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Abstract: The growth of the textile industry results in a massive accumulation of dyes on water. This
enormous rise in pigments is the primary source of water pollution, affecting the aquatic lives and
our ecosystem balance. This study aims to notify the fabrication of neodymium incorporated copper
oxide (Nd2O3 doped CuO) nanoparticles by combustion method for effective degradation of dye,
methylene blue (MB). X-ray diffraction (XRD), Field emission Scanning electron microscopy (FESEM),
Zeta potential have been applied for characterization. Photocatalyst validity has been evaluated for
methylene blue degradation (MB). Test conditions such as time of contact, H2O2, pH, and photo-
Fenton have been modified to identify optimal degradation conditions. Noticeably, 7.5% Nd2O3

doped CuO nanoparticle demonstrated the highest photocatalytic efficiency, up to 90.8% in 80 min,
with a 0.0227 min−1 degradation rate. However, the photocatalytic efficiency at pH 10 becomes 99%
with a rate constant of 0.082 min−1. Cyclic experiments showed the Nd2O3 doped CuO nanoparticle’s
stability over repeated use. Scavenge hydroxyl radical species responsible for degradation using 7.5%
Nd2O3 doped CuO nanoparticles have been investigated under visible irradiation.

Keywords: Nd2O3 doped CuO nanoparticle; nanostructured photocatalyst; methylene blue; visible
light; XRD/SEM; photo-Fenton
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1. Introduction

Over the last decades, because of rapid industrialization, much toxic waste has been
released into water bodies. Dyes are involved in various industries, including textile,
plastic, skincare products, food processing, medicines, etc. [1]. The dye can negatively
impact the aquatic environment due to reduced solar permeation. Furthermore, certain
dyes may cause severe illnesses such as mutation and cancer [2]. Significant consequences
are the lack of potable water, domestic use, agriculture, farming, etc. [3]. Methylene blue
(MB) is a cationic thiazine dye, which forms a blue water solution (see Scheme 1). It is used
for various applications, including colored paper, the temporary coloring of cotton, wool,
and paper stock dyeing. MB leads to different toxic effects, including eye burning, skin
irritation, and gastrointestinal tract. So, it is essential to remediate the dyestuffs wastewater
to save water and the environment [4].
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Consequently, water pollution must be eliminated [5]. Physical techniques such as
adsorption and chemical techniques are employed to remove the textile dyes [6]. The ad-
vanced oxidation process includes heterogeneous photocatalysis, low-cost and sustainable
technology for water purification that takes place on photocatalyst particles in the presence
of photons, causing them to be mineralized [7].

Reusable photocatalysts are used to degrade organic contaminants in photocatalysis.
As particle size is reduced, the photocatalyst’s surface area increases. As a result, the
number of activating sites has increased, resulting in a higher reactivity. After the absorption
of light, the electron has been excited, generating a hole, O−2 and OH. has been formed
due to the reaction between e− with O2 and h+ with OH− or H2O [8]. Many researchers
have examined the degradation of various reactive dyes with visible light-assisted Fenton
(H2O2/Fe2+ or Fe3+) and photo-Fenton (UV-Vis/H2O2/Fe2+ or Fe3+) reactions [4]. Both the
mechanism and kinetics of the response have been widely explored [9]. Fenton’s reagent,
the mixture of H2O2 and ferrous iron, produces hydroxyl radicals with the ferrous (Fe2+)
ions, which initiate and catalyze H2O2 decomposition.

Metal oxide nanoparticles (NPs) such as ZnO, CoO, TiO2, SnO2, and CuO represent one
strategy to lower aqueous organic dyes. In particular, CuO NPs have significant potential
because of their low cost, low toxicity, easy availability, optical, catalytic, and antimicrobial
characteristics. In addition, copper oxide nanoparticles are noteworthy because of their
surface area and increased adsorbed oxygen capacity, leading its bandgap to be ranged
from 1.35 to 3.5 eV [10,11]. The strong ability of CuO-NPs for molecular oxygen absorption
has a significant impact on the electron-hole pair rearrangement and the removal of the
photogenerated electron [12]. Nd2O3 is rare earth oxide that improves the efficiency of CuO
photocatalysis for MB photodegradation in the presence of light with a lower cost [13]. The
preparation and characterization of Nd2O3 NPs have drawn much attention to be studied
because of their nano-size structure and surface.

In this work, we synthesized CuO and Nd2O3 doped CuO photocatalysts with dif-
ferent concentrations of neodymium oxide (Nd2O3) and characterized by various experi-
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mental techniques such as XRD, FESEM, EDX, and DLS. Methylene blue was degraded
to examine the photocatalytic activity of the samples. Experiments were performed to
enhance the conditions, such as the percentage of Nd2O3 incorporating CuO, H2O2, pH,
and Photo-Fenton.

2. Experimental Techniques
2.1. Synthesis of Nd2O3 Doped CuO Nanostructured

The Nd2O3 doped CuO nanoparticles were prepared by the combustion method. First,
5 g of Copper nitrate (Sigma-Aldrich company, Burlington, MA, USA) has been taken,
neodymium nitrate(Sigma-Aldrich company, Burlington, MA, USA) with different weights
(0.11, 0.28, 0.58, 0.89, 1.21 g), for (1, 2.5, 5, 7.5, 10%) then 10 g starch and 30 mL distilled
water in 6 crucibles and mixed well. Then the crucibles were dried in an oven at 120 ◦C for
12 h and calcined at 550 ◦C for 2 h to obtain the proper catalyst, as illustrated in Scheme 2.
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2.2. Characterization Techniques and Devices

The structure of The Nd2O3 doped CuO NPs was obtained by a PAN analytical X’Pert
PRO, (Philips, Eindhoven, Netherlands) Philips X-ray diffractometer with monochromatic
CuKα operating radiation at 40 kV and 40 mA.

Field emission scanning electron microscopy (FESEM) of The Nd2O3 doped CuO
nanoparticles have been examined by HR-SEM, QUANTA FEG 250, USA (FEI, Hillsboro,
OR, USA), to identify their surface morphology.

A Nano Series, Zeta sizer(Malvern Panalytical comapny, MALVERN, UK), has been
used to determine the surface potentials. The samples have been suspended at 25 ◦C into
the water to determine the average zeta potential (ζav, mV). In addition, dynamic light
scattering (DLS) (Malvern Panalytical comapny, MALVERN, UK), has been used to measure
conductivity. The XRD, FE-SEM, and DLS devices are located in the Egyptian Petroleum
Research Institute, Naser City, Egypt.
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2.3. Photocatalytic Performance of Nd2O3 Doped CuO Nanopowders

The photocatalytic validity of all prepared samples has been assessed through a wood
photoreactor. The photoreactor at NLEBA, Ain Shams University (ASU), was developed
by I.S. Yahia and his team [14] (see Figure 1). It stands 100 cm tall and 65 cm broad from
the outside. Each of the white and blue bulbs has an output of 18 watts. A 15-point,
500 rpm multi-position magnetic stirrer was used to stir the mixture of Nd2O3 doped CuO
nanopowders and MB solution (Sigma-Aldrich company) at room temperature, allowing
us to evaluate many samples at once.
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Figure 1. Photoreactor design and operation in NLEBA, Ain Shams University, Cairo, Egypt.

A 100 mg of Nd2O3 doped CuO NPS was inserted in 50 mL of MB solution. Agitation
in darkness results in adsorption-desorption equilibrium. The last step included turning on
the white light to shine the prepared samples. The deteriorated solution was taken and cen-
trifuged at ten-minute intervals to remove any nanopowders. To finish, the (LISCO-GmbH)
UV–Visible spectrophotometer was used to evaluate the deteriorated solution alongside
MB’s stock solution. All operating parameters stay stable during photocatalytic processing.

The degradation of MB dye using white light assisted photo-Fenton reaction was
investigated in the presence and absence of 7.5% Nd2O3 doped CuO catalyst. The photo-
Fenton degradation rate was 0.00813 min−1 at 0.1 g of Fe+2-ions in the presence of 7.5%
Nd2O3 doped CuO, while the rate was 0.00276 min−1 at 0.05 g of Fe+2-ions in the absence
of 7.5% Nd2O3 doped CuO. This result means that the presence of catalyst enhanced the
photo-Fenton degradation rate.

3. Results and Discussion
3.1. XRD of the Prepared Nanostructured Nd2O3 Doped CuO

XRD is the most successful approach for recognizing structural information of Nd2O3
doped CuO nanoparticles, and it investigated the crystallinity of nanomaterials. The XRD
patterns for pure CuO and Nd2O3 doped CuO nanostructured are shown in Figure 2. The
diffraction peaks of pure CuO have been indexed through the characteristic 32.67◦ (111),
35.63◦ (002), 38.90◦ (−111), 48.83◦ (−202), 53.60◦ (020), 58.24◦ (202), 61.59◦ (−113), 66.5◦

(022) and 68.19◦ (220) reflections of the monoclinic phase of CuO [15,16]. The values of
diffraction peaks of the as-prepared NPs were tabulated in Table 1.
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Figure 2. X-ray diffraction patterns for pure CuO and Nd2O3 doped CuO nanostructured samples.

Table 1. The values of diffraction peaks of the as-prepared NPs.

Sample Line Position,
2θ

Intensity
(Counts)

Line Position,
2θ

Intensity
(Counts)

Pure CuO 1 35.6 901 5 58.3152 149
1% Nd2O3-doped CuO 784 119
2.5% Nd2O3-doped CuO 580 88
5% Nd2O3-doped CuO 507 64
7.5% Nd2O3-doped CuO 364 51
10% Nd2O3-doped CuO 286 40

Pure CuO 2 38.7 982 6 61.6 245
1% Nd2O3-doped CuO 803 197
2.5% Nd2O3-doped CuO 624 148
5% Nd2O3-doped CuO 507 121
7.5% Nd2O3-doped CuO 350 76
10% Nd2O3-doped CuO 281 67

Pure CuO 3 48.8 311 7 66.3 211
1% Nd2O3-doped CuO 241 152
2.5% Nd2O3-doped CuO 182 116
5% Nd2O3-doped CuO 156 90
7.5% Nd2O3-doped CuO 96 41
10% Nd2O3-doped CuO 72 53

Pure CuO 4 53.5 104 8 68.0 203
1% Nd2O3-doped CuO 71 158
2.5% Nd2O3-doped CuO 47 109
5% Nd2O3-doped CuO 32 77
7.5% Nd2O3-doped CuO 25 54
10% Nd2O3-doped CuO 10 52
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The intensities and positions of the diffraction peaks for the CuO NPs agree with the
reported data (JCPDS 048-1548). Indexes the peaks of the studied samples, and no peaks
of impurities are found in the XRD pattern. It could be observed that the Nd2O3 doped
CuO NPs had the same XRD design as the CuO, indicating the crystalline structure of the
photocatalyst. The excellent dispersion of Nd2O3 via CuO, which acts as the host crystal,
has also been confirmed. A small secondary phase appeared due to incorporating Nd2O3
with different percentages (1, 2.5, 5, 7.5, and 10%) into the CuO matrix. Two crystalline
peaks appeared at 2-theta: 23◦, and 32◦ with hkl = [110] and [011]. They correspond
to the peaks of Nd2O3 as hexagonal phase (JCPDS card No. 01-074-2139). These two
peaks strongly appeared at 10% Nd2O3 doped CuO nanoparticles [13,17]. The equation of
Scherrer was used to compute crystallite size [18].

D =
0.9λ
β cos θ

, (1)

In this case, D represents the crystallite size and X-ray wavelength (λ); FWHM repre-
sents the full width at half maximum (FWHM). The lattice strain (ε) was determined using
the following method [18]:

ε =
β cos θ

4
, (2)

Dislocation density (δ) has been achieved by [18,19]:

δ =
1

D2 (3)

Moreover, where the diffraction peak angle is θ. The calculated mean values of the
grain size (D) are tabulated in Table 2. The first phase’s average crystallite domain size
ranges from 22.0 to 30.1 nm, while the second phase ranges from 27.1 to 36.7 nm.

Table 2. The computed mean values of the grain size, dislocation, and strain from the XRD spectra,
for all prepared Nd2O3-CuO nanocomposites.

Samples Phases Mean Values of the
Grain Size, (nm)

Mean Values of Dislocation
Density, (nm)2

Mean Values of
Lattice Strain

Pure CuO Phase1, Pure CuO 29.687 1.262 × 10−3 1.213 × 10−3

1% Nd-doped CuO
Phase1, Pure CuO 22.089 2.089 × 10−3 1.579 × 10−3

Phase 2, Nd2O3 36.744 1.187 × 10−3 1.124 × 10−3

2.5% Nd-doped CuO
Phase1, Pure CuO 30.969 1.582 × 10−3 1.305 × 10−3

Phase 2, Nd2O3 27.180 1.636 × 10−3 1.356 × 10−3

5% Nd-doped CuO
Phase1, Pure CuO 26.809 1.679 × 10−3 1.384 × 10−3

Phase 2, Nd2O3 35.557 9.307 × 10−3 1.033 × 10−3

7.5% Nd-doped CuO
Phase 1, Pure CuO 30.109 1.439 × 10−3 1.267 × 10−3

Phase 2, Nd2O3 30.154 1.315 × 10−3 1.218 × 10−3

10% Nd-doped CuO
Phase1, Pure CuO 27.295 2.141 × 10−3 1.522 × 10−3

Phase 2, Nd2O3 36.609 1.518 × 10−3 1.208 × 10−3

The value of (D) for CuO is found in the range of 20–30 nm. It was found that (D) of
Nd2O3 sample with Scherrer formula is about 35 nm. The ε and δ were calculated and
tabulated in Table 2. It was found that Nd2O3 and CuO atoms bond with O− atoms by



Nanomaterials 2022, 12, 1060 7 of 20

increasing Nd2O3 content. Lattice strain (ε) arises from the slight variation in the atomic
radii of Nd2+- and Cu2+- beside Nd2O3 content, where Cu2+ is replaced with Nd2+ in
the host lattice. The decrease in lattice strain (1.2 × 10−3) at 7.5% Nd2O3 doped CuO
nanoparticle (Table 2) because of atomic radii and dopant concentration reduces local
distortion of the crystal lattice. The crystallite size (30.1 nm) of the 7.5% of Nd-CuO sample
was increased because of a decrease in δ (1.4 × 10−3 nm2) and intrinsic micro-strain [20].

3.2. FESEM Analysis of Nd2O3 Doped CuO Nanostructured

The efficiency and activity of photocatalysts depend on the morphological param-
eters [21]. Therefore, the morphology characterization of the CuO nanoparticles was
investigated by FESEM, as shown in Figure 3A. The nanoparticles have a uniform size,
spherical shape, and appropriate separation [22,23]. Figure 3B–F exhibit the FESEM images
of Nd2O3 doped CuO NPs at various concentration of Nd2O3. It is evident that the particles
had quasi-spherical shapes and aggregated homogeneously. Empty spaces between the
particles are pores arising from the inter-aggregation of particles [15]. From the FESEM
result, the average crystalline size of the prepared nanocomposite materials was found in
the range of 17–39 nm. As shown in the Table 3, 7.5%Nd2O3 doped CuO has the smallest
value of particle size (17 nm), which means that increasing surface area of catalyst thereby,
the improvement of photodegradation efficiency of catalyst [15].
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Table 3. The average particle size of all prepared samples.

Sample Particle Size Average Value (nm)

CuO 19

1%Nd2O3 22

2.5%Nd2O3 39

5%Nd2O3 36

7.5%Nd2O3 17

10%Nd2O3 26

EDX image depicts the peaks of CuO and Nd2O3 beside atomic percentage of elements
(see inset of Figure 3G) contained in 7.5% Nd2O3 doped CuO nanoparticle, where it verified
the production of Nd2O3 doped CuO nanoparticle by homogeneous chemical structure.

3.3. DLS of Nanostructured Nd2O3 Doped CuO

Figure 4a,b depicts the average ζav and conductivity obtained from % Nd2O3 doped
CuO nanoparticles. As shown in Figure 4a, ζav-potential increased by increasing percentage
Nd till 7.5% Nd2O3 doped CuO nanoparticle reaching ~27 mV, which it can attribute to the
deformation in the CuO crystal lattice by increasing content of Nd2O3. Figure 4b depicts
the conductivity enhancement by increasing Nd2O3 content, which was 0.025 mS/cm at
7.5% Nd2O3 doped CuO nanoparticle. Enhancement of conductivity can be attributed to
an increase of ζav-potential value where Photocatalytic activity increases up to 7.5 percent
with the increasing mobility of holes causing a photocatalytic activity enhancement [21].
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3.4. Photocatalysis Using Nanostructured Nd2O3 Doped CuO

3.4.1. Effect of Nd+3 Doping

The as-prepared nanomaterials (100 mg) have been subjected to visible (80 min irradi-
ation) photodegradation of MB dye. Figure 5 illustrates the MB absorption spectra in the
presence of visible illumination with pure CuO and Nd2O3 doped CuO nanoparticles. The
λmax of MB is 664 nm. It is obvious from Figure 5 that the intensity of all samples decreases
with increasing time, which means that the dye’s photodegradation rate increased with
time. The results revealed that the pure CuO catalyst achieved 87% degradation of MB,
while 7.5% Nd2O3 doped CuO catalyst achieved the highest photocatalytic efficiency, up to
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90.8% within 80 min under visible light irradiation. The rate of MB degradation k (min−1)
was achieved by [24]:

ln
(

A
Ao

)
= kt (4)

where absorption at 0 min illumination is Ao (mg.L−1), and absorption at irradiation time
t (min), is A. The k values for CuO and Nd2O3 doped CuO nanoparticles are depicted in
Figure 6. The higher the doping level, the higher the rate of deterioration up to 7.5% Nd2O3
doped CuO nanoparticle, while at 10% Nd2O3 doped CuO nanoparticle, the degradation
begins to decrease, which means that 7.5% Nd2O3 doped CuO nanoparticle has the highest
degradation rate constant of 0.02274 min−1 (as seen in Table 4).
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Table 4. The rate constants (min−1) for all photodegradation.

Samples K, (min−1)
Pure CuO 0.01683
1% Nd2O3-CuO 0.01743
2.5% Nd2O3-CuO 0.02122
5% Nd2O3-CuO 0.01672
7.5% Nd2O3-CuO 0.02274
10% Nd2O3-CuO 0.01935
7.5% Nd2O3-CuO, 1 mL H2O2 0.00304
7.5% Nd2O3-CuO, 2 mL H2O2 0.00313
7.5% Nd2O3-CuO, 3 mL H2O2 0.00312
7.5% Nd2O3-CuO, 4 mL H2O2 0.00697
7.5% Nd2O3-CuO, 5 mL H2O2 0.0114
7.5% Nd2O3-CuO, 2 mL H2O2, pH = 2 0.00161
7.5% Nd2O3-CuO, 2 mL H2O2, pH = 4 0.00115
7.5% Nd2O3-CuO, 2 mL H2O2, pH = 6 0.03666
7.5% Nd2O3-CuO, 2 mL H2O2, pH = 8 0.05734
7.5% Nd2O3-CuO, 2 mL H2O2, pH = 10 0.08209

3.4.2. Influence of H2O2 Concentration of 7.5% Nd2O3 Doped CuO Nanoparticle

The synthesis of HO− is based on H2O2, one of the cleanest and optimal oxidants
for the dye’s degradation and organic pollutants in wastewater [24]. In this investigation,
five different concentrations were utilized of H2O2 (1, 2, 3, 4 and 5 mL) in the presence of
0.1 g of 7.5% Nd2O3 doped CuO nanoparticle for visible photodegradation of each one of
MB dye. Figure 7 depicts the effect of H2O2 concentration on photodegradation. As can
be seen, the photodegradation rate increases with increasing H2O2 concentration until it
reaches its maximum at 5 mL (as shown in Table 4). According to Equation (5), the greater
reaction rates following the addition of H2O2 are due to an increase in the concentration of
hydroxyl radical [25]:

H2O2 + OH→ HO2 + H2O, (5)
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As a result, adding hydrogen peroxide at the required quantities can speed up the
photodegradation of MB dye.
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3.4.3. Effect of pH on 7.5% Nd2O3 Doped CuO Nanoparticle

Due to the high pH dependency of certain aspects, such as semiconductor surface
charge state and dissociation of chemicals in the solution, the pH of the solution impacts
photodegradation processes. Therefore, photodegradation was studied in ideal circum-
stances with a pH range of 2 to 10 to evaluate the impact of pH on the photodegradation
process. Figure 8a,b represents kinetic study and the rate constant (k) of photodegradation
of MB at different pH values in the presence of 7.5% Nd2O3 doped CuO nanoparticle as
a catalyst.

The result exhibited a maximum efficiency (99%) at pH 10 after 50 min from the start
of irradiation (as seen in Table 4). Several techniques were utilized to calculate the pH of
the CuO NPs’ point of zero charges (pHpzc), which was between 8.5 and 9.5 [26,27]. The
charge on the photocatalyst surface was positive and negative, below and above pHpzc,
respectively. When the pH is less than pHpzc, repulsion between the positively charged
7.5% Nd2O3 doped CuO catalyst and cationic dye reduces photodegradation efficiency [27].
Scheme 3 depicts the impact of CuO NPs’ pHpzc on cationic dye degradation. Moondeep
et al. [26] At greater pH, the CuO NP surface is charged negatively, which improves its
interaction with cationic dye (VB). Meanwhile, the CuO NP surface is charged positively at
lower pH, enhancing its interaction with anionic dye.
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3.4.4. Effect of Fenton and Photo-Fenton on MB Photodegradation

Fenton and Photo-Fenton processes have been demonstrated to be the most promising
strategies for wastewater treatment. These techniques contribute to improving the envi-
ronment through a reduction in the pollution resulting from complicated dye molecules
and other organic substances as a green chemical and ecological method [9]. The current
study investigates photochemical degradation of MB dye by photo-Fenton reaction in the
presence and absence of 7.5% Nd2O3 doped CuO catalyst. Figure 9a shows the effect of
ferrous sulfate concentration [0.05 to 0.2 g Fe+2-ions] on the rate of photochemical degrada-
tion in the presence of 7.5% Nd2O3 doped CuO catalyst, maintaining all other parameters
constant. The findings displayed in Figure 9a enhance the photo-Fenton degradation rate
by increasing the content of Fe+2-ions up to 0.1 g by a continuous rate of 0.00813 min−1.
Increasing the number of Fe+2-ions up to this specific Fe+2 concentration improves •OH
radical production and increases the photochemical degradation rate. In addition, the
reaction rate was reported to be lowered with increasing Fe+2-ions concentration. Figure 9b
shows the effect of Ferrous sulfate concentration [0.05 to 0.2 g Fe+2-ions] on the rate of
photochemical degradation in the absence of 7.5% Nd2O3 doped CuO catalyst.
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Figure 9. The rate constant Photo-Fenton, (a) with and (b) without 7.5% Nd2O3 doped CuO nanocomposites.

The result showed that the optimum rate constant was 0.00276 min−1 at 0.05 g of
Fe+2 ions concentration without a catalyst. The constant rate in the presence of a catalyst
is higher than the absence of them. The rate constant (k) values and degradation (%) at
different Nd2O3 concentrations, H2O2, and pH were calculated and tabulated in Table 4.

The reaction in Fenton was initially identified by H.J. Fenton [28] and is classified as
an improved oxidative potential for H2O2 in acidic media when iron (Fe) is a catalyst. The
reactions included in Fenton processes are [29]:

Fe2+ + H2O2 → Fe3+ + OH. + OH−, (6)

H2O2 → HO.
2 + H+, (7)

Fe2+ + OH. → Fe3+ + OH−, (8)
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Fe3+ + HO.
2 → Fe2+ + O2 + H+ (9)

OH. + OH. → H2O2, (10)

MB Dye + OH. → Degraded Product (11)

3.4.5. Comparison of the Photocatalytic Activity of Several Compounds Based on CuO

In the present work, 7.5% Nd2O3 doped CuO nanocomposite exhibited the highest
photocatalytic efficiency, up to 90.8% in 80 min, with a 0.0227 min−1 degradation rate.
At pH 4, the degradation efficiency reaches its maximum value to be 99%. When comparing
the data acquired with other research, the capacity to study, evaluate and contrast outcomes
may be demonstrated. Table 5 indicates the comparison of photocatalytic degradation of
MB and other dyes in the presence of Nd-doped metal oxide with different previous work
samples. M. Arunpandian et al. [30] found that 0.3 wt% of Nd2O3-doped ZnO was the
highest active, showing high photocatalytic activity for the degradation of MB dye. Arun
Pandian M. et al. [16] It was shown that MB degradation was by Ag/Nd2O3-ZnO Nanocom-
posite within 30 min with a 98.12 percent efficiency under visible light. Dhanya et al. [31]
Including Nd3+ in the SnO2 lattice decreases bandgap and inhibits the electron-hole recom-
bination. Thus, visible light can excite electrons from the valence band to the conduction
band. Samuel et al. [32] Nd–ZnO showed good photocatalytic activity. In comparison
to ZnO, nanocomposite [Nd–ZnO–GO (0.3% of Nd)] demonstrated higher photocatalytic
efficiency and could be regarded for promise as a photocatalyst in organic wastewater
treatment. Samuel Osei-Bonsu Oppong et al. [33] The photodegradation efficiency of indigo
carmine solutions exposed to simulated solar light for 3 h with Nd–TiO2–GO (0.6 percent
Nd) nanocomposites was found to be 92 percent. Umair Alam et al. [34] showed that the
Nd-doped ZnO is the best activity with 98% degradation efficiency compared used other
rare earth metals. Sonali et al. [35] The optimum photocatalytic activity for MB degradation
was ob-served for 3.0 mol. Percent Ce-CuO, which led to 98 percent degradation in 180 min.
Xia Shao et al. [36] When the ratio of Nd to TiO2 is 3–4 wt%, the highest activity is reached,
and MB is degraded by UV- light in 160 min. Reda M. Mohamed et al. [37] For 2 h, the
photocatalytic efficiency of mesoporous 3 percent Nd2O3/ZnO for TC degradation reached
100%. Moondeep et al. [26] under diverse energy sources, such as UV-visible irradiation
and UV radiations, the degradation efficiency of CuO NPs on cationic (VB) and anionic
(DR) dyes were measured.

Table 5. Comparison of photocatalytic degradation of MB and different dyes in the presence of
Nd2O3-doped metal oxide with other previous work samples.

Photocatalysts Method of
Preparation

Organic
Solution

Irradiation
Time Lamp Source %

Degradation k, (min−1) Refs.

7.5% Nd-doped
CuO Combustion MB 80 min Visible light 90.8% 0.0227 Present

work

7.5% Nd-doped
CuO at pH 4 Combustion MB 80 min Visible light 99% 0.082 Present

work

Nd2O3-doped ZnO Hydrothermal
method MB 60 min UV-light 96% 0.3145 [30]

Ag/Nd2O3-ZnO Hydrothermal
method MB 30 min Visible-light 98.12% ------- [17]

Nd2O3-doped SnO2 Sol gel method MB 4 h Visible-light 93.1% 0.615 h−1 [31]

Nd2O3-doped ZnO Co-precipitation indigo carmine 210 min Visible-light 74% 3.87 × 10−3 [32]

Nd2O3-ZnO-GO
(0.3% Nd) Co-precipitation indigo carmine 210 min Visible-light 95% 1.36 × 10−2 [32]

Nd–TiO2–GO
(0.6% Nd) Sol gel method indigo carmine 180 min Visible-light 92% 13.42 × 10−3 [33]

Nd-doped ZnO Sol-gel method MB 25 min UV-light 98% ------- [34]
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Table 5. Cont.

Photocatalysts Method of
Preparation

Organic
Solution

Irradiation
Time Lamp Source %

Degradation k, (min−1) Refs.

3 mol%Ce3+-doped
CuO

Sonochemical
method MB 180 min Visible-light 98% ------- [35]

Nd-TiO2-C
Sol-gel and

impregnation
method

MB 160 min UV-light 100% ------- [36]

Nd-doped ZnO sol-gel method TC 120 min Visible-light 100% ------- [37]

CuO Microwave VB(10−5 M)
DR(10−5 M)

-------

UV-visible
irradiation

and US
radiations

100% 0.09861
0.10587 [26]

3.4.6. Reusability and Stability

In practical applications, the photostability of a photocatalyst is an essential feature.
The synthesized Nd2O3 doped CuO photocatalyst was exposed to five photocatalytic
trial runs to determine its photostability by adding the reused photocatalyst to new MB
solutions under the same experimental conditions. The photocatalyst was reused after
centrifugation without regeneration. Figure 10 depicts the recycling of 7.5% Nd2O3 doped
CuO nanostructured. It was found that, in five successive experimental runs, photocatalyst
activity reached 88% of MB degradation, which promotes the prepared samples for its
photocatalytic performance in environmental treatment.
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3.4.7. Influence of Radicals’ Scavengers on Photocatalytic Activity

The photocatalytic reaction occurs in 3 stages: absorption of light, generation and sep-
aration of electron-hole, and oxidation-reduction response on the photocatalyst’s surface.
e− and h+ are extremely recombined so, the trapping and transfer of surface charges are
limited. Therefore, it is vital to eliminate the recombination of surface charge and promote
charge transfer to the surface-active sites to boost the carriers’ dynamics and photocat-
alytic activity. There have thus been significant attempts to increase the effectiveness of
photocatalysts [21].

The scavenging of active characters responsible for photodegradation in the presence
of 7.5% Nd2O3 doped CuO nanoparticle is examined as demonstrated in Figure 11a. The
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scavengers applied such as NaCl for h+, NaNO3 for e−, IPA for OH. and Ascorbic acid for
O−.

2 . From the data shown in Figure 11b, the use of NaCl, NaNO3, IPA, and Ascorbic acid
as scavengers is responsible for eliminating MB contaminants of around 56, 36.7, 19.4, and
98 percent. The most efficient agent in eliminating pollutants may be regarded as hydroxy
radicals. Sahar Zinatloo et al. [38] reported that in the presence of Nd2O3-SiO2, hydroxyl
radicals were the most efficient agent for the degradation of methyl violet.
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3.4.8. Mechanism of Photocatalysis for Nd2O3 Doped CuO Nanostructured

Photocatalysis and the photo-Fenton procedure are responsible for MB degradation.
During the reaction produced hydroxyl radicals that are represented in Scheme 4. After
irradiation, an electron has been excited, and holes are generated to react with H2O and
dissolved O2, producing OH. radicals that cause MB degradation [39,40]. The proposed
degradation process for MB pollutants can be represented as:

MB + hυ→ MB
(
e− + h+), (12)

h+ + H2O→ OH. + H+, (13)

2h+ + 2H2O→ H2O2 + 2H+ (14)

H2O2 → 2OH., (15)

e− + O2 → O−.
2 , (16)

O−.
2 + H2O + H+ → H2O2 + O2, (17)

H2O2 → 2OH., (18)

OH. + MB contaminant→ Degradation products, (19)
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4. Conclusions

The combustion method was applied to synthesize pure CuO, and different concentra-
tions of Nd2O3 incorporated CuO nanocomposites. The addition of neodymium to CuO
improved its structural and morphological characteristics and improved the photocatalytic
activities for the apparent photodegradation of MB dye. The crystallinity of the synthesized
samples was shown through XRD analysis. The first phase’s average crystallite domain size
ranges from 22.081 to 30.109 nm, while the second phase ranges from 27.180 to 36.744 nm.
In addition, ε and δ have been calculated. SEM investigation indicated that particles are
aggregated homogenously with almost spherical forms. ζav-potentials data-enhanced via
rising Nd2O3 content up to 7.5% Nd2O3 doped CuO nanoparticle reaching ~27.0 mV with
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the conductivity of 0.024 mS/cm. The as-prepared 7.5% Nd2O3 doped CuO nanoparticle
exhibits the optimum photocatalytic efficiency comes 90.8% within 80 min with a degrada-
tion rate of 0.02274 min−1 for MB dye. In comparison, the photocatalytic efficiency was
87% within 80 min with the rate of 0.01683 min−1 for MB by CuO.

The degradation efficiency enhances at pH 10 to be 99% with a rate of degradation
of 0.082 min−1. The stability of the Nd2O3 doped CuO nanoparticle has been examined
through recycling. The results of trapping experiments were indications that the hydroxyl
radicals are responsible for the elimination of pollutants. Finally, Nd2O3-doped CuO nanos-
tructured was a promising material under visible light to treat vast quantities of wastewater.
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