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ABSTRACT: In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical
simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-
generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and
inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the
Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is
applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance,
which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert
particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may
possess a high Sherwood number.

1. INTRODUCTION

Circulating fluidized bed reactors (CFB) are frequently applied
in a wide range of processes in the chemical, energy and coating
industries. Understanding mass transport processes as well as
the fluid flow in such complex heterogeneous systems is of
tremendous importance to improve performance and facilitate
optimal design of process equipment. However, the occurrence
of particle clusters is observed1−4 and well accepted to have
strong impact on the hydrodynamics5−9 and consequently the
mass transport behavior.10−14 The occurrence of particle
clusters was first reported by Yerushalmi et al.,15 and later
Tsuo and Gidaspow16 studied the underlying principles for the
formation and propagation of clusters. Although there is no
firmly established definition for a cluster,1,5,9,17−19 one feature is
universally accepted that a cluster is composed of particles and
possesses an internal solid volume fraction significantly larger
than its surroundings (which is normally below 0.1 in CFB).
Clusters can be characterized by duration of their existence,
occurrence frequency and internal solids concentration, as
studied by Sharma et al.18 and other researchers.19−22 In the
past decades, numerous empirical correlations for fluid-particle
mass transfer have been proposed for multisphere systems.23−29

Although these correlations are helpful for a quick and rough
estimation of overall mass transfer behavior for design
purposes, it does not consider the influence of particle
heterogeneities. Significant deviations of the Sherwood number
in risers have been reported, and Breault30 and Chalermsinsu-
wan et al.31 pointed out these values even differ by several
orders of magnitude. The reason behind this finding is
explained by the presence of particle clusters. Such dense
solid phases result from the particle−particle collisions as well
as the particle−wall collisions, which are characterized by
enhanced fluid bypass, low slip velocities and fluid back-mixing
for the hydrodynamic phenomena. These reduced fluid
performance in CFB will lead to poor fluid−solid contacting
and negatively impact the interfacial mass transfer processes.
In clusters, the mass transfer to an individual “active” sphere

is significantly influenced not only by the surrounding gas−
solids suspensions but also by the nature of the surrounding
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particles, namely it is active or inert.32 In this circumstance,
dispersed active particles keep their intrinsic kinetics whereas
two effects from the inert surrounding particles must be taken
into consideration.33,34 First, the inert particles decrease the
volume available for mass transfer around the active particle.
This makes the analog between heat and mass transfer invalid,
as the particles provide an additional conductive pathway to the
heat transfer process. Second, the flow field and the formation
of the mass boundary layer around the active particle are altered
due to the presence of the other particles. Mixtures of active
particles diluted by inert ones are used to keep the system at a
low conversion rate (for positive reaction orders)35 and
minimize complications caused by bed heterogeneities.36 In
catalytic reaction engineering, catalyst beds with dilution are
often applied to study the kinetics isothermally in highly
exothermic heterogeneous reactions37 and various investigators
have mentioned their considerable merits.38−40 For mass
transfer processes in diluted systems, researchers are interested
in the influence of the dilution ratio (ratio of inert and total)
and the influence of the distribution of inert and active
particles.32,34,37,41,42

Because of the inherent difficulty to experimentally quantify
the mass transfer behavior in a dense environment, several
numerical studies have been performed for a cluster system to
estimate its mass transfer coefficient. However, due to the high
computational cost, simulations are restricted to large scale
closure models. Dong et al.43 applied the subgrid energy-
minimization multiscale (EMMS/mass) model for mass
transfer computation, in which the species concentration in
each grid cell is divided into the mass fraction of the particle-
rich dense phase and the mass fraction of the fluid-rich dilute
phase. In this case, mass transfer performance varies at the
subgrid level, and the authors reported that both gas velocity
and solids flux have significant impact on the variation of the
Sherwood number. Chalermsinsuwan et al.31 also used the
EMMS model to estimate the mass transfer coefficient in a
PSRI riser. In their work, cluster sizes are computed first and
then the Sherwood numbers are estimated. They found that the
Sherwood number scales with the particle cluster diameter.
Wang et al.44 studied the mass and heat transfer of a spherical
cluster by a modified k−ε turbulence model. Their cluster
consisted of 65 stationary particles which are arranged regularly,
and the corresponding porosity is 0.9. Based on their
simulations, the influences of cluster porosity and Reynolds
number are quantified. Kashyap and Gidaspow45 analyzed the
mass transfer coefficients in fluidized bed by using a kinetic
theory based multiphase mode. The cluster diameter is
suggested to replace the particle diameter in the conventional
Sherwood number computation.
With the development of computational technology, DNS

has become a powerful tool to resolve all the details at the
smallest relevant length scales and quantitatively derive
microscale transfer and transport coefficients to gain
fundamental insight in fluid−solid interactions. In recent
years, the immersed boundary method (IBM), as a branch of
DNS, has received a lot of attention. IBM has distinct
advantages such as efficient CPU/memory utilization and
easy grid generation, and thus has been applied in various
studies including complex geometries, moving particles and
deformable immersed objects.46−51 Next to the fluid flow
equations, additional equations for species transport can be
solved with relative ease using the same methodology.

There are two categories of IBM: continuous forcing method
(CFM)52−57 and discrete forcing method (DFM).58−63 The
fluid−solid interaction is accounted for by a forcing term in the
fluid governing equations and ghost variable values inside the
immersed body, respectively. Mohaghegh and Udaykumar64

performed a comparison study between CFM and DFM for
simulations of particulate flows with both stationary and
moving boundaries. IBM has been widely used for studies of
momentum transfer in fluid−solid system; however, scarce
studies have been reported for mass transfer processes to
clusters composed of active and inert particles. In this paper, a
previously developed ghost-cell based immersed boundary
method65 is applied for the simulation of mass transfer
problems in particle clusters. The swarm effect together with
the influence of the inert particles and the Reynolds number are
investigated.
The organization of this paper is as follows. First, the

description of the model is given, including the governing
equations, numerical solution method and fluid−solid coupling.
After that, our DNS model is verified by two test cases for
which analytical or empirical solutions exist. As the main results
two stationary cluster systems, a nine-sphere cuboid cluster and
a random-generated spherical cluster, are considered and
analyzed. Finally, the conclusions are presented.

2. MODEL DESCRIPTION
In this part, we describe the governing equations that need to
be solved in DNS, the numerical details involved in the finite
difference scheme, as well as the fluid−solid coupling. For the
model presented in this paper, the following main assumptions
are applied:

• The fluid phase is incompressible and Newtonian.
• The solid phase consists of stationary spherical particles.

In case of active catalyst particles, an external mass
transfer limited chemical reaction proceeds at the
external surface.

• Both fluid and solid phases have constant physical
properties.

• The mass transfer is modeled as Fickian diffusion.

2.1. Governing Equations. The transport phenomena in
the fluid phase are governed by the conservation equations for
mass, momentum and species transfer, respectively given by

∇· =u 0 (1)

ρ
ρ μ ρ

∂

∂
+ ∇· = −∇ + ∇ +

u
uu u g
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p( )f
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2
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∂
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c D c( )f

f f f
2
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where ρf is the fluid density and μf is the fluid viscosity, whereas
Df represents the species mass diffusivity in the fluid.

2.2. Numerical Solution Method. The governing
equations are solved on a 3D staggered Cartesian grid with
uniform grid spacing in all three directions. Following the work
of Deen et al.,66 the numerical solution of the governing
equations is acquired utilizing second order discretization
schemes. At the same time, small computational stencils are
preferred for computational efficiency. First, the momentum
equation is discretized in time as given by the following
expression:
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where n is the time step index. The convective and diffusive
momentum fluxes Cm and Dm are calculated by spatial
discretization of:

ρ= ∇·C uu( )m f (5)

μ= ∇D um f
2

(6)

The convection term is spatially discretized by a second-order
total variation diminishing scheme, whereas a standard second-
order central differencing scheme is used for the evaluation of
the diffusion term.
The solution of Equation 4 is achieved by using a fractional

step method where a tentative velocity field u*̅* is first
computed by using the pressure gradient at the old time step pn.
As the second step, the velocity field at the new time step n+1 is
obtained based on the new pressure gradient calculated from
Poisson equation at time step n+1. A robust and efficient
parallel Block-Incomplete Cholesky Conjugate Gradient (B-
ICCG) solver is used to obtain u ̅** and pn+1. For more
information, we refer a more detailed description of this
method to the work of Deen et al.66 and Das et al.67

The species conservation equation is temporally discretized
in the same way as for the momentum equation, namely the
Adams−Bashforth scheme is applied for the convective
transport whereas fully implicit Euler backward scheme is
used for the diffusion term.
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with the convective and diffusive fluxes Csp and Dsp respectively
given by

= ∇· uC c( )sp f (8)

= ∇D D csp f f
2

(9)

The spatial discretization of species transport equation is the
same as for the momentum equation.
The boundary condition is enforced at the exact position of

the immersed object surface, for both velocity and concen-
tration computation. It is handled at the level of the discretized
momentum and species conservation equations and will be
introduced in detail in the next section.
2.3. Fluid−Solid Coupling. After discretization, the

differential conservation equations can be written as algebraic
equations in the following generic form:

∑ϕ ϕ+ =a a bc c nb nb c
1

6

(10)

where ϕ is the fluid variable for which we want to obtain a
solution, namely the velocity and concentration field obtained
from the momentum and species equation, respectively. This
equation provides the relationship between the fluid quantity ϕc
at any position of the simulation domain and its six neighboring
cells indicated as ϕnb. Due to the application of a nonbody
conforming mesh, the boundary condition enforcement and

consequently the solution of this equation are no longer
straightforward at the fluid−solid interface. Ghost points are
used to overcome this problem, which are inside the solid phase
but possess at least one neighbor in the fluid phase. Every fluid
cell is checked and the predefined boundary condition is
applied if any of its six surrounding neighbors represents a
ghost point.
The fluid−solid coupling is the key element of our DNS

model, which involves a second order quadratic interpolation
scheme. Taking the advantage of the Robin boundary condition
imposed exactly at the object surface in a sharp interface
manner, active catalysts are simulated by applying the zero-
value Dirichlet boundary condition whereas inert particles are
realized by enforcing the zero-flux Neumann boundary
condition. In other words, mixed boundary conditions of
individual spheres are handled consistently in our DNS model.
The full methodology of the enforcement of the Robin
boundary condition is introduced in our previously published
paper, which we refer to for more details for the interested
reader.65 In this paper, we only outline the essential equations.
In the quadratic interpolation scheme, a generic variable ϕ in

the vicinity of the immersed object surface can be approximated
in terms of a second-order polynomial:
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where x, y and z are relative coordinates with respect to the
origin located at the boundary point. This equation is in fact the
approximation of ϕ using the Taylor expansion near the
boundary point:
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For the enforcement of the Robin boundary condition:
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the first four coefficients are required:
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Nine neighboring fluid points and one image point are used to
obtain the ten coefficients Cijk in a second-order polynomial,
where the resulting equation can be written as follows:

ϕ = Xc (18)

where ϕ and C are the vectors for species concentration and
coefficients respectively, and X is the Vandermonde matrix
given by
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The coefficients Cijk are obtained by multiplication of the
inversed matrix X−1 and the concentration vector ϕ, which can
be written as a linear combination of ϕ values. With those
required coefficients the value at the image point can be
evaluated by satisfying the boundary condition, from which the
value at the ghost point can be finally computed.
With the above-described procedure, the matrix coefficients

in Equation 10 can be updated. Altered coefficients within the
original stencil are incorporated in the implicit scheme, whereas
neighbors outside the original stencil are accounted for in an
explicit way. This procedure is carried out for all ghost points to
ensure that the desired local boundary condition applies
everywhere at the immersed object surface. The pressure,
velocity and concentration field are obtained for the entire
computation domain in our DNS model.

3. VERIFICATION
In this section, two test cases are simulated by using our
proposed DNS model. One is the Graetz−Nusselt problem, i.e.,
mass transfer from the tube wall to the fluid phase. The other
one is the convective flow to a single stationary active/inert
sphere. The results obtained from computer simulations are
compared with the analytical/empirical solutions, through
which our DNS model is verified.
3.1. Mass Transfer in Laminar Tube Flow. In the first

test, the well-known Graetz−Nusselt problem is considered,
which deals with forced mass convection combined with mass
diffusion of a fully developed laminar flow in a tube. The
boundary conditions at the cylindrical tube wall are treated with
the methodology outlined in the previous section. The classical
Graetz−Nusselt problem was investigated by Graetz68 and later
independently by Nusselt69 for the case of a constant species
concentration at the wall of the tube. Later, this problem was
extended to the constant mass flux boundary condition, and
Tao70 and Tyagi71 provided a mathematical solution to that.
The amount of mass transfer at the wall is defined as the ratio
of convective to diffusive radial mass transfer, which is
commonly expressed by the Sherwood number Sh:

=Sh
k D

D
m

f (20)

where km is the mass transfer coefficient, D is the diameter of
the tube and Df is the mass diffusivity in the fluid. The analytical
solutions are 3.668 and 4.364 under fully developed conditions,
for the boundary condition of constant wall concentration and
constant wall flux, respectively.72

By applying our DNS model, both boundary conditions can
be realized. The fluid enters the tube with zero concentration,
and a uniform velocity of 1 m/s is specified to maintain a
laminar flow. The data used for the simulations are summarized
in Table 1. The mass transfer coefficient is calculated as the
mass flux divided by the driving force for the mass transfer
process. For the case of constant wall concentration, the mass
flux is averaged over the perimeter of the tube whereas the
driving force is the difference between the prescribed wall
concentration and the cup-average concentration of the fluid.

For the case of constant wall flux, the mass flux is a prescribed
value and the driving force is computed as the difference
between the averaged wall concentration and the fluid cup-
average concentration. The local concentration gradient
(required for local mass flux calculation) and the local wall
concentration are easily obtained from the values at the image
and ghost point, whereas the cup-average concentration is
defined by

∬

∬
⟨ ⟩ =c

u x y z c x y z y z
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( , , ) ( , , )d d

( , , )d df
S f

S

f
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In this equation, the integration is performed over a surface Sf
perpendicular to the flow direction x, and u(x,y,z) is the x
component of the fluid velocity at this certain point (x,y,z). It
should be noted that the Sherwood number obtained from
simulation is computed at locations far beyond both the
hydrodynamic entrance region and the mass transfer entrance
region. In other words, the Sherwood number is calculated
under the circumstance of a fully developed flow. Simulations
results are listed in Table 2, using different grid size. The
computational domain, e.g., 100 × 10 × 10, indicates the grid
numbers in the x, y and z directions, respectively. From the
table, good agreements with the analytical results are observed
for both boundary conditions.

3.2. Single Stationary Sphere under Forced Con-
vection. In the second test, we consider convective flow to a
single stationary sphere in an enclosure. The sphere is located
at the center of the domain laterally while it is positioned at a
distance of two times the sphere diameter from the inlet in the
flow direction. We consider two cases for the sphere: active and
inert. For the former case, an external mass transfer limited
reaction proceeds at the sphere surface, while the fluid solely
flows over the sphere without any chemical conversion for the
latter case. The data used for the numerical simulations are
given in Table 3. The domain boundary condition in lateral
direction is set to be free-slip and zero flux for velocity and
concentration field computation, respectively. Fluid containing
a single species with constant concentration of 10 mol/m3

flows
into the system at a uniform velocity. At the outlet, pressure is
prescribed as the standard atmospheric pressure and the species
boundary condition is specified to be zero slope. The
simulations are performed on a 160 × 160 × 160 grid with
uniform grid spacing in all directions. The ratio of domain size
to the particle size is 8 while the mesh resolution is 20. The
mesh resolution N is defined as the ratio of the sphere diameter
to the grid size. N = 20 is selected after a mesh convergence
test, in which we used the case of Res = 200 for active catalyst
particle. With N = 10, 20, 32 and 40, particle Sherwood
numbers of 9.04, 10.46, 10.48 and 10.49 were obtained

Table 1. Data Used for the Simulations of Convective Mass
Transfer for Laminar Flow in a Tube

Parameter Value Unit

Time step 1 × 10−4−5 × 10−5 s
Tube length 0.2 m
Tube diameter 0.02 m
Fluid density 1000 kg/m3

Fluid viscosity 1 kg/m/s
Species diffusivity 0.001 m2/s
Initial concentration 0 mol/m3
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respectively, revealing a good mesh convergence. It should be
noted that the Schmidt number is unity, indicating the same
thickness of the momentum and mass boundary layers.
For the case of an active catalyst particle, the verification can

be done by comparing the particle Sherwood number Shs
obtained from the simulation with the empirical value given by
the well-known Frössling correlation:

= = +Sh
k d

D
Re Sc2.0 0.6( ) ( )s

m s

f
s

1/2 1/3

(22)

where Res is the particle Reynolds number and Sc is the
Schmidt number, respectively defined as

ρ

μ
=Re

u d
s

f s

f

0

(23)

μ

ρ
=Sc

D
f

f f (24)

The Sherwood number obtained from simulation work is
computed by the following expression:

π
=

Φ →Sh
R c

d
D4s

f s

s f in

s

f
2

, (25)

where Φf→s is the mass transfer rate, with the normal pointing
outward of the solid, calculated by the integration of the
concentration gradient at sphere surface over the whole sphere
(Ss indicating the external surface area of the sphere):

∬Φ = − − ∇ ·→ nD c S( )df s
S

f f
s (26)

With the flow velocity u0 varying from 0.04 to 1.6 m/s, the
particle Reynolds number increases from 10 to 400. The
comparison between the simulation results and the empirical
values are listed in Table 4, where a good agreement is
obtained.
For the case of an inert nonreactive sphere, the verification

can be done by checking the mass balance of the system. In
other words, the total amount of the species entering the
system should equal the total amount of the species leaving the
system if zero-flux Neumann boundary condition is imposed
correctly at the sphere surface. The mass flux at inlet Jin and

outlet Jout are computed by the following two equations
respectively:
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n f n,
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x x
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where 1 and nx indicate the first and the last grid point in the
streamwise direction, respectively. It should be noted that the
diffusive term is not included in the calculation of the outlet
mass flux due to the enforcement of the zero-gradient
Neumann boundary condition at the outlet for species
computation. The mass balance was checked for all particle
Reynolds numbers listed in Table 4, the outlet mass flux gave
the same value as the inlet mass flux for all cases. For flows with
Res ≤ 200, the deviation for each Res case is a constant with the
magnitude of E-15 which is the computational accuracy we
applied in the simulations. For higher Reynolds number flows,
the deviation value is oscillating within the range of E-13 and E-
12, which can be reasonably understood as the result of vortex
dynamics behind the sphere. This verifies the excellent
enforcement of the zero-flux Neumann boundary condition at
the sphere surface.

4. RESULTS
In the previous section, our proposed DNS model has been
verified by two benchmark cases, where the simulation results
reach a good agreement with well-established solutions. In this
section, we will demonstrate results for two cluster systems
simulated by applying our DNS model. These systems are
closely related to engineering applications and reveal the strong
points of our DNS model in the framework of fluid−particle
systems. In Section 4.1, the mass transfer between the fluid
phase and the solid phase are analyzed for different cluster
proximities and configurations, by studying a gas flowing
through a stationary cuboid cluster consisting of nine spheres.
Subsequently, in Section 4.2, a more complex system is
considered. A spherical cluster consisting of hundred spheres is
generated by random packing, and the influence of inert
particle dilution on the cluster mass transfer performance is
determined.

Table 2. Sherwood Numbers Obtained from Simulations for Graetz-Nusselt Problem, at Several Mesh Resolutions

Computational domain

100 × 10 × 10 200 × 20 × 20 400 × 40 × 40 800 × 80 × 80

Constant wall concentration 3.719 3.678 3.669 3.668
Constant wall flux 4.464 4.393 4.374 4.365

Table 3. Data Used for the Simulations of Single Stationary
Sphere under Forced Convection

Parameter Value Unit

Time step 2 × 10−5−5 × 10−5 s
Grid size 2.5 × 10−4 m
Sphere diameter 0.005 m
Fluid density 1 kg/m3

Fluid viscosity 2 × 10−5 kg/m/s
Species diffusivity 2 × 10−5 m2/s
Initial concentration 10 mol/m3

Inlet concentration 10 mol/m3

Table 4. Comparison of Particle Sherwood Numbers
Obtained from Simulation and Empirical Correlation for
Various Particle Reynolds Numbers

Res Empirical Simulated Relative error

10 3.90 3.68 −5.58%
20 4.68 4.51 −3.70%
40 5.79 5.67 −2.15%
60 6.65 6.56 −1.32%
100 8.00 7.94 −0.73%
200 10.49 10.46 −0.29%
300 12.39 12.26 −1.07%
400 14.00 13.75 −1.76%
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4.1. Nine-Sphere Cuboid Cluster. In this system, we
consider convective mass transfer to a cluster which is
composed of nine spheres. The basic configuration of this
cluster is a cube with eight spheres at its vertices, where its front
face is perpendicular to the flow direction x. One single sphere
is added into the cube and positioned in the center. All nine
spheres are of the same size ds = 0.005 m. The cluster proximity
decreases gradually to assess the impact of clustering of
particles on mass transfer behavior. The proximity of a cluster S
is measured as the center-to-center spacing between the spheres
in the front face. Five proximities are considered for this cluster

system, with the detailed information listed in Table 5. The
packing density is calculated as

η π= × +d S d9
6

/( )s s
3 3

(29)

The central sphere is fixed at the location centrally in y and z
directions. In the flow direction, a minimal distance of 2ds and
6ds is maintained for the front sphere to the inlet and the back
sphere to the outlet, respectively. In the lateral direction, a
minimum distance of 3.5ds is reserved for spheres to the
domain boundaries. The computational domain and particle
arrangement for the nine-sphere cuboid cluster is shown in
Figure 1. It should be noted that the distance between the front

face and the back face is also the cluster proximity S in this
specific cube case. The data used for the simulations and the
boundary conditions applied at the domain boundaries are the
same as those in Section 3.2. Based on the mesh convergence
test in the last section, the particle diameter is 20 times larger
than the grid size.
In the simulations, three particle Reynolds numbers 10, 50

and 200 are used to assess the influence of different flow
patterns on the mass transfer behavior. For each simulation (5S
× 3Res), we consider two cases. In one case, all nine spheres are
active, whereas in the other case, the only active sphere is
positioned in the center with eight inert spheres positioned at
vertices. Figure 2 shows the concentration distribution in the
central plane of the nine-sphere cuboid cluster with different

proximities for both all-sphere-active case and central-sphere-
active case at Res = 200. From the figure, steady and symmetric
concentration fields are observed, and we can clearly identify
the clustering effect. The wake behind the central sphere
becomes wider with smaller cluster proximity, and finally
separates into two pieces at S = 1.4ds due to the strong blockage
effect of the back spheres. The influence of eight spheres at
vertices is also demonstrated in the figure. For the same cluster
proximity, the wake is always thinner if the eight surrounding
spheres are inert, as the wake will include part of the mass
transfer effects of these eight spheres if they are active. This
difference is especially distinct at the smallest cluster proximity,
the back spheres in the inert case solely split the wake without
further reducing the species concentration.
In Figure 3, the development of the particle Sherwood

numbers, calculated by Equation 25, of all spheres for the all-
sphere-active case is shown. Due to the symmetric geometry, as
expected, the Sherwood numbers of the four spheres in the
front/back face are the same and indicated by “front sphere”
and “back sphere” in the figure. For the front sphere, higher
Reynolds number results in a more pronounced improvement
of its mass transfer behavior at smaller cluster proximities. The
central sphere has similar behavior, but the minimum
Sherwood number always occurs at the smallest cluster
proximity. Particle clustering has a large influence on the
mass transfer performance of the back spheres. With increasing
Reynolds numbers, the Sherwood number increases less
compared to the ones of the front and the central sphere.
The comparison of the particle Sherwood numbers of the

central sphere between all-sphere-active case and central-
sphere-active case is shown in Figure 4. It is clearly observed
that for all cluster proximities the central sphere has a better
mass transfer performance in case the eight surrounding
spheres are inert. However, this difference can be dramatically
reduced by using higher fluid velocities.
To study the influence of cluster geometry on the mass

transfer behavior, four more configurations are considered for
the nine-sphere cuboid cluster: 45° rotation in z plan, 45°
rotation in z plan following 45° rotation in y plan, elongation of
the front-back face distance to 2 times of the cluster proximity
and elongation of the front-back face distance to 4 times of the
cluster proximity. These four extended cluster configurations,
shown in Figure 5, are noted as Rotated 1, Rotated 2, Half and
Quarter, respectively. The basic configuration is indicated by
Normal in the following text.
In Figure 6, we show the concentration distribution in the

central plane of the nine-sphere cuboid cluster for all five
configurations. The examples are given for both all-sphere-
active case and central-sphere-active case at the Reynolds
number of 50 and the smallest cluster proximity S = 1.4ds. The
Normal and the Rotated 1 configurations have quite similar
behavior, with the wake significantly split into two pieces. The
Rotated 2 configuration behaves more like an isolated big
particle, where the inert particle enforcement can be clearly
visualized at the front, top, bottom and back spheres. With
larger distance between the front and back faces, spheres have
more independent behavior. In the Half configuration, no clear
“split” behavior is observed in the wake region, whereas each
sphere behaves almost as an isolated one in the Quarter
configuration. For all configurations, a much lower concen-
tration field is detected for the cluster in case all nine spheres
are active.

Table 5. Sphere−Sphere Distance and Corresponding
Packing Density for Five Cluster Proximities

Cluster proximity S 3ds 2ds 1.8ds 1.6ds 1.4ds

Packing density η 0.074 0.175 0.215 0.268 0.341

Figure 1. Simulation domain and particle configuration for the nine-
sphere cuboid cluster.
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The Sherwood numbers of the central sphere in all five
cluster configurations are plotted as a function of the cluster
proximity in Figure 7 for both all-sphere-active and central-
sphere-active cases. Similar behavior of the Sherwood number
profiles are observed, but with a much denser distribution in
the central-sphere-active case. At the same fluid velocity, the
central sphere mass transfer performance is pronouncedly
improved at smaller proximities in case the eight vertex spheres
are inert. Among five cluster configurations, Rotated 2
configuration has the worst mass transfer performance, which
is more distinct at higher Reynolds numbers. A unique profile is

noticed for the Rotated 2 configuration at Res = 200 that the
Sherwood number increases at small cluster proximities.
For this nine-sphere cuboid cluster system, in total 150

simulations were performed. Results are introduced and
discussed qualitatively in the current section; nevertheless, we
refer for detailed simulation results in the Supporting
Information.

4.2. Random-Generated Spherical Cluster. In this
section, our proposed DNS model is applied to a dense
stationary cluster, which is a more physically complex system
containing 100 random-generated spherical particles. All
spheres are of the same size ds = 0.005 m. The cluster is

Figure 2. Concentration distribution in the central plane of the nine-sphere cuboid cluster with different proximities at Res = 200. From top to
bottom, the cluster proximity decreases from 3ds to 1.4ds. The all-sphere-active case and the central-sphere-active case are shown in the left and right
column, respectively.
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created by the hard-sphere Monte Carlo method and
distributed in a spherical configuration with a predefined
solid phase packing density η of 0.3. It should be noted this
value is selected on one hand according to the significant
clustering effect revealed at such a packing density in the
previous section, on the other hand on the basis of a typical
value of realistic clusters observed in riser flows. This gives that
the diameter of the cluster dC is about seven times the particle

diameter ds. The simulations are computed on a 3D domain
with a length of 0.21 m (6 × dC) in the flow direction and a
length of 0.07 m (2 × dC) in the lateral direction. In the flow
direction, the center of the cluster is located at 1.5dC from the
entrance. The empty entrance and exit sections are essential to
allow for flow development and avoid outflow recirculation,
especially at high particle Reynolds numbers. It should be noted
that the cluster Reynolds number will reach a high value even
with intermediate particle Reynolds number due to the fact that
dC = 7ds. The computational domain and particle arrangement
are shown in Figure 8. The same configuration is used for all
following simulations. It should be noted that the number of
particles (i.e., 100) contained in the current cluster is not meant
to be a large enough representative sample for proper statistical
analysis.
In the simulations, fluid flows through the cluster with a

prescribed uniform inlet velocity, with the value of 0.08, 0.2 and
0.4 m/s corresponding to the particle Reynolds number Res of
20, 50 and 100 (cluster Reynolds number Rec of 140, 350 and
700), respectively. At the inlet, the fluid enters the system with
a uniform species concentration of 10 mol/m3. For lateral
domain boundaries, free-slip boundary condition is enforced for
the velocity field computation, whereas zero-flux Neumann
boundary condition is applied for species concentration
computation which implies an isolated system. The pressure
at the outlet is prescribed as the standard atmospheric pressure,
and a zero concentration gradient is set there for the species
computation. The same parameters are used for the simulations
as in Section 3.2 and Section 4.1. For the current work, there
are around 70 million grid cells in total and the parallel
computation were performed for around 3 months on 24 Intel
Xeon E5-2690 processors. Studies for higher fluid velocities are
possible, however might significantly increase the computa-
tional time and make the simulation extremely expensive.
The concentration distribution together with the computed

velocity field are shown in Figure 9 for the central plane of the
spherical cluster at three different Reynolds numbers. In these
simulations, all particles are active catalysts with an external
mass transfer limited chemical reaction proceeding at the
external surface. The mesh resolution, which is the ratio of the
particle diameter to the grid size, applied in the simulations is
20. This value is selected according to the mesh convergence
test done in the previous verification case and our published
work simulating a dense particle array with the same solid phase
packing density.65 Inside the particles both computed
concentration and velocity fields are zero due to the assumption
of nonporous catalysts with reactive external surface and the
enforcement of the no-slip boundary condition at the sphere
surface, respectively. In Figure 9, it is observed that the cluster
behaves like a large isolated sphere with the diameter of the
cluster size dC. A wake is observed at the rear of the cluster. At

Figure 3. Development of particle Sherwood numbers of all spheres
along with the cluster proximity. Solid lines are of the front sphere,
dashed lines are of the central sphere and dotted lines are of the back
sphere. Simulations with the Reynolds number of 10, 50 and 200 are
indicated by blue-plus, red-circle and green-star lines, respectively.

Figure 4. Comparison of the particle Sherwood numbers of the central
sphere at varying cluster proximities. Solid lines are of the central-
sphere-active case whereas dashed lines are of the all-sphere-active
case. Simulations with the Reynolds number of 10, 50 and 200 are
indicated by blue-plus, red-circle and green-star lines, respectively.

Figure 5. Four extended configurations for the nine-sphere cuboid cluster. From left to right, the configuration is Rotated 1, Rotated 2, Half and
Quarter, respectively.
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particle Reynolds number of 20, corresponding to cluster
Reynolds number of 140, the streamlines converge much more
slowly behind the cluster than they diverge before the cluster.
The flow and concentration fields are steady and approximately
axisymmetric. At particle Reynolds number of 50, the cluster-
based Reynolds number is 350, and two circulating eddy rings
are found behind the cluster. With further increased Reynolds
number Res = 100 (ReC = 700), alternating vortex shedding
appears in the wake of the cluster. Inside the cluster, both
concentration and velocity values are much lower than those
outside. However, as fluid flow has stronger penetrating
capability at higher fluid superficial velocities, the velocity and
concentration are less depleted with increasing Reynolds

numbers. Inside the cluster, preferred flow pathways are clearly
observed at locations with low packing density.
For industrial mass transfer processes, the influence of inert

particle dilution is of high interest. The spherical cluster is
therefore composed of a mixture of active catalysts and inert
particles. The inert particles are randomly selected and
distributed inside the cluster. In the case of an inert particle,
fluid flows over it without any chemical reaction. This is
simulated by enforcing the zero-flux Neumann boundary
condition at the sphere surface. As a unique feature of our
DNS model, variable boundary conditions of individual
particles are considered consistently. In our work, five active
ratios AR = 0.1, 0.3, 0.5, 0.7 and 0.9 are used to assess the
dilution effect, together with the limiting case of all active

Figure 6. Concentration distribution in the central plane of the nine-sphere cuboid cluster with different configurations at Res = 50 and S = 1.4ds.
From top to bottom, the cluster configuration is Normal, Rotated 1, Rotated 2, Half and Quarter, respectively. The all-sphere-active case and the
central-sphere-active case are shown in the left and right column, respectively.
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spheres. The active ratio is defined as the ratio of the number of
active particles to the total particle number:

=AR
N
N

active

total (30)

For all cases with AR < 1, three different distributions of inert
and active particles are applied in the simulations to reduce the
influence of relative locations among active catalysts (thus in
total 45 + 3 = 48 simulations were performed). In Figure 10,
concentration distributions for the central plane of the spherical
cluster are shown for six active ratios at the particle Reynolds
number of 50. The mixture of active catalysts and inert
particles, namely the enforcement of two different boundary
conditions, are clearly visualized in the figure. For example in
panel a, only four spheres are active in the current plane
identified by the surrounding concentration gradient whereas
the other spheres are inert. With increasing active ratio,
corresponding number of particles switch from inert sphere to
active catalyst and a lower species concentration is observed

Figure 7. Development of the particle Sherwood number of the central sphere along with the cluster proximity for all-sphere-active case (left) and
central-sphere-active case (right). Simulations at Reynolds number 10, 50 and 200 are represented by solid lines, dashed lines and dotted lines,
respectively. Blue-plus, red-circle, green-star, yellow-cross and black-triangle lines indicate the cluster configuration of Normal, Rotated 1, Rotated 2,
Half and Quarter, respectively.

Figure 8. Simulation domain and particle configuration for the
random-generated spherical cluster.

Figure 9. Concentration distribution (left) and computed velocity magnitude (right) at the central plane of the spherical cluster for the case of all
active spheres. Panels a, b and c are of the particle Reynolds number 20, 50 and 100, with corresponding cluster Reynolds number 140, 350 and 700
respectively.
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inside the cluster and also in the wake region. It should be
noted that the concentration distribution pattern in the wake
region remains unchanged during this AR change process,
namely two symmetrical standing vortices are always attached
to the cluster.
As an isolated structure consisting of multiply particles

encountered in, for example, CFB riser flows, the mass transfer
behavior of the cluster is worth being investigated in its
entirety. The Sherwood number of the spherical cluster is
calculated by using the following equation:

=
Φ

−
Sh

A c c
d
D( )C

C

C f in C

C

f, (31)

where ΦC is the total mass transfer rate from the fluid phase to
the spherical cluster which results from all active particles, dC is
the diameter of the spherical cluster and AC = 4πrC

2 is the
external surface area of the equivalent solid particle of the
cluster size. The driving force for the cluster Sherwood number
is defined as the difference between the inlet concentration cf,in
and the averaged species concentration inside the cluster cC. By
applying this Sherwood number definition, the mass transfer of
the reactant from the bulk fluid to the cluster surface, the
diffusion inside the cluster together with the dilution influence
of inert particles are accounted for integratively. The direct
influence of more active catalysts contained in the cluster on
the increased mass transfer rate is canceled out by taking the
lower reactant concentration inside the cluster into consid-
eration. In Figure 11, the Sherwood number of the spherical
cluster is plotted as a function of active ratio at three Reynolds
numbers. It should be noted that the average value of three
active/inert particle distributions is used in this figure and the
figures discussed hereafter, with the error bar representing the
90% confidence intervals calculated by the Student’s t-
distribution. For the same active ratio, the cluster Sherwood
number increases with higher Reynolds numbers. This is a
similar behavior to the case of a single sphere, and the
improved gas-cluster mass transfer is due to the higher species
supply rate at increased fluid superficial velocities. For all three
particle Reynolds numbers, the cluster Sherwood number
increases with larger active ratios. In other words, a better

interfacial mass transfer performance between the fluid and the
cluster is obtained when the cluster contains less inert particles.
From the figure, the influence of the distribution of inert and
active particles can also be observed from the size of the error
bars. In other words, different relative locations of active
catalysts may result in considerable variations in the cluster
Sherwood number. It has less influence with increasing active
ratio as a more homogeneous system is obtained, and its
influence is enlarged at higher Reynolds numbers. We also
calculated the Sherwood numbers with the Frössling
correlation applied to the cluster as a whole, which are
indicated by dashed lines in the figure. The computed cluster
Sherwood numbers are much higher than the empirical values,
especially at increased Reynolds numbers. This can be
reasonably explained by the flow through the cluster.
Because the spherical cluster is a porous-like structure, it is

interesting to introduce the concept of “effectiveness factor” to
account for the effect of particle clustering and also the effect of
inert particles on the overall mass transfer efficiency of the
cluster. In catalytic reaction engineering, the effectiveness factor
Ω of a porous pellet is defined as the ratio of the actual overall
reaction rate to the reaction rate that would result if the entire
surface were exposed to the bulk concentration.73 Due to the

Figure 10. Concentration distribution for the central plane of the spherical cluster with variable active ratios at Res = 50 (ReC = 350). AR = 0.1, 0.3,
0.5, 0.7, 0.9 and 1.0 are presented by figures from panels a to f, respectively.

Figure 11. Influence of active ratio and Reynolds number on the
cluster Sherwood number.
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assumption of an infinite fast surface reaction proceeding at the
surface of active catalysts, the mass transfer rate of the reactant
from the bulk fluid to the cluster is equal to the rate of reaction
consumption of the reactant of the cluster, and thus the
effectiveness factor of the spherical cluster can be computed as

Ω =
Φ

ΦC
C

bulk (32)

In this equation, ΦC is the same quantity used in Equation 31
and Φbulk is the “ideal” total mass transfer rate if the same
number of particles are active and exposed to the bulk fluid
phase in an extreme dilute configuration.

∑Φ = Δ
=

k A cbulk
i

N

m i s i f
1

, ,

active

(33)

In Equation 33, km,i is the mass transfer coefficient obtained
from the empirical Frössling correlation, as given in Equation
22, As,i is the external surface area of individual particle and Δcf
is the concentration driving force which is defined as (cf,in − 0)
for current computation. As all particles are of the same size in
the current simulation work, Equation 32 can be rewritten as

Ω =
Φ

Φ
=

Sh
ShC

C

bulk

s

s (34)

with Shs defined as

=
Φ

Sh
N A c

d
Ds

C

active s f in

s

f, (35)

and Shs defined in Equation 22. The ratio of the overall average
particle Sherwood number to the “ideal” Sherwood number
computed by the Frössling correlation Sh Sh/s s is actually
defined as contact efficiency γ by Venderbosch et al.74 in their
pioneering studies of mass transfer in riser reactors. For riser
flows, especially in the coarser scale models (DPM and TFM),
gas−solid contact efficiency is widely employed to quantify the
deviation of a riser flow from an idealized plug flow,75−77 which
does not only consider the exposed area of a single particle to
the surrounding gas phase but also includes the effect of the
depleted reactant inside the gas pocket resulted from the
particle cluster. In Figure 12, the influence of active ratio and
particle Reynolds number on the effectiveness factor (contact
efficiency) of the spherical cluster is shown. These results

demonstrate that low efficiency (inefficient gas−solid contact-
ing) is due to the agglomeration of particles into a cluster. Even
with few active catalysts contained in the cluster, its efficiency is
much below 1.0. However, this situation can be considerably
improved by increasing the particle Reynolds number which
gives a better gas permeance through the cluster. At a fixed gas
superficial velocity, the cluster has a lower efficiency at
increasing active ratios. In other words, the gas inside the
cluster becomes more depleted of reactant as the cluster
contains more active catalysts, which leads to a poorer gas−
solid contacting. All these finding are consistent with both
experimental and DPM simulation results published by
Venderbosch et al.74 and Carlos Varas et al.,77 respectively.
For a highly reactive catalyst inside a cluster, which is our

case, the whole mass transfer process is controlled by the
external resistance from the bulk fluid to the catalyst surface. By
using Equation 31 for the cluster Sherwood number calculation,
the additional mass transfer resistance attributed to the
formation of a cluster is accounted for. We are now interested
in the essential mass transfer behavior over the gas film around
the active catalysts in the cluster, which we name as the
effective particle Sherwood number Shs eff, . Due to the
consistent mass transfer rate between the fluid phase and the
solid phase, a relationship among the overall particle Sherwood
number Shs, the cluster Sherwood number ShC and the effective
particle Sherwood number Shs eff, is obtained, which is written as

= −
Sh Sh

N
A
A

d
d Sh

1 1 1

s eff s
active

s

C

C

s C, (36)

In this equation, Nactive is the number of active particles, and As,
ds and AC, dC are the external surface area and the diameter of
the particle and the spherical cluster, respectively. In Figure 13,

the effective particle Sherwood number is plotted at six active
ratios and three Reynolds numbers. At each Reynolds number,
the data can be perfectly fitted by a linear function. This
behavior indicates that the essential mass transfer performance
of the active catalyst contained in the cluster can be linearly
improved by increasing the number of active particles. It is
understood as the result of a more heterogeneous fluid
concentration field inside the cluster. For all active ratios,
higher effective particle Sherwood number is obtained at
increased Reynolds numbers.

Figure 12. Influence of active ratio and particle Reynolds number on
the effectiveness factor (contact efficiency) of the spherical cluster.

Figure 13. Influence of active ratio and Reynolds number on the
effective particle Sherwood number, with corresponding linear fitting
profiles.
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From the DNS results, further detailed information can be
obtained such as the Sherwood number of individual particles.
The local particle Sherwood number is computed by using
Equation 25, with the inlet species concentration cf,in
substituted by the local average concentration cf,local. In this
case, the driving force is defined locally as the difference
between the surface concentration of the active catalyst which is
zero by our assumption and the local average species
concentration cf,local which is obtained from the following
expression:

∭

∭
=

−

−

−

−
c

L R c V

L R V

exp[ ( / )] d

exp[ ( / )]df local
V p s s f p

V p s s
,

,
f

f (37)

The integration is performed over the local fluid volume
surrounding each particle, and Lp−s is the distance between the
local fluid point and the center of the particle. A cubic box of
the size 5ds with its center coinciding with the center of the
particle is selected to be the local fluid volume. The method for
computing the local average concentration cf,local together with
the selection of the local fluid box were published in the
previous work of our group,66,78 and we refer to these papers
for a detailed description. For the computation of the local
particle Sherwood number, the mass transfer rate Φf→s,
calculated by the integration of the concentration gradient at
sphere surface, automatically goes to zero for inert spheres. In
Figure 14, the Sherwood numbers of individual particles for the

case of AR = 1 are plotted as a function of the dimensionless
radial distance to the cluster center at three Reynolds numbers.
At Res = 20 the particles at the boundary of the cluster (rs−c/Rc
> 0.8) have higher Sherwood numbers than most of the inner
particles. However, this behavior does not hold at higher
Reynolds numbers. The increased Reynolds number leads to a
larger improvement of the Sherwood number of the inner
particles than the particles at the boundary shell, especially
those close to the center of the cluster. In other words, high
values of the local particle Sherwood number do not
predominately occur at the cluster boundary, while they
could also occur inside the cluster at high Reynolds numbers.
This phenomenon can be reasonably explained by the nature of
clusters that the gas bypassing is enhanced at higher fluid
velocities and simultaneously the fluid has stronger convection
through the cluster. The existence of preferred fluid pathways

inside the cluster, which is a pronounced property of the
porous medium, will further amplify the latter effect. Although
this figure reveals a better mass transfer performance for almost
all particles at higher Reynolds numbers, few exceptions are
observed which can be explained by the same reason above.
The distributions of the individual particle Sherwood numbers
in radial direction are shown in Figure 15 for increasing active

ratios at Res = 50. This figure confirms the previous finding that
particles deep inside the cluster might also have a good fluid−
solid mass transfer behavior regardless of the active ratio. The
particle Sherwood numbers are observed to have a wider
spreading in values as active ratio increases. Although in a
previous discussion we concluded that the overall average
particle Sherwood number decreases with increasing active
ratios, it is interesting to observe in this figure that not all
individual particles have smaller Sherwood numbers at larger
active ratios. Some particles have a completely opposite
behavior. This is due to the varying heterogeneous concen-
tration field resulting from the switch of particles from inert to
active in the neighborhood.

5. CONCLUSIONS
In this paper a previously introduced ghost-cell based immersed
boundary method is applied to study fluid-particle mass transfer
for flow passing through particle clusters consisting of active
catalysts and inert particles. Taking the advantage of a second
order quadratic interpolation scheme utilized in the recon-
struction procedures, mixed boundary conditions, Dirichlet and
Neumann boundary condition for active and inert particle
respectively, can be realized consistently at the exact position of
the particle surface.
For the nine-sphere cuboid cluster, it is found that for almost

all cases the mass transfer performance of the central sphere
decreases due to the formation of the cluster. The only
exception is the Rotated 2 configuration at Res = 200 for which
the Sherwood number increases with smaller cluster
proximities. The mass transfer performance of the central
particle is improved if it is surrounded by inert particles,
especially at small cluster proximities. Higher Reynolds number
will increase the Sherwood number under any circumstance.
For the random-generated spherical cluster, the cluster
effectiveness factor, also known as contact efficiency in large
scale DPM and TFM models, is much below 1.0 and further

Figure 14. Distribution of the local particle Sherwood numbers of the
spherical cluster for the case of AR = 1, at three Reynolds numbers.

Figure 15. Distribution of the local particle Sherwood numbers of the
spherical cluster for five active ratios, at Res = 50.
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decreases as the cluster contains more active catalysts. The
cluster Sherwood number and the effective particle Sherwood
number, which describe the mass transfer from the bulk fluid to
the inner cluster and the mass transfer over the gas film around
the active catalysts respectively, increase with more active
catalysts contained in the cluster. Regarding the local particle
Sherwood numbers, it is found that high values can also occur
deep inside the cluster at increased Reynolds numbers and the
value may increase with higher active ratios. The distribution of
active/inert particles may lead to large variations of the mass
transfer behavior, which decreases with higher active ratios and
increases with higher Reynolds numbers.
Based on the current work, it is evident that our DNS model

is a powerful tool for a systematic study of the mass transfer
behavior of particle clusters. Besides the active ratio and
Reynolds number, more variables of a cluster such as solid
volume fraction, shape, size and orientation can be investigated.
The particle level Sherwood number reveals the inaccurate
description of the local heterogeneity by using mass transfer
correlations developed for homogeneous systems (which is
widely used in DPM and TFM simulations). The Sherwood
number and the effectiveness factor at the cluster level can be
parametrized and incorporated into mass transfer closures for
aforementioned coarser scale models. This will significantly
improve the prediction of the global mass transfer phenomen-
on.
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■ NOMENCLATURE

Variables
a,b = Coefficients in generic discretized equations.
cf = Molar concentration, [mol/m3].
cf,0 = Initial species molar concentration, [mol/m3].
cf,in = Inlet species molar concentration, [mol/m3].
cf,local = Local average species molar concentration, [mol/m3].
⟨cf⟩ = Cup-average species molar concentration, [mol/m3].
cijk = Coefficients in second-order polynomial.

Csp = Convective species transport per unit of volume, [mol/
m3/s].
dC = Spherical cluster diameter, [m].
ds = Sphere diameter, [m].
Df = Mass diffusivity, [m2/s].
Dsp = Diffusive species transport per unit of volume, [mol/
m3/s].
f = Coefficient of Robin boundary condition.
n = Time step index. = Unit normal vector, [1].
p = Pressure, [Pa].
rC = Cluster radius, [m].
rs = Sphere radius, [m].
t = Time, [s].
u0 = Fluid superficial velocity at inlet, [m/s].
Vs = Sphere volume, [m3].
x,y,z = Relative coordinate directions, [m].

Greek Letters
α,β = Coefficients of Robin boundary condition.
γ = Contact efficiency, [1].
η = Solid packing density, [1].
μf = Fluid dynamic viscosity, [kg/m/s].
ρf = Fluid density, [kg/m3].
ϕ = General fluid variable.
ΔL = Distance between ghost point and image point, [m]
Δt = Time step, [s].
Φf→s = Molar transfer rate from fluid to solid, [mol/s].
Ω = Effectiveness factor, [1].

Vectors
Cm = Convective momentum flux, [N/m3].
Dm = Diffusive momentum flux, [N/m3].
g = Gravitational acceleration, [m/s2].
n = Time step index. = Unit normal vector, [1].
u = Velocity, [m/s].

Subscripts and Superscripts
B = Boundary point.
C = Cluster.
f = Fluid phase.
s = Solid phase.

Operators
∂
∂t
= Partial time derivative, [1/s].

∇ = Gradient operator, [1/m].
∇· = Divergence operator, [1/m].
∇2 = Laplace operator, [1/m2].
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