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Dynamic changes of physiological bioprocess parameters, e.g. a change in the specific
growth rate l, are frequently observed during industrial manufacturing as well as bioprocess
development. A quantitative description of these variations is of great interest, since it can
bring elucidation to the physiological state of the culture. The goal of this contribution was to
show limitations and issues for the calculation of rates with regard to temporal resolution for
dynamic fed-batch experiments. The impact of measurement errors, temporal resolution and
the physiological activity on the signal to noise ratio (SNR) of the calculated rates was eval-
uated using an in-silico approach. To make use of that in practice, a generally applicable rule
of thumb equation for the estimation of the SNR of specific rates was presented. The SNR cal-
culated by this rule of thumb equation helps with definition of sampling intervals and making
a decision whether an observed change is statistically significant or should be attributed to
random error. Furthermore, a generic reconciliation approach to remove random as well as
systematic error from data was presented. This reconciliation technique requires only little
prior knowledge. The validity of the proposed tools was checked with real data from a fed-
batch culture of E. coli with dynamic variations due to feed profile. VVC 2013 American Institute
of Chemical Engineers Biotechnol. Prog., 29: 285–296, 2013
Keywords: data exploitation, bioprocess model, bioprocess optimization, dynamic
experiments, quality by design

Introduction

Motivation

The introduction of quality by design (QbD) is a driver
for structured process development strategies based on sound
science rather than empiricism. A main objective is the de-
velopment of process understanding, both for the communi-
cation to the regulatory authorities as well as for business
driven optimization efforts. Following the QbD initiative,
pharmaceutical development is required to show in-depth
understanding of factors with impact on product quality and
their interactions.1–3 Increased process understanding can be
acquired by proper experimental design (e.g., design of
experiments; DoE).4 However, experiments generate huge
amounts of experimental data besides CCPs (critical process
parameters) and CQAs (critical quality attributes) as defined
in the ISPE document,3 which can also contribute to process
understanding. Multivariate data analysis provides numerous
so called empirical or data driven tools to explore, structure,
and classify data (e.g., PCA, artificial neural networks, clus-
ter analysis etc. and also to explore correlations and depend-
ency between variables (e.g., multiple linear regression,
PCR/PLS-R, etc.).5–8 These can be very helpful tools; how-
ever, an important requirement for empiric models is repre-
sentative data for the model problem, avoiding extrapolation
from the training data set, which can potentially lead to mis-

leading conclusions. Furthermore, when applied to a biopro-
cess, coefficients, and mathematical relations typically have
no direct physiological meaning, hence interpretation and
generation of knowledge from these is not straight forward.

A more direct approach to generate knowledge is using
mechanistic models, which describe the system in question by
fundamental knowledge (e.g., chemical or physical principles)
of the interaction between process variables.9,10 The advantage
of mechanistic models is also a drawback; detailed knowledge
of the process is not always available. In biological processes
setting up mechanistic models is especially challenging due to
the great complexity of the living cell. Looking into the cell
this can be achieved e.g., by metabolomics or transcriptom-
ics.11–14 However, in industrial process development time is a
limiting factor; hence a simpler and faster approach is
required. Valuable information on the cell physiology can be
also acquired using a black box, unsegregated model of the
cell15 where conversion rate for reactants and products (e.g.,
substrates: C-source, oxygen, products: biomass, carbon diox-
ide) entering and leaving the cell envelope (catalyst) are ana-
lyzed. Furthermore, specific rates and yields calculated from
conversion rates, e.g., the specific growth rate l, can be used
for the description of the cell state.

Time resolved quantitative data processing as a tool for
pharmaceutical upstream process development

Because of the inherent complexity of the biological sys-
tems, process development for biopharmaceutical is a time-
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and labor extensive task. The available toolset for economic
process development along QbD principles includes DoE, risk
based factor reduction16,17 as well as parallel processing18 and
automation strategies.19,20 The plethora of available on-line
and offline analytical devices poses great opportunities for a
fast progress in system understanding within process develop-
ment.21,22 However, strategies are needed to tie the individual
measurements together in order to get a full picture of the
bioprocess. Here, an approach based on general mass balances
is used to transfer and condense the available on- and offline
data into scale independent, time resolved information in the
form of rates and yields. Rates and yields can be further proc-
essed via elemental balancing and reconciliation procedures,23

enhancing the trust in the obtained information. This consti-
tutes an exploratory strategy for biopharmaceutical process de-
velopment that can help understanding the physiological
impact of process parameters on the system under investiga-
tion. Furthermore, specific rates and yields can be analyzed
for defined time intervals and used for the detection of tran-
sient changes in the cell state induced by e.g., fluctuating pro-
cess parameters.15,24 Comparison of specific rates and yields
can lead to valuable information to allocate a change in the
physiological cell state, which can also relate to product qual-
ity.25,26 Quantitative data processing lays the basis for the cal-
culation of time-resolved specific rates and yield coefficients.

Black box model/rate based quantitative process description

The typical microbial fed-batch process in red biotechnol-
ogy has oxidative growth stoichiometry without primary
metabolite formation (or the amount is too small to be consid-
ered). The applied black-box description reduces the complex-
ity of the biological activity to a single stoichiometric
formula: Substrate reacts with oxygen and the available nitro-
gen source forming carbon dioxide and biomass (Eq. 1). In
industrial processes acetate productions is often avoided, ei-
ther by use of glycerol, limiting substrate flux or strain selec-
tion. So, Eq. 1 is applicable to a broad range of industrial
processes. However, this does not limit the approach, since
Eq. 1 can be easily updated to consider acetate or other
metabolites. In a process development environment, oxygen-,
carbon dioxide fluxes and in substrate-limited cultures, such
as fed-batch processes, the substrate flux, are typically meas-
ured in real-time. Biomass is typically measured offline.
Applying elemental balances this general stoichiometric equa-
tion can be split into a subset of reactions that can be utilized
for the calculation of reaction rates using a matrix formula-
tion.27 Hence, conversion rates are accessible based on the
data typically recorded in bioprocess development. Conversion
rates can be easily processed into physiological information in
the form of specific rates and yields. To extract time-resolved
information, (specific-) rates and yields can be calculated for
a finite time window, e.g., instantaneously between every
measurement point or between two points separated by a dis-
crete time interval. This time resolved rate calculation can be
utilized for the detection of transient changes in bioprocesses.

Equation for oxidative growth

rSCHpHOpOþrO2O2þrNNH3 ! rxCHzHOzONznþrCO2CO2

(1)

Error propagation, signal quality, and noise reduction

Given available analytics, the calculation of specific rates
and yields is straightforward and even feasible in real-time.28

However, these physiological meaningful process descriptors
are composites of multiple measurements, each prone to ran-
dom errors, drifts or even gross errors. Therefore, the ex-
tractable information needs to be differentiated from random
noise, as already discussed for batch processes.29 Within this
publication we expand the discussion of the rate-based bio-
process characterization approach to the fed-batch mode and
induced conditions, proposing approaches for a scientifically
sound quantification practice with respect to expected errors
and expected biological variation, with special emphasis on
the detection of transient changes of the metabolic state
described by process variables such as rates and yields.

Next to the propagation of random measurement errors to
specific rates and yields, gross errors such as sensor miscali-
bration and sensor drifts can distort their extractability from
the available data. This especially accounts for the extract-
ability of information with dynamically changing physiologi-
cal conditions, e.g., the detection of a change in the specific
growth rate l or a change in biomass to substrate yield.
Hence, the level of noise on such variables, which is called
signal quality further on, has to be evaluated and set in con-
text with quantitative measures. For this purpose the signal-
to-noise ratio was defined as quality attribute for rate based
evaluation of bioprocesses. The signal to-noise ratio (SNR)
is a commonly used measure for data quality and can be
used to assess the probability whether variations in the
observed signal are physiological information and not ran-
dom noise.

Averaging over a time window is a frequently used
method to reduce random noise, since it is very easy to
understand and to apply. In digital signal processing this is
called moving average.30 However, there is a trade-off
between gain in SNR ratio and the temporal resolution, for
example required for tight process control, which needs elu-
cidation for data evaluation in fed-batch processes. Less
SNR ratio can be compensated by larger averaging intervals
to remove random noise. Knowledge on the SNR to be
expected, based on the errors on the participating measure-
ments and the biological characteristics of the process, is
useful in experimental planning. This allows an estimation
of the maximum temporal resolution for the detectability of
dynamic changes prior to experimentation, hence helps with
definition of sampling intervals. For this purpose, this contri-
bution utilizes an, in silico strategy, verified with real data,
to analyze the propagation of measurement errors, averaging
window size and physiological activity on the SNR of spe-
cific rates and yields. The goal is to tailor quantitative data
processing to predefined objectives, expected errors and the
system under investigation, aiming at a maximized time re-
solution while maintaining an objective dependent level of
signal to noise.

Reduction of noise by a moving average method comes at
the cost of temporal resolution as discussed above. Beyond
averaging there are methods which introduce prior knowl-
edge (e.g., process models) to remove noise instead. How-
ever, prior knowledge is not always applicable; hence there
is a need for methods, which avoid making extensive use of
such knowledge. Generally, applicable constraints such as
elemental balances can remove measurement error by using
very little prior knowledge.28

The methods presented in this contribution were devel-
oped using in silico data, since this allows for quick and
easy generation of any kind of physiological variation and
also adding artificial levels of random noise. Subsequently,
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the obtained results were validated and checked for their
applicability using real fed-batch process data obtained from
a recombinant process with dynamic changes in physiologi-
cal variables.

Goals

• We want to show limitations and issues for the calcula-
tion of rates with regard to temporal resolution for dynamic
fed-batch experiments.

• We want to propose a real-time capable method for eval-
uation of dynamic variations due to physiological state in
rate-based bioprocess quantification. A quantitative measure
for signal quality was defined (SNR) and a rule of thumb
equation is presented to estimate the SNR to get an idea on
the ability to quantify expected physiological variations and to
help with definition of sampling intervals beforehand.

• We want to present data reconciliation as a method for
the reduction of measurement error using very little prior
knowledge, while maintaining a high temporal resolution.

• The approach and the performance was investigated
using data from a real fed-batch with dynamic variations in
the data.

Materials and Methods

Culture

A recombinant K12 E. coli strain was used for the verifi-
cation runs with stoichiometrically defined media. A shaking
flask preculture (100 ml for inoculation of 6 l batch medium,
in 1 l shaking flask with baffles) was inoculated from frozen
stocks. After 8 h at 35�C, 180 rpm in the shaker the precul-
ture was used to inoculate the bioreactor. Culture conditions
were pH ¼ 7, temperature ¼ 35�C and DO2 [ 20%. Using
a glycerol concentration of 20 g/l the batch was finished
within about 12 h. The end of the batch was detected by a
drastic drop in the CO2 off-gas signal and an increase in dis-
solved oxygen (DO2). At this point an exponential fed-batch
was initiated Eqs. 2 and 3 were used to calculate the feed
profile for the exponential fed-batch. The specific growth
rate before induction was set prior to the experiment, while
constants such as the feed concentration (S0), density (qfeed),
initial biomass concentration X0 and initial volume V0 were
measured. The biomass yield (Yx/s) was determined in prior
experiments. The molecular weight of substrate and biomass
(MS, MX) can be found in the literature or measured by an
elemental analyzer. To generate variation in the specific
growth rate, a linear feed was adjusted equal to the last fee-
drate of the exponential feed-profile, adjusted by a drop fac-
tor resulting in abrupt drop of the feedrate. This resulted in a
reduced initial specific growth rate, e.g., from (¼k) ¼ 0.15
h�1 in the exponential phase to an initial l ¼ 0.1 h�1 in the
linear phase.

Feedrate in exponential fed-batch

FðtÞ ¼ F0 � ek�t (2)

Initial feedrate in exponential fed-batch

F0 ¼ V0 � k � X0 �MS � qfeed

S0 � Yx=s �MX

� �
(3)

Bioreactor setup and on-line analytics

Bioreactor. Two stainless steel bioreactors with working
volumes of 10 and 20 l were used (Infors, Bottmingen, Swit-
zerland). The systems come with a controller unit, which
was used to adjust the process parameters: pH, temperature,
aeration, reactor pressure, and stirrer speed. DO2 was con-
trolled [20% using a step controller with reactor pressure,
stirrer speed, and air flow as manipulated variable. The pH
was controlled using an integrated digital peristaltic pump
and NH4OH as a base. Air was filtered by a membrane-type
filter and dispensed by a ring sparger. The culture vessel was
sterilized at 121�C for 20 min by in situ steam sterilization
prior to inoculation.

Off-Gas Analysis. CO2 and O2 in the off-gas were quan-
tified by a gas analyzer (Servomex, UK; M. Müller AG,
Switzerland), using infrared and paramagnetic principle,
respectively. Air flow was quantified by a mass flow control-
ler (Vögtlin, Aesch, Switzerland).

In-Line Capacitance Analysis. An annular type probe
(Aber Instruments, Aberystwyth, Wales, UK) was used to
measure capacitance during the fermentation. Capacitance
values are calculated in real-time from the difference
between two frequencies. At 1 MHz E. coli cells contribute
to the capacitance while 10 MHz is the ‘‘background’’
depending on the medium, according to definitions of the
supplier. The difference in capacitance relates to the viable
cell concentration or more directly to intact biovolume, as
only intact cells act as a capacitor.31

Data Management. For recording of process data the
process information management system Lucullus from Bio-
spectra (Schlieren, Switzerland) was used. This system was
also used for closed loop control (feed bottle on balance).

Quantitative evaluation of bioprocess data

Conversion Rates. Assuming oxidative metabolism, the
bioreaction can be described by a single stoichiometric equa-
tion. Although there are many different chemical reactions
running in parallel in living cells, the conversion rates in Eq.
1 (see section Black box model/rate based quantitative pro-
cess description) represents the overall summarized effect of
all the different reactions.

The conversion rates in Eq. 1 for the species substrate (S),
biomass (X), carbon dioxide (CO2), ammonia (N) as well as
oxygen (O2) in fed-batch mode can be calculated as follows:

Conversion rate for substrate

rS ¼
dðSÞ
dt

� S
�

in þ S
�

out ¼ � Ff ;in

qfeed;in
S0;in (4)

In fed-batch mode the outflow term S
�

out is zero and the accu-

mulation term
dðSÞ
dt can be neglected, as long l \ lmax hence

the conversion rate rs is only dependent on the inflow term

S
�

in, which is calculated from the feed rate.

Conversion rate for biomass

rx ¼
dðXÞ
dt

� X
�

in þ X
�

out ¼
dðXÞ
dt

(5)

Since, there is no in- and outflow term rx is equal to the accu-

mulation term
dðXÞ
dt . The biomass composition (CH1.8O0.56

N0.23, ash: 5.5%) was determined experimentally (2400 CHN
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Elemental Analyzer, Perkin Elmer, Microanalytical Labora-
tory, University Vienna).

Conversion rate for carbon dioxide

rCO2
¼ dðCO2Þ

dt
� CO2;in

�
þCO2;out

�

¼ Fa;in

Vm

ðyCO2;outRainert � yCO2;inÞ ð6Þ

Conversion rate for oxygen

rO2
¼ dðO2Þ

dt
� O

�
2;in þ O

�
2;out ¼

Fa;in

Vm

ðyO2;outRainert � yO2;inÞ

(7)

Inert gas ratio

Rainert ¼
1 � yO2;in � yCO2;in

yO2;out � yCO2;out � ywet

yO2 ;in

(8)

Because of the low solubility of O2 in the fermentation

broth,
dðO2Þ
dt can be neglected. The term

dðCO2Þ
dt can be also

neglected, since the solubility of CO2 in the fermentation
broth is a mainly a function of temperature and pH, which
are typically kept constant. Hence, the rates rCO2

and rO2
are

dependent on the in- and outflow terms (Eqs. 6 and 7). Fa,in,
yCO2,out, and yCO2,out are measured, while Rainert (Eq. 8)
depends on the dilution by water stripping describes the ratio
between the in- and outflow term. ywet is the off-gas concen-
tration of O2 without bio-reaction and relates to the dilution
by water stripping.32

The mass of the culture broth during the fed-batch was
calculated by a general mass balance (Eq. 9). This balance
includes ingoing and outgoing liquids (Ff,in, Fb,in), gases
(rO2

, rCO2
), water stripping (Swater, calculated from ywet) and

the sampling rate (fsample).

General mass balance

dM

dt
¼ Ff ;in þ Fb;in þ rO2

MO2
� rCO2

MCO2
þ swater þ fsample

(9)

Specific rates and Yields. Conversion rates are the basis
for the computation of yields (Eq. 10), which are defined as
ratios between rates (e.g., biomass per substrate). Specific
rates (Eq. 11) are typically conversion rates related to the
biomass.

Yi
j
¼ ri

rj
(10)

qi ¼
ri
X

(11)

Constraints. General form of constraints

Xk
i¼1

rivi ¼ 0 (12)

Using the law of conservation, elemental balances can be
imposed on the every element of the bio reaction as con-
straints (Eq. 12). In which r is the rate vector and v is the
vector of coefficients for each element. This is useful as a
consistency check of the data and to calculate nonmeasured
items. In this contribution two balances were used, the car-

bon (C) balance and the degree of reduction (DoR)
balance.29

Consistency Check. A statistical test adapted from the
Ref. 33 was applied to get a quantitative measure on integ-
rity of the observed system, based on the elemental balances
imposed in section ‘‘Constraints.’’ Equation 12 can be writ-
ten in matrix form (Eq. 13):

Matrix form of constraints

EW ¼ 0 (13)

W is the vector of the measured volumetric rates r and E is
the elemental matrix with the coefficients v.

For noisy data a residue vector e is added (Eq. 14):

Matrix form of constraints with residue vector

EW0 ¼ e (14)

For each rate an expected error (by default 3% error on each
rate) is specified in the variance-covariance matrix w of the
rates and is assumed to be noncorrelated (square with the
errors for each rate in the diagonal). The result of the statis-
tical test value h is calculated with U as the variance-covari-
ance matrix of the residuals Eqs. 15 and 16. The hypothesis
of not having any errors exceeding the expected error speci-
fied in w is rejected if h is greater than a certain threshold
value. This threshold value can be read from v2 distribution,
which depends on the degree of redundancy of the equation
system (or also the degree of freedom of the v2 distribution)
and the significance level a (by default 0.9). The default a
degree of redundancy of one (¼ estimation of one rate) or
two (¼ no estimation, only consistency check) results in a
threshold of 2.71 or 4.61 for the statistical test value, which
is exceeded if the current error is higher than the expected
error. In Ref. 29, the expected error was assumed to be 3%
error on each rate. As shown in the Ref. 29 less than 3%
error on each rate (the variance-covariance matrix w has
0.03 in the diagonal) is feasible if the averaging window
(Dt) is chosen accordingly ([2 h). An error of 3% on each
rate results in a deviation of about 10% on the C- and DoR
balance, which is also the assumed cumulative error on all
rates. The degree of redundancy of the equation system is
equal to the rank of E if no conversion rates are estimated or
to the rank of R if conversion rates are estimated.

Variance-covariance matrix

U ¼ ETWE (15)

Statistical test value

h ¼ eTU�1e (16)

Data Reconciliation. A data reconciliation procedure
according to the Ref. 23 was applied. In addition to estima-
tion of nonmeasured conversion rates, redundancy in the
equation system can also be used to adjust the conversion
rates to simultaneously close all elemental balances imposed
in section ‘‘Constraints’’. The lumped residues of the equa-
tion system are distributed along the rates according the
expected error for each rate. Using a least squares approach
the goal of reconciliation is to find a measurement error vec-
tor d to calculate the reconciled vector Wb (Eq. 17), hence
the vector of the best estimates of the volumetric reaction
rates to fit all constraints. The solution to this problem is
adapted from the Ref. 34 (Eq. 18).
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Calculation of the reconciled vector Wb

Wb ¼ W þ d (17)

Calculation of the measurement error vector d

d ¼ WETU�1e (18)

In silico data generation

An in silico data set was generated using Excel (Micro-
soft, Redmond, USA) according to the equations in section
‘‘Quantitative evaluation of bioprocess data.’’ Normally dis-
tributed random noise (F-distributed) was added to this data
to evaluate extractability of information based on the signal
to noise ratio (see section ‘‘Calculation of rates by finite dif-
ference approximation’’).

Calculation of rates by finite difference approximation

Since, there is no way to directly measure the conversion
rate for some of the species in the bioreaction (Eq. 1), these
have to be calculated from measurements at discrete time
points, e.g., the biomass conversion rate. A rate can be cal-
culated from time-value pairs by numeric differentiation
using simple finite difference approximation according to
Eq. 19. While Di corresponds to difference from one mea-
surement of the species (e.g., biomass) to the other, Dt is
defined by the sampling interval, or multiples of it.

Finite difference approximation for calculation

of conversion rates

riðtþ
h

2
Þ ¼ f ðtþ hÞ � f ðtÞ

h
¼ Di

Dt
(19)

Calculation of statistical parameters

The standard error of the arithmetic mean (Eq. 20) is the
standard deviation(s) of the arithmetic mean x with multiple
replicates (n replicates). Replicates improve the estimation
and result in a smaller standard error.35 The SNR (Eq. 21)
compares the arithmetic mean (x) of a signal to the level of
the background noise or the standard deviation of the sig-
nal(s). The limit of detection and quantification (Eqs. 22 and
23) are terms known from the validation of methods in ana-
lytical chemistry and can be used as thresholds for SNR for
the goals detection or quantification of a component or, in
this contribution, variations of specific rates, and yields.

Standard Error

SEð�xÞ ¼ sffiffiffi
n

p (20)

Signal to noise ratio

SNR ¼ �x

s
(21)

Limit of detection

LOD ¼ 3 � SNR (22)

Limit of quantification

LOQ ¼ 12 � SNR (23)

Results and Discussion

Error propagation in fed-batch

One of the goals of this contribution is the evaluation of the
extractability of information by quantitative analysis of typical
data from a bioprocess; hence error propagation from raw data
has to be analyzed. Table 1 shows typical measurement errors
(according to suppliers’ specification) for on-line devices and
also for biomass quantification. The latter is typically much
higher than all other items. For off-line biomass quantification
this error can be reduced by replicates according to the equa-
tion for the standard error of the arithmetic mean (Eq. 20). For
example using four replicates the expected relative error is
reduced from 4% to 2%. Obviously more replicates come with
diminishing effects and also time consuming extra work. Typi-
cally probes for in-line quantification of biomass come with
similar or even higher relative errors.

Using finite difference approximation according to section
‘‘Calculation of rates by finite difference approximation,’’ it
is typically recommended to choose Dt as small as possible;
however, error propagation e.g., from biomass measurements
is highly unfavorable, so smaller Dt (further on also called
averaging window) leads to more noise on the calculated
rate (see Figure 1). Furthermore, the specific growth rate
directly increases the signal to be evaluated (Di), since most
of the other rates are directly proportional to it. In a previous
contribution29 it was shown that, summing up, SNR is de-
pendent on the following factors: the biological activity, the
averaging window (or temporal resolution), and the measure-
ment error. With a greater signal and lower measurement
error, higher time resolution can be achieved with sufficient
signal quality.29 Connecting two samples for biomass in Fig-
ure 1 by a line, is in fact the graphical representation for the

Table 1. Methods, Standard Deviations, Relative Error (Biomass) and Error Types Typically for Methods/Devices Typically used for

Quantitative Evaluation of Fed-Batches

Device/Method Relative Error Type of Error Range Unit

Feed balance 1 Absolute error 0–35.000 (g)
Base balance 1 Absolute error 0–35.000 (g)
Reactor balance 1 Absolute error 0–35.000 (g)
O2 off-gas analysis paramagnetic 0.02 Relative error 0–26 (%)
CO2 off-gas analysis infrared 0.01 0.1% absolute error

on full scale 0–10%
0–10 (%)

MFC_Air thermal mass flow meter 0.035 Relative error 0–40 (l/min)
Biomass quantification

e.g.: dryweight, capacitance
2% (dry weight, for s ¼ 4 %)

and 4 replicates according
to Equation 20), or 8%
(capacitance)

Relative error [0.1 (g/l)
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calculation of the biomass conversion rate by finite differ-
ence approximation according to section ‘‘Calculation of
rates by finite difference approximation.’’ Random error is
considered as presented by the error bars. Looking at Figure

1 it is pretty obvious that the resulting rate is much more
governed by random error (here ¼ 2% relative error on each

sample) if Dt is small (solid line, 0.1 h on the x-axis) com-

pared to larger Dt (dotted line, 2 h on the x-axis), since the

connecting lines (¼ graphical representation for the calcula-

tion of the biomass conversion rate) differ much more in the

first case due to random error. This is even though the actual

rate is constant over the whole range, since a linear growth

function was used to generate the data points. Other growth

functions such as exponential growth lead to similar results

(not shown). Filtering techniques, which can be used to

smooth rates, typically also come at the cost of temporal re-

solution (e.g: moving average filter), or require prior knowl-

edge (e.g: a process model).

While this error propagation is easily understood for the
example discussed above (also see a previous publication29),
things get more complex if dynamic variations due to cell
metabolism are added, e.g., due to feed profile. In fact, we
want to differentiate those variations from random noise. Fig-
ure 2A shows in silico generated data from a typical micro-
bial fed-batch, which are required to calculate specific
growth rates: the biomass concentration, the reactor broth
weight and the weight of feed over time. Noise according to
Table 1 was artificially added. A variation in the specific
growth rates from l ¼ 0.05 h�1 to l ¼ 0.1 h�1 at process
time ¼ 8 h and back to l ¼ 0.05 h�1 at process time ¼ 16 h
was simulated, which is barely noticeable in the raw data

Figure 2. In silico generated data for a typical fed-batch (Microbial culture, Glucose Feed 400 g/l) with an artificial increase
from l 5 0.05 h21 to l 5 0.1 h21 at process time 5 8 h and back to l 5 0.05 h21 at process time 5 16 h.

(A) Progression of raw data required to calculate specific rates: biomass concentration (artificially added noise: 1.5% relative error), feed balance
and reactor broth weight; (B) Specific growth rate with a Dt of 3 h according to Eq. 19 with a signal-to-noise ratio of 15 and 7.5 at l ¼ 0.1 h�1

and l ¼ 0.05 h�1, respectively; (C) Specific growth rate with a Dt of 1 h according to Eq. 19 with a signal-to-noise ratio of 5 and 2.5 at l ¼ 0.1
h�1 and l ¼ 0.05 h�1, respectively; (D) Specific uptake rate with a Dt of 1 h as used in Eq. 19.

Figure 1. Graphical representation for the numeric differen-
tiation of biomass growth using a small Dt (solid
line, 0.1 h of process time on the x-axis) and a large
Dt (dotted line, 2 h of process time on the x-axis);
2% relative standard deviation on biomass measure-
ments (y-axis).
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(Figure 2A). Figure 2B shows specific rates calculated from
the raw data in Figure 2A with a Dt of 3 h according to Eq.
19. Figure 2C shows specific rates calculated from the same
raw data, but with a Dt of 1 h according to Eq. 19. A relative
error for biomass quantification of 1.5% with a Dt of 1 h
leads to variations of up to about as large as the signal (the

specific growth rate) itself, as seen in Figure 2C, which
makes visual interpretation of this plot very difficult. In Fig-
ure 2B visual interpretation is much easier, due to the Dt of 3
h according to Eq. 19. The SNR can be used to evaluate the
quality of the calculated specific growth rate on a quantitative
basis. Since, the noise on the signal is known and constant
for a defined time window in this artificially generated exam-
ple, calculation of standard deviation and arithmetic mean to
get the SNR according to Eq. 21 is straight forward. A signal
to noise ratio of 3 (¼ signal is 3 times than the residual
standard deviation) is defined as the limit of detection while
a ratio of 12 is the limit of quantification.36 With a SNR of
12 a 100% variation of the signal can be reliably detected, to
quantify a smaller variation the SNR should be even higher
(e.g., a SNR of 120 for 10%). Accordingly, it is hardly possi-
ble to extract useful information in Figure 2C, since the sig-
nal to noise ratio is barely good enough to detect a change
(SNR ¼ 2.5 or 5). The window should be increased to 3 h or
higher, to get a specific growth rate with a SNR higher than
three or preferably [12 (Figure 2B), in order to be able to
distinguish between random noise and real physiological vari-
ability based on previously established definitions for limit of
detection and quantification. Obviously, the SNR increases
linearly with the specific growth rate (l), since l is in the top
of the fraction in Eq. 21. Figure 2D shows the specific uptake
rate (qs) for this data set. Since, qs was calculated using data
from the feed balance, which comes with a much lower mea-
surement error as compared to the biomass measurement, the

Figure 3. Relation of biomass error, averaging window and specific growth rate (x-, y-, and z-axis) to signal to noise ratio (isolines
with labels).

Figure 4. Relation of a combination of biomass error, averag-
ing window (Dt) and specific growth rate to signal-
to-noise ratio (SNR); Comparison between linear
and quadratic equation.
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resulting rate is less noisy. If the sampling strategy and the
process setup are optimized to meet signal quality require-
ments for the most noisy process variable (here the biomass
concentration), all other process variables will follow the
requirements as well.

The dependency of SNR on the specific growth rate h�1,
averaging window h (Dt as used in Eq. 19) and biomass
error % on a broader range is shown in a contour plot in
Figure 3. The plot was generated by setting up a multi-linear
regression model (Software: Modde, Umetrics, Sweden).
Noisy (biomass) data result in a low SNR, especially at low
growth rates (e.g., l ¼ 0.03 h�1). This can be alleviated by
either using a higher averaging window (Dt as used in Eq.
19) at the cost of time resolution or more replicates for the
biomass quantification. However, this is not always applica-
ble e.g., with real time measurement by a capacitance probe,
since additional measurements by increasing the sampling
frequency are no real replicates.

The model can be condensed in one coefficient, by put-
ting the positive effects (specific growth rate and averaging
window Dt as used in Eq. 19) in the top and the negative
effects (biomass error) in the bottom of the fraction (Eq.
24). This also represents the signal in relation to the error
in analogy to general equation for SNR (Eq. 21). As shown
in Figure 4 the model has a quadratic effect for higher
SNRs, but can be approximated linearly at lower SNRs
(Eq. 24). The quadratic effect is due to the finite difference
approximation according to Eq. 19; too high values for h
are counterproductive.

Rule of thumb equation for SNR

SNR ¼ 67 � l � Dt
ErrorBiomass

(24)

Noise reduction using little prior knowledge: reconciliation

Higher averaging windows (Dt as used in Eq. 19) can
only deal with random noise; systematic errors cannot be
reduced this way. A procedure according to a previous publi-
cation23 can be used to reconcile rates to remove random
error and even more importantly also small systematic errors
such as slight miscalibration of equipment, instrument drifts,
and even minorly aberrant constants (e.g., feed concentra-
tion). The basic idea is to adjust the rates to fit constraints
(elemental balances) according the expected error (e.g.,
according to manufacturer specifications or method replicate
error) on each rate. This error has to be specified in the var-
iance-covariance matrix w. As long the constraints were
based on correct assumptions (e.g., stoichiometric equation)
and the experimental errors do not exceed the errors speci-
fied in w, random and also systematic error can be effec-
tively removed by reconciliation.23 However, the specified
errors have to reasonably substantiated (e.g., according to

manufacturer specifications or method replicate error), else
the reconciliation procedure may result in artifacts. Further-
more, the v2 distribution (used for the definition of the
threshold value for the h-value, see section ‘‘Consistency
check’’) is for normally distributed values. Systematic error
does not necessarily follow a normal distribution (99% of
the observed values are distributed within three standard
deviations) and may be constant. Hence, the threshold for
the h-value according to the v2 distribution might be too for-
giving if a major fraction of the residuals is due to system-
atic error. This should be considered if the error structure on
the measurement is known.

The biomass measurement is typically more prone to error
as compared to other data, it can be expected that most of
the noise is on this rate. A good estimate for the expected
error is the reciprocal of the SNR, which can be simply cal-
culated using Eq. 24 (which was inferred from Eq. 21). The
second highest noise is on the rate for oxygen uptake, which

Table 2. Assumptions for Errors on Necessary Items for the Calculation of Rates and Recommendation for the Variance-Covariance Matrix w

Rate Influencing Factors Relative Error on Factor (%) Effect to the Rate (%) w

rx Biomass quantification error e.g.: 2 1/SNR � 100 1/SNR þ 0.01
rx DoR Biomass e.g.: 1
rs Feed concentration e.g.: 1 0.03
rs Feed density e.g.: 1
rCO2 Miscalibration/sensor drift plus random error 0.01
rO2 Miscalibration/sensor drift plus random error 0.06
rO2 yo2_wet 0.2 up to 6

Figure 5. Rates calculated from in-silico generated fed-batch
data (Microbial culture, Glucose Feed 400 g/l).

Window for rate calculation (Dt, Eq. 19): 1 h. Specific growth
rate ¼ 0.165 h�1; Biomass error ¼ 2.55%; (A) Raw and recon-
ciled conversion rates together with the corresponding h-value;
(B) Specific growth rate (l) from raw and reconciled data.
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is prone to systematic error; e.g., dilution by water in the off-
gas, which can also vary during the process. The error on the
other rates is mainly systematic as well (miscalibration, sensor-
drift, measurement error on constants such as feed concentration
etc.), since the random measurement error propagated by on-
line devices (see Table 1) is typically negligibly small (\10�4

%). Assumptions for errors on necessary items for the calcula-
tion of rates are shown in Table 2 and based on that recommen-
dation for w are given. Here, most of the systematic error is due
to constants acquired by measurement (e.g., feed concentration,
density, water dilution etc.); hence, it is safe to assume most of
the systematic error is normally distributed. Figure 5A shows
the biomass production rate (rX) for a typical mircobial fed-
batch, which was reconciled according to section ‘‘Data recon-
ciliation’’ using the errors specified in the variance-covariance
matrix w from Table 2. The other rates (rS, rCO2, and rO2)
were reconciled as well but as explained above most of the
error is in the biomass rate. The h-value is a statistical test
(threshold ¼ 4.61, can be read from the v2 distribution, dF ¼
2, a ¼ 0.9), which states whether the residuals on the balance
are within the expected range according to w. If the threshold
is exceeded, the error is higher than previously specified. The
reconciliation result might be still useful; however, the proce-
dure fitted higher error to the elemental balances than previ-
ously expected. This can be also due to a wrong assumption of
the growth stoichiometry, e.g., unaccounted formation of
metabolites. As can be seen in Figure 5B the SNR (according
to Eq. 21) is increased from 6 to 100 by reconciliation only.

This means, due to the removal of measurement noise, a tran-
sient change in rates and yields almost 15 times smaller can be
reliably detected. Or, if the physiological variation is expected
to be very dynamic, the temporal resolution could be increased
by a factor of 15, to detect short time variations enabling pro-
cess control for example.

Verification with data from a real fed-batch

The approach was verified using real data from an E. coli
fed batch. Following batch phase (data not shown) an expo-
nential fed-batch with a l_set of 0.15 h�1 was initiated, as
shown in Figure 6A (process time 13 h). This was followed
by a linear feeding phase with a l_initial ¼ 0.1 h�1 at pro-
cess time 22 h. Because of the linear feedrate and the fur-
ther increasing biomass, the specific growth rate decreased
over time. The sampling interval was chosen according to
Eq. 24. With a measurement error for biomass of 2%
(Table 1) and an initial growth rate of 0.1 h�1 a Dt (as used
in Eq. 19) of 4 h is required to get a signal to noise ratio
[12 (limit of quantification). This way a reasonable maxi-
mum sampling frequency was determined, since additional
data points do not contribute as replicates, hence cannot
reduce random noise.29 Furthermore, the presented
approach was also applicable to signals from a biomass
probe in the same experiment, a capacitance sensor with a
very high sampling frequency compared to off-line biomass
quantification (section ‘‘In-line capacitance analysis’’).

Figure 6. Data from an E. coli fed batch experiment; (A) Off-line biomass dry weight, feed-rate according to an exponential feed-profile
from 13 to 22 h process time with a l set of 0.15 h21, followed by a linear feed phase with a l-initial of 0.1 h21 (as explained
in section ‘‘Culture’’) and reactor weight; (B) Linear regression of signals from the capacitance probe; (C) Calculation of the
specific growth rate from biomass quantified by the capacitance probe using a Dt of 4 h according to Eq. 19, which results in
an SNR of three according to Eq. 21; (D) Calculation of the specific growth rate from the same biomass data quantified by the
capacitance probe using a Dt of 15 h according to Eq. 20, which results in an SNR of three according to Eq. 21. ‘‘l cap expo-
nential’’ and ‘‘finite difference approx.’’ were calculated by Eq. 25 and by Eq. 11 together with Eq. 19, respectively.
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There was clearly a lot of random noise on the signal of
the probe as can be seen in Figure 6B in addition to poten-
tial systematic error by measurement principle. The capaci-
tance signal is dependent on electrical properties of the
cells and can be related to intact bio volume or also to bio-
mass dry weight. Linear regression analysis came up with a
relative standard error of 8%, which results in a SNR of 3
with a Dt of 4 h (Figure 6C) or an SNR of 12 with a Dt 15
h as used in Eq. 19 (Figure 6D). While it is hardly possible
to distinguish between the exponential phase and the linear
phase in Figure 6C, this is impossible in Figure 6D. This
clearly shows the limits of noise reduction by using bigger
Dt as used in Eq. 19. If the temporal resolution (15 h,
which is in fact half of the fed-batch) is too poor, one
might miss important process events. Furthermore, using a
large Dt such as 15 h as used in Eq. 19, the approximation
error from finite difference approximation can have a sig-
nificant impact on the calculated growth specific rate. To
evaluate the impact of this approximation error, prior
knowledge in the form of the function for exponential
growth function (Eq. 25) was used instead of Eq. 11 to-
gether with Eq. 19, which is possible, since it safe to
assume growth is exponential in the exponential phase.

Calculation of l the capacitance signal (i at time points

t1 and t2) by exponential growth function

l ¼
ln

it2
it1

� �
Dt

(25)

With a Dt of 4 h (Figure 6C, l cap exponential and finite dif-
ference approx.) there is hardly any difference between the
specific growth l calculated from the capacitance signal by fi-
nite approximation and the exponential growth function
respectively, but with a Dt 15 h there is major deviation in the
growth rates for exponential phase, as shown in Figure 6D (l
cap exponential and finite difference approx.). The specific
growth rate is artificially lowered by finite approximation.
Summing up, a large Dt of 15 h is probably not useful.

Reconciliation of fed-batch data

As discussed above a Dt of 15 h is probably not useful,
while a Dt of 4 h results in a specific growth rate with an
SNR of only 3, which is not satisfactory since this way, varia-
tions in the growth rate can only be detected but not quanti-
fied (following the definitions for limit of detection and
quantification). Hence, we want to introduce prior knowledge
in the form of elemental balances and reconcile the data (sec-
tion ‘‘Data reconciliation’’). Using this approach, the temporal
resolution can be increased due to the effective removal of
measurement error. Using the Capacitance data from section
‘‘Verification with data from a real fed-batch’’, a Dt of 1 h, as
used in Eq. 19 results in a SNR of 0.84 according to Eq. 21,
which means the random noise on the signal is greater than
the signal itself. Hence, the specific growth rate in Figure
7(B) is more scattered (Dt ¼ 1 h), compared to Figure 6 (C,
Dt ¼ 4 h). This clearly shows limited use of noisy signals
such as the capacitance signal to calculate rates with a high
temporal resolution. Nevertheless this high level of noise can
be effectively removed by reconciliation (Figure 7A) as long
the h-value is below the threshold value (4.61), which is true
for most of the process. At process time 17 h there was a
small problem with the off-gas analyzer (data not shown),
while at process time 20 h the manipulation of the feed-rate

controller disturbed the input rates for the reconciliation pro-
cedure, hence increased residuals on the elemental balances,
which resulted in h-values above the threshold value (4.61).
Figure 7(B) shows a comparison of specific growth rate calcu-
lated from the raw capacitance signal using a Dt of 1 h and
the specific growth rate after the reconciliation procedure. The
reconciliation procedure was able to retrieve the l profile
from the rate calculated based on the capacitance signal
(which was very scattered due to low Dt); however, the ca-
pacitance signal did contribute very little to the result. Never-
theless, the reconciliation procedure allows making use of
higher measurement frequencies, since less averaging time (Dt
as used in Eq. 19) is required to deal with noise.

Conclusions

A methodology to assess the extractability of information
from fed-batch experiment with varying specific growth rates
was presented. The approach was verified with real data
from an E. coli fed-batch. The presented approach applies to
conversion rates calculated from discrete time-values pairs
by finite difference approximation (section ‘‘Calculation of
rates by finite difference approximation’’). Removal of ran-
dom noise by averaging (Dt as used in Eq. 19) comes at the
cost of temporal resolution. The SNR was established as a
quantitative measure to evaluate the extractability of rate-
based information (signal quality). Thresholds for the detec-
tion and quantification of dynamic variation in rates were
established according to definitions known from analytical
chemistry. This can be used to find the required amount of

Figure 7. Comparison of the specific growth rates calculated
from the raw capacitance signal and after the recon-
ciliation procedure. The data is very scattered due to
the high temporal resolution (Dt 5 1 h).
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averaging (Dt as used in Eq. 19) and to evaluate what level
of variation can be detected in an experiment. Hence, a rea-
sonable sampling frequency can be defined from these con-
siderations, since sampling at a higher frequency will not
bring additional benefit. Obviously, the dynamic of variation
of the specific rates or yields of interest, has to be smaller
than the previously defined Dt; higher dynamic cannot be
resolved by this approach unless the equipment or the meth-
ods are improved for a lower measurement error.

Other approaches can make use of prior knowledge to
improve the SNR without loss of temporal resolution. The
efficiency of reconciliation was shown; it can effectively
remove random noise and systematic error by introducing
elemental balances as constraints. Thus, the extractability of
information was increased with very little effort. This way
much smaller values of Dt, as used in Eq. 19, are allowed to
resolve more dynamic processes. Concomitantly a statistical
test was presented which provides a good measure of the
reliability of the result of the reconciliation procedure.

The results also suggest that calculation of the biomass con-
version rate from off-gas signals, which are often available at
high quality, is superior to calculation of the biomass conver-
sion rate from noisy data from on-line probes such as the ca-
pacitance probe used in this contribution. This clearly shows
limited use of noisy signals such as the capacitance signal to
calculate rates with a high temporal resolution. However, the
capacitance probe can add redundancy to the bioreactor moni-
toring system if high temporal resolution (low Dt) is not impor-
tant and allows for calculation of the total biomass in the
bioreactor, which is required for specific rates (Eq. 11).

The methodology is a useful tool for successful experi-
mental planning, therefore we want to propose a short ‘‘how
to’’ guide.

Stepwise guide to assess signal quality and
extractability of information

• Define the specific growth rate and measurement error
for biomass.

• Define expectations or requirements on the level of var-
iations of the specific growth rate or yield.

• Define the required SNR, e.g., to quantify a 50% varia-
tion of the specific growth rate, an SNR of 2*12 ¼ 24 is
required.

• Use Eq. 24 to calculate the required Dt (as used in Eq.
19); this will also define the temporal resolution.

• If the temporal resolution is not adequate for the prob-
lem, check if reconciliation is possible with the available
analytics (are all items to calculate the rates required for the
elemental balances available?) or evaluate the applied meth-
ods and equipment with regard to measurement error.
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Symbols

t ¼ time (h)
I ¼ any item
S ¼ total amount of substrate in the cultivation broth (C

mol)

S
�
¼ substrate feed rate (C mol/h)

r ¼ conversion rate (C mol/h)
q ¼ specific rate (g/g/h)
Y ¼ Yield (C mol/C mol)
F ¼ flow/feed rate (g/h) for liquid and (nl/h) for gas
C ¼ concentration (C mol/l)
X ¼ total amount of biomass in the cultivation broth (C

mol)
Y ¼ mole fraction (–)

Vm ¼ molar volume of gas at norm condition (0�C and 1
atm) (nl/mol)

Rainert ¼ inert gas ratio (–)
ywet ¼ O2 fraction in off-gas diluted by water content (with-

out bioreaction) (–)
N ¼ total amount of ammonium in the cultivation broth

(mol)
O2 ¼ total amount of oxygen in the cultivation broth (mol)

CO2 ¼ total amount of carbon dioxide in the cultivation broth
(mol)

Zi ¼ elemental composition of component i in biomass (–)
pi ¼ elemental composition of component i in substrate (–)
V ¼ volume of the cultivation broth (l)

exH2O ¼ water content in off-gas (–)
M ¼ molecular weight (g/c mol)

qfeed ¼ density of feed (g/l)
S0 ¼ feed concentration (g/l)
c ¼ Degree of reduction (–)
m ¼ coefficients e.g.: m (–)

OD ¼ optical density 600 nm (–)
k ¼ specific growth rate if used for feed rate calculations

(h�1)
l ¼ measured specific growth rate (h�1)
s ¼ standard deviation
x ¼ arithmetic mean
W ¼ variance-covariance matrix
h ¼ statistical test value

Swater ¼ water stripping (g/h)
fsample ¼ sampling rate (g/h)

Indices

in ¼ input
out ¼ output

conv. ¼ conversion
acc. ¼ accumulation

s ¼ substrate
f ¼ feed
x ¼ biomass
a ¼ air

CO2 ¼ carbon dioxide
O2 ¼ oxygen
N ¼ ammonium
b ¼ base
O ¼ oxygen
H ¼ hydrogen
n ¼ nitrogen

m ¼ measured
c ¼ estimated
i ¼ item number i
j ¼ item number j
t ¼ time point t
0 ¼ initial

Literature Cited

1. Yang LY, Abu-Absi S, Thompson P, Andrabi M, Carone T,
Mackin N, Schilling B, Shukla A. A QbD case study: Utilizing
small-scale design space knowledge to accelerate progress to
large-scale process validation runs. Abstracts of Papers, 238th
ACS National Meeting, Washington, DC, United States, August
16–20, 2009. 2009:BIOT-042.

2. Rathore AS. Roadmap for implementation of quality by design (QbD)
for biotechnology products. Trends Biotechnol. 2009;27:546–553.

Biotechnol. Prog., 2013, Vol. 29, No. 1 295



3. ISPE. Creating QbD/PAT Management Awareness. www.ispe.
org. 2007.

4. ICH. Q8, Pharmaceutical Development (R1). www.ich.org. 2008.
5. Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P,

Ghosh K, Nagi A. Quality by design case study: an integrated
multivariate approach to drug product and process development.
Int J Pharma. 2009;382:23–32.

6. Guebel DV, Canovas M, Torres NV. Analysis of the Esche-
richia coli response to glycerol pulse in continuous, high-cell
density culture using a multivariate approach. Biotechnol Bio-
eng. 2009;102:910–922.

7. Cimander C, Mandenius C-F. Online monitoring of a bioprocess
based on a multi-analyser system and multivariate statistical pro-
cess modelling. J Chem Technol Biotechnol. 2002;77:1157–1168.

8. Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the
process industry. Comput Chem Eng. 2009;33:795–814.

9. Bernard O, Bastin G, Stentelaire C, Lesage-Meessen L, Asther
M. Mass balance modeling of vanillin production from vanillic
acid by cultures of the fungus Pycnoporus cinnabarinus in bio-
reactors. Biotechnol Bioeng. 1999;65:558–571.

10. Sonnleitner B, Kaeppeli O. Growth of Saccharomyces cerevisiae
is controlled by its limited respiratory capacity: formulation and
verification of a hypothesis. Biotechnol Bioeng. 1986;28:927–937.

11. Korneli C, Bolten CJ, Godard T, Franco-Lara E, Wittmann C.
Debottlenecking recombinant protein production in Bacillus
megaterium under large-scale conditions-targeted precursor
feeding designed from metabolomics. Biotechnol Bioeng.
2012;109:1538–1550

12. Wittmann C, Weber J, Betiku E, Kroemer J, Boehm D, Rinas
U. Response of fluxome and metabolome to temperature-
induced recombinant protein synthesis in Escherichia coli. J.
Biotechnol. 2007;132:375–384.

13. Singh AB, Sharma AK, Mukherjee KJ. Analyzing the metabolic
stress response of recombinant Escherichia coli cultures
expressing human interferon-beta in high cell density fed batch
cultures using time course transcriptomic data. Mol BioSyst.
2012;8:615–628.

14. Duerrschmid K, Reischer H, Schmidt-Heck W, Hrebicek T,
Guthke R, Rizzi A, Bayer K. Monitoring of transcriptome and
proteome profiles to investigate the cellular response of E. coli
towards recombinant protein expression under defined chemostat
conditions. J. Biotechnol. 2008;135:34–44.

15. Herwig C, Marison I, Von Stockar U. On-line stoichiometry
and identification of metabolic state under dynamic process con-
ditions. Biotechnol Bioeng. 2001;75:345–354.

16. ICH. Q9, Quality risk management. www.ich.org. 2005.
17. Rathore AS, Winkle H. Quality by design for biopharmaceuti-

cals. Nat Biotechnol. 2009;27:26–34.
18. Knorr B, Schlieker H, Hohmann H-P, Weuster-Botz D. Scale-

down and parallel operation of the riboflavin production process
with Bacillus subtilis. Biochem Eng J. 2007;33:263–274.

19. Puskeiler R, Kaufmann K, Weuster-Botz D. Development, par-
allelization, and automation of a gas-inducing milliliter-scale
bioreactor for high-throughput bioprocess design (HTBD). Bio-
technol Bioeng. 2005;89:512–523.

20. Harms P, Kostov Y, Rao G. Bioprocess monitoring. Curr Opin
Biotechnol. 2002;13:124–127.

21. Clementschitsch F, Bayer K. Improvement of bioprocess moni-
toring: development of novel concepts. Microb Cell Factories.
2006;5:183–196.

22. Rehbock C, Beutel S, Brueckerhoff T, Hitzmann B, Riechers D,
Rudolph G, Stahl F, Scheper T, Friehs K. Bioprocess analysis.
Chem Ing Tech. 2008;80:267–286.

23. van der Heijden RTJM, Romein B, Heijnen JJ, Hellinga C, Luy-
ben KCAM. Linear constraint relations in biochemical reaction
systems. III. Sequential application of data reconciliation for
sensitive detection of systematic errors. Biotechnol Bioeng.
1994;44:781–791.

24. Jazini M, Herwig C. Effect of post-induction substrate oscilla-
tion on recombinant alkaline phosphatase production expressed
in Escherichia coli. J Biosci Bioeng. 2011;112:606–610.

25. Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Car-
mona E, Baumann K, Giuliani M, Parrilli E, Branduardi P,
Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villa-
verde A. Protein folding and conformational stress in microbial
cells producing recombinant proteins: a host comparative over-
view. Microb Cell Factories. 2008;7:11.

26. Hoffmann F, Rinas U. Stress induced by recombinant protein
production in Escherichia coli. Adv Biochem Eng/Biotechnol.
2004;89:73–92.

27. van der Heijden RTJM, Romein B, Heijnen JJ, Hellinga C, Luy-
ben KCAM. Linear constraint relations in biochemical reaction
systems. I. Classification of the calculability and the balance-
ability of conversion rates. Biotechnol Bioeng. 1994;43:3–20.

28. Wechselberger P, Seifert A, Herwig C. PAT method to gather bio-
process parameters in real-time using simple input variables and
first principle relationships. Chem Eng Sci. 2010;65:5734–5746.

29. Wechselberger P, Herwig C. Model-based analysis on the rela-
tionship of signal quality to real-time extraction of information
in bioprocesses. Biotechnol Prog. 2012;28:265–275.

30. Smith SW. The Scientist & Engineer’s Guide to Digital Signal
Processing. California: Technical Publisher; 1997.

31. Davey CL, Davey HM, Kell DB. Introduction to the dielectric
estimation of cellular biomass in real time, with special empha-
sis on measurements at high volume fractions. Anal Chim Acta.
1993;279:155–161.

32. Heinzle E, Oeggerli A, Dettweiler B. On-line fermentation gas
analysis: error analysis and application of mass spectrometry.
Anal Chim Acta. 1990;238:101–115.

33. van der Heijden RTJM, Romein B, Heijnen JJ, Hellinga C, Luy-
ben KCAM. Linear constraint relations in biochemical reaction
systems. II. Diagnosis and estimation of gross errors. Biotechnol
Bioeng. 1994;43:11–20.

34. Madron F, Veverka V, Vanecek V. Statistical analysis of mate-
rial balance of a chemical reactor. AIChE J. 1977;23:482–486.

35. Kurtz M. Handbook of Applied Mathematics for Engineers and
Scientists. New York: McGraw-Hill; 1991.

36. Funk W, Dammann V, Donnevert G. Qualitätssicherung in der
Analytischen Chemie, Wiley; 2nd edition 2005.

Manuscript received May 23, 2012, and revision received Oct. 2, 2012.

296 Biotechnol. Prog., 2013, Vol. 29, No. 1


