (5.9–8.7) 7.3 (5.9–8.7) 7.3 (5.8–8.9) 0.736

ARV of DBP (mmHg) 4.7 (3.7–6.1) 4.8 (3.7–6.1) 4.6 (3.6–5.9) 0.819

ARV of MAP (mmHg) 5.5 (4.3–6.7) 5.5 (4.3–6.7) 5.3 (4.3–6.6) 0.889

AKI according to KDIGO criteria 163 (24.3) 114 (24.3) 49 (24.3) 0.989

Stage I, n (%) 119 (17.7) 87 (18.6) 32 (15.8) 0.399

Stage II, n (%) 20 (3.0) 14 (3.0) 6 (3.0) 0.992

Stage III, n (%) 24 (3.6) 13 (2.8) 11 (5.4) 0.087

Data are presented as median (interquartile range) or number (%). Abbreviations: BMI body mass index, CABG coronary artery bypass grafting, ER emergency room,
CAD coronary artery disease, HTN hypertension, TIA transient ischemic stroke, COPD chronic obstructive pulmonary disease, PAOD peripheral artery occlusive
disease, eGFR estimated glomerular filtration rate, CKD-EPI Chronic Kidney Disease Epidemiology Collaboration, LVEF left ventricular ejection fraction, LVEDD left
ventricular end-diastolic diameter, CCS Canadian Cardiovascular Society, NYHA New York Heart Association, ASA American Society of Anesthesiologists, ACEi
angiotensin-converting-enzyme inhibitor, ARB angiotensin II receptor blocker, OHA oral hypoglycemic agents, IV intravenous, pRBC packed red blood cell, FFP fresh
frozen plasma, PLT platelet, ARV average real variability, HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure, AKI
acute kidney injury, KDIGO kidney disease improving global outcome

Fig. 2 Comparison of AUCs among machine learning models. RF yielded the greatest AUC for single-model prediction. The AUC for RF +
XGboost was even greater than for the RF model alone
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Established risk scores for AKI prediction following
cardiac surgery were reviewed by Huen et al. and classi-
fied into AKI requiring dialysis and severe AKI accord-
ing to a broad definition. Four clinical risk scores for
AKI prediction requiring dialysis, including the Continu-
ous Improvement in Cardiac Surgery Study score [8],
the Cleveland Clinic Score [9], the Mehta score [10], and
the Simplified Renal Index score [11], were developed
using only preoperative variables. Another 3 clinical
scores—the Multicenter Study of Perioperative Ischemia
Score [12], the Acute Kidney Injury After Cardiac Sur-
gery Score [13], and the Northern New England Cardio-
vascular Disease Study Group Score [14]—were
developed to predict severe AKI. Two of these enrolled
some intraoperative variables for the generation of post-
operative AKI risk scores. Most of the studies were ana-
lyzed with the multivariable logistic regression method,
with the performance regarding AUC ranging from 0.76
to 0.84. None used the currently accepted definitions for
AKI. One prospective study of more than 30,000 pa-
tients in the UK used KDIGO criteria for CSA-AKI pre-
diction [17]. This model demonstrated improved
discrimination compared with the Cleveland Clinic
Score and similar discrimination to the Mehta score.

The first study in the literature to use a machine learn-
ing approach for CSA-AKI at all stages of prediction re-
ported that the optimal AUC was achieved with
XGboost (0.78, 95% CI 0.75–0.80) [30]. The study dem-
onstrated that the performances of machine learning
models were significantly superior to those of traditional
logistic regression models for the prediction of AKI fol-
lowing cardiac surgery. In addition, the study revealed
that the AUCs of the previously used risk score models
were often only 0.55 in their datasets, potentially due to
the small numbers of predictors used and the lack of in-
traoperative variables. Our SHAP summary plot for RF
exhibited some similar predictors known to be associ-
ated with CSA-AKI according to traditional risk score
models. However, our plot revealed additional novel pre-
dictors, some of which were consistent with the import-
ance matrix plot of gradient boosting in the previous
machine learning study. Moreover, 5 of the top 20 fea-
tures that contributed to the model obtained through
the use of a SHAP summary plot were time-series vari-
ables, which were not analyzed by the aforementioned
study but may have improved the AUC in our research.
One single-center cohort study proposed a machine
learning algorithm to reclassify approximately 40% of

Fig. 3 Simple decision tree model illustrating the classification of patients with (class = yes) and without (class = no) acute kidney injury. Each
box has the following components: selected variables for classification, Gini index, number of samples classified to the box according to the
previous variable, the average number of patients for each classification with 5-cross validation, and the majority of classes at the split node. Blue
and orange represent the yes class and the no class, respectively, and the color densities increase when the Gini indexes decrease. Abbreviations:
pRBC, packed red blood cell; BMI, body mass index; CCS, Canadian Cardiovascular Society; LV, left ventricular; HGB, hemoglobin
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patients undergoing any surgery, who were considered
to be at low risk of AKI by a preoperative model but
were reclassified as high risk after the inclusion of intra-
operative features [31]. This also proved that intraopera-
tive features play a major role in AKI risk stratification.
In their study, intraoperative time-series features were
processed into the minimum, maximum, mean, short-
term, and long-term variability [32], which may lead to
the loss of useful information compared with our
method of PCA for time-series features to preserve as
much of the variability in the original data as possible.
The reasons we used ARV and RV to represent time-

series features variability are as follows: There are three
indexes that were commonly used to evaluate 24-h
blood pressure (BP) variability (BPV) in the literature.
The first one is the standard deviation (SD) of 24-h

ambulatory BP monitoring recordings, which accounts
only for the dispersion of values around the mean, not
considering the ordering of BP readings [33]. Because
the SD is correlated with mean BP, it can be inadequate
in a multivariate prognostic model if more than two dif-
ferent measurements were used. The second one is
the coefficient of variation (CV), which is the solution
to overcome the above problem of SD [34]. Another
major weakness of the 24-h SD is that its value is sig-
nificantly affected by the nocturnal BP decrease. The
third index is “weighted” 24-h SD (wSD), which is the
average of diurnal and nocturnal SDs by weighting
for their respective durations. It can minimize the ef-
fect of nocturnal dipping without losing the informa-
tion on BPV [35]. However, no standardized methods
exist for the accurate estimation of BPV. According

Fig. 4 Importance matrix plot of the RF model. This importance matrix plot depicts the importance of each covariate in the development of the
final predictive model. Abbreviations: HGB, hemoglobin; eGFR, estimated glomerular filtration rate; CKD-EPI, Chronic Kidney Disease Epidemiology
Collaboration; LV, left ventricular; MAP, mean arterial pressure; PCA, principal component analysis; BMI, body mass index; RV, real variability; HR,
heart rate; SBP, systolic blood pressure; LVEDD, left ventricular end-diastolic diameter; HTN, hypertension; FFP, fresh frozen plasma; PLT, platelet;
ASA, American Society of Anesthesiologists; CHF, congestive heart failure; DM, diabetes mellitus; CCS, Canadian Cardiovascular Society; CABG,
coronary artery bypass grafting; ARB, angiotensin II receptor blocker, COPD, chronic obstructive pulmonary disease; OHA, oral hypoglycemic
agent; ER, emergency room; ACEi, angiotensin-converting-enzyme inhibitor; CAD, coronary artery disease; PAOD, peripheral artery
occlusive disease
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to the published systemic review and meta-analysis,
ARV is a more accurate estimator of 24-h BPV [24].
Despite using ARV in our study, we also used PCA
of RV to reserve the most information of the time-
series features variability.
The advantage of our study is the use of SHAP values

to uncover the black box of machine learning. Although
several risk factors have been identified by previously
used risk score models, such as preoperative HGB, pre-
operative renal function, age, operation time, left ven-
tricular ejection fraction, body mass index, and
hypertension [7–14], the recognition of intraoperative
urine output, IV fluid infusion, blood product transfu-
sion, and dynamic changes of hemodynamic features are
important risk factors that have been neglected by trad-
itional risk score models. Notably, some well-known risk
factors were not ranked among the top 20 features in
our study, such as diabetes mellitus, CPB time, and sur-
gery type. The pathophysiology of CSA-AKI may explain
why intraoperative features are so crucial to AKI predic-
tion. Although the definite mechanism is not completely
elucidated, renal hypoperfusion is known to result from
low-flow, low-pressure, nonpulsatile perfusion with he-
modilution; moreover, rapid temperature reduction be-
cause of CPB usage, bleeding complications, and

inflammatory response play vital roles in CSA-AKI de-
velopment [4]. Hemodynamic change, blood product
transfusion, IV fluid supplement, and intraoperative
urine output all reflect the acute response for renal hy-
poperfusion and the management required. The risk of
AKI following cardiac surgery was determined by the
preoperative health condition–related susceptibility to
acute stress and large dynamic physiological responses
intraoperatively, reflecting the ongoing response to sur-
gery. Therefore, software may be developed that can
identify high-risk patients who are prone to AKI for the
optimization of treatment strategies after cardiac sur-
gery. Moreover, extremely few values are missing from
the dataset because most of the data were recorded by
hand. Therefore, missing values would not have nega-
tively affected the results.
This study was subject to some limitations. First, our

analysis used only single-center data and included rela-
tively few patients. The performance of the machine
learning algorithm might differ for larger datasets with
differently distributed patient characteristics and differ-
ent institutions. As such, external validation is required
to prevent overfitting. Second, the algorithm learned
from the input features, and some hidden relationships
may have been lost because of unknown or neglected

Fig. 5 SHAP summary plot of the top 20 features of the RF model. The higher the SHAP value of a feature, the higher the probability of
postoperative acute kidney injury development. A dot is created for each feature attribution value for the model of each patient, and thus one
patient is allocated one dot on the line for each feature. Dots are colored according to the values of features for the respective patient and
accumulate vertically to depict density. Red represents higher feature values, and blue represents lower feature values. Abbreviations: pRBC,
packed red blood cell; HGB, hemoglobin; eGFR, estimated glomerular filtration rate; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration;
LV, left ventricular; MAP, mean arterial pressure; PCA, principal component analysis; SBP, systolic blood pressure; HR, heart rate; RV, real variability;
HTN, hypertension; PLT, platelet; BMI, body mass index
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features that were not enrolled by physicians. Third,
most of the input features were achieved manually. We
are working on developing a real-time automated elec-
tronic health record algorithm that can aggregate peri-
operative information of patients from various data
sources. With these techniques, a machine learning–
based predictive model may have the potential for use in
clinical practice. Fourth, we used PCA to reduce the di-
mensionality of time-series features instead of analyzing
the original data because of the small numbers of partic-
ipants in this cohort study, which may have led to the
loss of chronological and implied information. Deep
learning methods might be used for numerous time-
series features if more patients are enrolled. Fifth, we did
not use the previous risk scores for performance com-
parison because of the unavailability of all the variables
required in the previously used risk score models. Lastly,
predictive ability was impaired by the relatively small
numbers of positive events resulting from data imbal-
ance. Future prospective studies are required to evaluate
the application of machine learning–based predictive
models to clinical practice for the reduction of AKI
risks.

Conclusions
In conclusion, we successfully applied the machine
learning method to predict AKI after cardiac surgery,
which can be used to determine risks after surgery. We
demonstrated that the intraoperative time-series and
other features are crucial for AKI prediction. Further
software development is ongoing for the real-time ad-
justment of AKI risks following cardiac surgery, which
in turn will optimize treatment to improve prognosis.
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