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Regenerative medicine meets mathematical modelling:
developing symbiotic relationships
S. L. Waters1, L. J. Schumacher 2 and A. J. El Haj 3✉

Successful progression from bench to bedside for regenerative medicine products is challenging and requires a multidisciplinary
approach. What has not yet been fully recognised is the potential for quantitative data analysis and mathematical modelling
approaches to support this process. In this review, we highlight the wealth of opportunities for embedding mathematical and
computational approaches within all stages of the regenerative medicine pipeline. We explore how exploiting quantitative
mathematical and computational approaches, alongside state-of-the-art regenerative medicine research, can lead to therapies that
potentially can be more rapidly translated into the clinic.
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INTRODUCTION AND VISION
The concept of using regenerative medicine approaches to repair
and regenerate tissue damaged through disease or trauma has
been maturing over the past few decades. Translation of
regenerative therapies to the patient – bench-to-bedside – is
one of the global multidisciplinary challenges of our time, offering
a vision of new therapies with the power to address major unmet
healthcare needs1.
Regenerative therapies can utilise progenitor or stem cells

which are delivered to a repair site or area of degeneration to
restore tissue structure and function. Regenerative therapies may
also include a molecule or biomaterial based approach which
promotes endogenous recruitment and tissue repair. Key exam-
ples of the challenges which regenerative therapies are facing
include: choice of the best cell type from multiple sources, both
autologous and allogeneic, or adult and embryonic2; new ways for
manufacturing therapeutic doses of donor stem cells which are
characterised as Advanced Therapy Manufacturing Platforms
(ATMPs); new enabling technologies using optical, sensing and
mechanical tools for routine use to support scaled up cell
production3; novel biomaterials providing structural tissue mimics
and instructive cues based on topography and protein chemistry;
3D tissue models grown in bioreactors or growth chambers
presenting new ways for testing potential therapeutic strategies
before implantation; optimising clinical choice and patient
stratification using cell-based assays which aim to improve
efficacy, and long term outcomes in patients.; and finally, patient
monitoring at cell resolution using MRI, PET and multi-modal
approaches which support efforts to move to clinical first in man
and 1st stage trials4.
These broad challenges which aim to advance a new type of

medicine have relied on multiple disciplines covering cell biology
to material chemistry, enabling physics and clinical medicine. It is
now being recognised that additional maths-based approaches
may speed the advance of these therapies and enable them to
reach the clinic faster. One example of such an approach is in silico
modelling. This disruptive perspective can bring mathematicians
into the pathway at many stages of the translation; mechanistic

modelling studies enable acceleration of translational research by
optimisation of protocols, new algorithms and statistics help to
define our quantitative metrics and new data science and AI
innovations expand our use of patient derived databases to
optimise therapies.
A key challenge in integrating mathematical approaches into

the regenerative medicine pathway is to identify where mathe-
matical modelling can make the most disruptive impact.
Mathematical modelling approaches can be much faster and
cheaper than performing numerous time consuming and expen-
sive laboratory experiments5. Embedding mathematics within
regenerative medicine enables researchers to go beyond the usual
trial-and-error approach, be guided in their experimental design,
and therefore accelerate advances in regenerative medicine6.
Mathematical models provide mechanistic insight into complex
biological systems exhibiting richly non-linear behaviour, and
predictions from mathematical models can be used to optimise
protocols both for the manufacture of regenerative medicine
products as well as for treatment strategies, e.g. the delivery of cell
therapies. Mathematical models that predict the dynamic
behaviour of the regenerative product, e.g. tissue growth during
in vitro culture, can potentially be used as online monitoring tools
to ensure the reproducibility and safety of manufactured products,
addressing challenges in product regulation. Finally, bespoke
patient models may be built in an individualised medicine
approach and these models can be used to predict the efficacy
of regenerative medicine strategies7.
Mathematical models have traditionally been used to provide

mechanistic insight into the many interactions between the
biological components of a system, for example enabling
quantitative assessment of the cellular microenvironment that
can then be manipulated to guide cell behaviour during
development or growth. By systematically varying the parameters
of the models, or by the addition of new components, we can
perturb the model leading to new predictions and insights that
can be used to overcome bottlenecks. For example, under-
standing gained from in vitro systems can be translated to the
in vivo scenario through the inclusion of an immune component
in the in silico models8. Models can also be used to “bridge the
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gap” between sub-disciplines by integrating multiple quantitative
data sources such as imaging and molecular or biomechanical
data, for example9.

A brief introduction to common modelling approaches
Multicellular, multiscale biological systems can often be too
complex to understand by interrogating experimental and clinical
data with verbal thinking and linear reasoning alone, thus the
addition of theoretical or in silico models, expressed in the precise
and powerful language of mathematics, can provide new and
deeper insights. The key steps in the development of mathema-
tical models are model construction, calibration, prediction, and
refinement. We discuss the choices to be made in model
construction at greater length below. Briefly, theoretical models
may be phenomenological or mechanistic and describe biological
processes at different scales: on the whole patient, organ, tissue
scale, single-cell-level, and even the molecular level (Fig. 1).
A key aspect in the development of biologically realistic,

predictive mathematical models, is interfacing mathematical
models with experimental data. The calibration of models through
comparison of model outputs with experimental data poses
additional formidable challenges because the available data are
usually complex, high-dimensional, noisy, and often incompletely
observed. Comparing models with data is vital for parameter
inference, which is the inverse problem of determining which
parameter values are most likely to produce the observed data.
Another reason to compare models with data is for the purpose of
model selection, i.e. determining the level of model complexity
required to interrogate a given set of experimental data, or
deciding which model out of several competing hypotheses is
more likely to be true. Once calibrated, the theoretical models are
validated via detailed comparison of mathematical model predic-
tions with experimental data. The use of predictions, whether on
existing and withheld data, or predictions that are to be tested by
newly generated data, are a key aspect of any mathematical

modelling process. Any discrepancies between model predictions
and experimental data can then lead to further model refinement.
An iterative cycle of predict-test-refine is fundamental to the
development of all models (See Fig. 2).
The choice of modelling approach is guided by the biological

question being asked, and the nature of the quantitative
experimental data (see Table 2). Here we give a brief and broad
categorisation of commonly used types of mathematical model-
ling in biology and medicine.

● Mechanistic models: Mechanistic models represent all the
components of a hypothesis (cell-cell interactions, role of
biomolecules on cell behaviour, etc.) mathematically10.
Mechanistic model development is often guided by analysis
of experimental data, allowing hypotheses to be made for the

Fig. 1 A new era of symbiosis between regenerative medicine and maths. Diagram which highlights the many opportunities for utilising
mathematical and computational approaches within regenerative medicine. This figure was created for the authors by the University of
Edinburgh’s graphic design service team.

Fig. 2 Methodology. An illustrative diagram showing the quanti-
tative regenerative medicine pipeline with stages of the modelling
process and types of modelling involved.
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causal mechanisms underlying a biological system5. For
example, in describing the growth of a mechanosensitive
tissue such as bone in a bioreactor, causal mechanisms
include the response of the mechanosensitive cells to the
applied mechanical load (fluid shear stress, hydrostatic
pressure, substrate deformation etc). A key step is to identify
the dependent variables of the system e.g. cell number, fluid
velocity, substrate density, and their dependence on the
independent variables of the system e.g. space and time.

Mechanistic models can be multi-scale, incorporating processes
on a range of spatial and temporal scales. The development of
coarse-graining methods for models that contain disparate space
and time scales is crucial to enable rigorous mathematical analysis,
and for general classification of models according to their predicted
emergent behaviours11,12. Efficient and accurate computational
methods for simulation of multi-scale mathematical models13 are
necessary to enable full investigation of potential model behaviours,
parameter sensitivity analysis, and data-driven model calibration.
The representation of a biological mechanism need not be

reductionist and molecular, but can be phenomenological14.
Phenomenological models aim to reproduce the experimental
observations without the terms in the model equations necessarily
corresponding to cellular or molecular processes directly. An
example is a model of a homoeostatic epithelium in which cell
division always co-occurs with another cell dying or migrating
away15, so that the overall cell density stays constant (which is the
important phenomenology to capture). Phenomenological mod-
els, despite what the name suggests, can still provide mechanistic
understanding of a system’s function, for example what kind of
regulatory interactions are important, even if the precise nature of
the interactions and their molecular mediators remains obscure. In
such cases, there may be many underlying molecular mechanisms
that give rise to the same phenomenological models. Strictly
speaking, all models are phenomenological at some level, as they
simplify the underlying chemistry and physics considerably. The
model development process for phenomenological models is
largely the same as for other mechanistic models described above.
Mechanistic modelling approaches include continuum16/dis-

crete17, hybrid18, and deterministic/stochastic19,20.

Discrete models treat cells as distinct entities and consider the
behaviour of one or more individual cells, accounting for their
interactions both with each other and with the surrounding
microenvironment. Discrete cell models provide a natural
framework for incorporating available quantitative experimen-
tal data at the cellular or subcellular scale. Often, discrete
models are also stochastic models, meaning that the outcome is
to some degree random, and only one of many possible
realisations. Average model behaviours or a full distribution of
predictions can be obtained by repeating stochastic model
simulations many times17.
Continuum models average the cell behaviour over a number of
cells, for example describing the behaviour of the cell
population in terms of its density that depends continuously
on space and time. Continuum models are also used to
describe the surrounding mechanical and chemical environ-
ment, with variables such as fluid velocity and pressure, solid
deformation and solute concentration again depending con-
tinuously on space and time10. Hybrid discrete-continuum
models refer to the integration of discrete cell-based models
with continuum models for the surrounding cellular micro-
environment, or the use of discrete (low cell numbers) and
continuum (high cell numbers) models in different regions of
the spatial domain as appropriate18. In a deterministic
mathematical model, the spatiotemporal evolution of the
dependent variables is completely determined by the model
parameters and initial conditions - such a model will therefore
always produce the same output for a given initial state. A

natural formulation of continuum models is in the form of
differential equations.
Statistical models are another class of models which focus on
prediction over mechanistic insight. Examples of statistical
models are general linear models, logistic regression, and
machine-learning techniques such as artificial neural net-
works21,22. Statistical models aim to fit or learn the relationship
of input variables, such as experimental parameters or
biological variables, to output variables, such as experimental
measurements. Through this, statistical models can be used to
predict how the distribution of e.g. experimental measurements
should change under a change in the input variables. In the
development of statistical models, data are typically divided
into training, validation, and test data. Training data are used to
train the model (i.e. fit its parameters), validation data are used
to prevent overfitting, and test data are used to assess the
model’s performance at prediction23. Unlike phenomenological
models, in which individual model components implicitly
represent biological processes, no such interpretability is
offered a priori by statistical models. Interpretability is however
possible by inspecting the model after training it on data,
although the degree of interpretability varies depending on the
statistical method used24.

Mathematical models in regenerative medicine research
Mathematical approaches have traditionally focused on the
discovery science end of the spectrum of regenerative medicine
research. This has stemmed from a strong research base in
mathematical medicine and biology where there are existing
successful interactions with biologists and medics. Major ques-
tions in developmental and stem cell biology have been
investigated using experimental and theoretical approaches25–28.
Another area that has received a lot of attention is modelling of
tissue growth within bioreactors, as this draws on a long tradition
of continuum mechanics and its applications to medicine and
biology.

Basic regeneration biology
Models can be used to distinguish which cellular processes are
important to the overall regenerative process. For example,
models incorporating both cell proliferation and migration can
be used to explore the contribution of each process to
experimentally observed regeneration. The balance of quiescence
vs proliferation has been investigated in several studies. For
example, the balance of quiescence and proliferation in neural
stem cells has been modelled by a compartment-based differ-
ential equation approach (a continuum model) to investigate the
change in regenerative capacity due to increased quiescence with
age29. By modelling a simplified signalling network and using
single-cell RNAseq data29 the authors were able to identify a
potential niche signal that maintains quiescence, Wnt Antagonist
sFRP5. Another study investigating the balance of quiescent and
proliferative cells in regeneration in liver biliary epithelial cells
found little interconversion (on shorter time-scales) based on dual
labelling experiments, and used a discrete, stochastic model of
symmetric and asymmetric cell divisions to explain distribution of
clone sizes30. At the larger scale of cell population dynamics,
axolotl spinal cord regeneration has been modelled with
compartment-based differential equations to identify that accel-
eration of the cell cycle is a more important part of the
regenerative response than cell influx and stem cell activation31.
Mathematical modelling and data analysis approaches can be

used to identify similarities between developmental and regen-
erative processes, i.e. can “developmental processes be reinstated
and adapted or are there entirely new regenerative processes to
be discovered?”32. A recent single-cell scale analysis33 investigated
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to what extent cells in axolotl limb regeneration are de-
differentiating into multipotent states, and how similar these
states are to their developmentally observed analogues. Another
recent example using this approach of comparing cell states in
single-cell sequencing data identified a “regeneration-organising
cell” in Xenopus tails34. Another question underpinning regenera-
tion and growth of tissues is why does regeneration occur in some
animals but not others35? One approach may be to compare
regeneration and wound healing, and what factors affect
successful healing vs scarring. Similarities in gene expression
between regeneration and wound healing have been identified36,
however the complexity of the involvement of the immune
system has not been mapped. Modelling could provide a means
to address these additional components before carrying out a
large number of complex co-culture approaches, thus guiding
experiments towards the inclusion of essential components. One
study37 used coupled differential equations to model cytokine
signalling in microglia, and explained the pro- and anti-
inflammatory effects of cytokine perturbations through differential
kinetics in parallel negative feedback loops. This has implications
for treatment e.g. of neuroinflammation/neurodegenerative asso-
ciated conditions through application of cytokines.
Another example which demonstrates the utility of mathe-

matics in defining the role of cell interactions for successful
regeneration is in hair regeneration. Spatial simulations using both
continuum and discrete models have shown how a collective cell
behaviour akin to bacterial quorum sensing causes hair follicle
regeneration in mice to occur only when the injury is large
enough38. Other studies from the same group of authors39,40 use
spatial discrete and stochastic modelling to show how the
coupling, i.e. the strength of communication, between hair
follicles determines the pattern in which hairs regenerate, e.g. in
spreading waves, and why regeneration may stop in human scalps
where stem cell activities may be more independent and less
coupled. Further work41 has investigated the morphogenesis of
skin layers and hair follicles in vitro from dissociated mouse
epidermal and dermal cells, and thus identified crucial physical
and molecular events in the process. This led to a partial rescue of
hair forming ability in these reconstituted skin samples when
formed from adult cells, through the timed application of growth
factors, Wnts, and MMPs41.

Bioreactors
Mathematical modelling of tissue maintenance and growth within
in vitro bioreactors is motivated by the desire to understand and
control how the imposed experimental environment and operat-
ing conditions influences the time-dependent and spatial
distribution of cells, nutrients, fluid flow and substrate deforma-
tion within the bioreactor. In vitro engineering of 3D tissues is
characterised by a source of cells (autologous, allogeneic,
xenogenic) which are seeded on a substrate or biomaterial
scaffold which can be used to provide chemical, topographical
and mechanical cues42. Scaffolds can be extremely varied
materials – synthetic e.g. or natural (decellularised ECM) – and
cell-seeded scaffolds are cultured within bioreactors. Significant
tissue-engineering studies have progressed the field in bone
tissue engineering43. Examples of bioreactors include perfusion,
compression, hollow fibre, hydrostatic etc44,45.
Mathematical models of bioreactors range from details of the

fluid-tissue interaction at the pore scale within a cell-seeded
scaffold46 to models of growing tissue constructs47,48. We do not
present a comprehensive review of bioreactor modelling studies
here, but instead highlight how mathematical modelling techni-
ques have been applied to these systems. Recent work has shown
that in addition to material scaffold properties such as surface
roughness, elasticity and substrate chemistry, the macroscopic
geometry of the substrate controls cell growth kinetics49. By using

rapid prototyping to build artificial macro-pores of different
controlled geometries, Rumpler et al. demonstrated that cells
locally respond to high curvature through enhanced tissue
growth50. Additionally, mechanosensitive cells respond to fluid
shear stress, which is itself a function of the pore geometry. Sanaei
et al.46 developed a continuum mathematical model for the fluid
flow through an individual scaffold pore, coupled to the growth of
cells on the pore walls, to determine how the interplay between
substrate geometry and fluid shear stress enhances tissue growth.
In a complementary approach, Guyot et al.51 developed a 3D
computational model using the level set method to capture the
growth, again depending on curvature and fluid shear stress, at
the scaffold level in a perfusion bioreactor. These models offer
simple frameworks for testing the behaviour of different scaffold
pore geometries, and facilitates the prediction of operating
regimes (inlet fluid flux etc) in which the tissue growth may be
enhanced.
While computational approaches can be employed to scale-up

mechanistic insights from the pore to the tissue scale, an
alternative approach is to use mathematical homogenisation
techniques to derive effective macroscale equations (construct
level) that explicitly incorporate details of the structure and
dynamics of the pore scale detail. Such coarse-graining
approaches rely on a disparity in length scales e.g. between the
pore scale and scaffold scale. A recent experimental approach to
engineer artificial cartilage involves seeding cells within a scaffold
consisting of an interconnected 3D-printed lattice of polymer
fibres combined with a cast or printed hydrogel, and subjecting
the construct (cell-seeded scaffold) to an applied load in a
bioreactor52. To understand how the applied load is distributed
throughout the construct, Chen et al.53 employed mathematical
homogenisation theory to derive the effective macroscale
equations. The resulting model captured the orthotropic nature
of the composite material, and can be exploited to determine how
local mechanical environment experienced by cells embedded
within the construct53 depends on the composite material
properties (e.g. fibre dimension and properties). In a complemen-
tary approach, Castilho et al.54 employed a finite element (FE)
model to explore the reinforcement mechanisms of fibre-hydrogel
constructs.
While the studies of Chen et al.53 and Castilho et al.54, focused

on the material properties of the scaffold, techniques of
mathematical homogenisation can also be employed to derive
systems of homogenised partial differential equations describing
tissue growth within biomaterial scaffolds11,55,56. Alternative
routes to describing an evolving biological tissue, in which the
volume fraction of the constituents/phases – cells, ECM, interstitial
fluid etc - change over time utilise multiphase mixture theory,
based on the principles of mass and momentum conservation
with specified constitutive laws describing the interactions
between the phases57. Such a multiphase framework has been
employed in a multiscale setting to describe the properties of a
tissue growing on a rigid porous scaffold: again, mathematical
homogenisation techniques can used to derive effective macro-
scale equations that describe the effective properties of the
construct, and retain explicit dependence on both the microscale
scaffold structure and the multiphase tissue dynamics58. When
considering cell-seeded construct growth within bioreactors,
these bioactive multiphase models must be coupled to surround-
ing single phase fluid through specification of the appropriate
boundary conditions59.
Mathematical models and computational approaches describ-

ing bioreactor processes enable identification of optimal process
conditions leading to robust and economically viable products60.
Taking a mechanistic model for the growth of neotissue in a
perfusion bioreactor, Mehrian et al.61 applied model reduction
techniques to extract a set of ordinary differential equations from
the original set of partial differential equations. The simpler
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reduced system enabled rapid simulation, allowing the application
of rigorous optimisation techniques. Bayesian optimisation was
applied to find the medium refreshment regime in terms of
frequency and percentage of medium replaced that would
maximise neotissue growth kinetics during 21 days of culture.
The simulation results indicated that maximum neotissue growth
will occur for a high frequency and medium replacement
percentage, supporting existing reports in the literature61.

Clinical translation
Mathematical models can also be used to ask “what if…?”
questions (hypothesis testing), allowing us, for example, to
generate experimentally testable predictions for the way cells or
engineered tissues behave after implantation. A recent theoretical
study using continuum models62 of homoeostatic hematopoeisis
put forward a novel interaction between hematopoeitic stem cells
(HSCs) and niche cells, namely that niche cells could be
quiescence-inducing, while the HSC in turn promote the survival
of the niche cells. This mechanism would have the advantage that
a large excess of niche cells can compensate large fluctuations in
HSC number, unlike proliferation-inducing niche interactions. The
differential equation model based on this premise was able to
explain why there is a delay in HSC recovery after near-complete
ablation, but not after irradiation (which kills a smaller fraction of
cells). Such insights stemming from the basic regenerative biology
can be exploited to make sense of the dynamics of recovery after
cell transplantation, and how the ratio of niche to stem cells
affects the performance of cell therapy or tissue engineering
approaches.
Mathematical models can also be used for clinical optimisation

of a regenerative therapy e.g. to optimise RM treatment strategies
by understanding the trade-offs involved. One such trade-off is
between quick repair and risk of fibrosis in ischaemia, which has
been investigated using a combination of mouse experiments in a
kidney injury model and a differential equation model of cell-cell
communications63. In the model, Wnt overexpression would
decrease the risk of death but increase fibrosis, while Wnt
down-regulation would decrease fibrosis but increase risk of
death. This led to an optimal treatment prediction of sequentially
applying Wnt agonist and antagonist which ultimately could lead
to increased survival and decrease fibrosis risk.
Mathematical models can assist at the end of the translational

pathway, for example we can use models to gain a deeper
understanding of the efficacy of treatments. In liver regenera-
tion, mesenchymal stem/stromal cells are directed to sites of
injury by SDF-1, which has potential for cell-based therapies. A
differential equation model has recapitulated the in vivo
response to treatment of liver injury for different SDF-1
concentrations and doses of transplanted cells64, including the
beneficial effect of hypoxia-preconditioning to increase the
CXCR4 receptor concentration.
Mathematical modelling can also give confidence to enable

new protocols for RM to reach the clinic. Using clinical retro-
spective data, modelling can predict the importance of contribu-
tions of aspects of the protocol to the eventual outcome of the
treatment. One example is theoretical modelling work for
autologous Chondrocyte implantation (ACI) which is an effective
treatment for cartilage defects65,66. From clinical and animal
studies it was unclear whether the type or number of implanted
cells is important. To determine the effect of the number and type
of implanted cells on cartilage repair, Campbell et al.65,66

formulated a reaction-diffusion model for repair after implanting
chondrocytes or mesenchymal stem cells (MSCs). The model
captured cell migration, proliferation and differentiation, nutrient
diffusion and depletion, and cartilage matrix synthesis and
degradation at the defect site, both spatially and temporally.
They identified that the number of implanted cells had only a

marginal effect on the defect fill time or the maturation time, and
that the implantation of MSCs vs chondrocytes did not affect
maturation time but did affect the nature of the maturation.
Chondrocyte implantation gave the most mature cartilage
towards the bottom of the defect, but MSC implantation gave
the most mature cartilage towards the surface of the defect. The
small effect of cell number in this study may explain why both
clinical and animal studies have been inconclusive in defining
dosing of cells. This result gave the clinical team’s MHRA-licensed
cell manufacturing facility confidence to implement wide cell
release criteria with respect to cell numbers. The small maturation
difference between chondrocytes and bone marrow derived MSCs
agrees with experimental studies65,66. Chen et al.67 also consid-
ered a reaction-diffusion model for identifying optimal strategies
for chondrogenesis in tissue engineering applications. Experimen-
tally, a hydrogel is seeded with a layer of MSCs lying below a layer
of chondrocytes, and the MSCs are stimulated from above with
exogenous TGF-beta, and then cultured in vitro. Through
mathematical modelling, Chen et al.67 identified how the initial
concentration of TGF-beta, the initial densities of the MSCs and
chondrocytes, and the relative depths of the two layers influence
the long time composition of the tissue construct61,67.
These examples above demonstrate how mathematics has

been used to model regenerative biology at multiple stages of the
translational pathway but there are clearly further areas where the
input of theoretical and computational approaches would benefit
the speed of progress towards the clinic. Table 1 identifies stages
in the process where help is needed to define the appropriate
clinical regenerative protocol more rapidly and reproducibly. This
table is intended to establish the potential for the mathematical
community to contribute at each step of the translational process.
Each part of the table underpins some basic biological and/or
engineering question where mathematical modelling could
potentially add value.
For many biomedical and clinical researchers, the concept of

how to approach the relationship with mathematicians can be
daunting. This review is a first step to try and provide a reference
which illustrates previous work and signposts where to go for
future studies. To help researchers to identify possible areas for
collaboration, Table 2 identifies areas which can be modelled and
specific approaches which may be or have been used in the
literature. What is needed are interactive workshops, training
pathways and defining some common languages to support this
interaction.

CONCLUSION
In this review, we have highlighted the enormous potential for
embedding mathematical and computational approaches within
the regenerative medicine pipeline. To successfully achieve this
however requires a number of challenges to be overcome. For
example, theoretical model development often lags behind
experimental approaches in the earlier stages of the research,
prohibiting their early use as predictive tools to guide and inform
experimental design. Another challenge arises when model
parameterisation is hindered by a lack of experimental data (or
the right kind of experimental data). Addressing issues of
structural and practical identifiability of mathematical models is
key, and, in simple terms, means to check to what extent
(groupings of) parameters can be determined by statistical fitting
of observable data in principle or in practice. Issues of non-
identifiability can then drive further model reduction and/or
additional experiments.
To overcome these potential bottlenecks it is essential to have

mechanisms in place to allow integrated mathematical and
experimental research programmes to be designed and imple-
mented, including interactive workshops, combined and recipro-
cal training pathways for wet and dry scientists, and funding
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schemes to engage interdisciplinary teams of mathematicians,
regenerative medicine scientists, and clinicians (see also68).
In conclusion, the opportunity to engage mathematics within

a growing regenerative medicine community has the potential
to enable more rapid translation of cell-based approaches to the
clinic. In contrast to laboratory experiments which are often time
consuming and expensive, mathematical modelling approaches
are much faster and cheaper. Embedding mathematics within
regenerative medicine enables researchers to go beyond the
usual trial-and-error approach, be guided in their experimental
design, and therefore accelerate advances in regenerative
medicine. In silico approaches can provide added value in
understanding complex regeneration events in tissues in vivo
and in growth environments in vitro. This review highlights the
wealth of opportunities for collaboration between mathemati-
cians and regenerative medicine scientists, and to identify
where modelling approaches can contribute to the many stages
of the regenerative medicine pipeline to address key challenges
in translation.

Received: 25 April 2020; Accepted: 26 February 2021;

REFERENCES
1. El Haj, A. J. Regenerative medicine: ‘are we there yet?’. Tissue Eng. Part A 25,

1067–1071 (2019).
2. Gothard, D. et al. Tissue engineered bone using select growth factors: a com-

prehensive review of animal studies and clinical translation studies in man. Eur.
Cell. Mater. 28, 166–207 (2014). discussion 207–8.

3. Bayon, Y. et al. Turning regenerative medicine breakthrough ideas and innova-
tions into commercial products. Tissue Eng. Part B: Rev. 21, 560–571 (2015).

4. Naumova, A. V., Modo, M., Moore, A., Murry, C. E. & Frank, J. A. Clinical imaging in
regenerative medicine. Nat. Biotechnol. 32, 804–818 (2014).

5. Coy, R. H., Evans, O. R., Phillips, J. B. & Shipley, R. J. An integrated theoretical-
experimental approach to accelerate translational tissue engineering. J. Tissue
Eng. Regen. Med. 12, e53–e59 (2018).

6. Burova, I., Wall, I. & Shipley, R. J. Mathematical and computational models
for bone tissue engineering in bioreactor systems. J. Tissue Eng. 10
204173141982792 (2019).

7. Geris, L., Lambrechts, T., Carlier, A. & Papantoniou, I. The future is digital: in silico
tissue engineering. Curr. Opin. Biomed. Eng. 6, 92–98 (2018).

8. Wolf, M. T., Vodovotz, Y., Tottey, S., Brown, B. N. & Badylak, S. F. Predicting in vivo
responses to biomaterials via combined in vitro and in silico analysis. Tissue Eng.
Part C. Methods 21, 148–159 (2015).

9. Zhang, L., Gardiner, B. S., Smith, D. W., Pivonka, P. & Grodzinsky, A. J. Integrated
model of IGF-I mediated biosynthesis in a deformed articular cartilage. J. Eng.
Mech. 135, 439–449 (2009).

10. Pearson, N. C., Shipley, R. J., Waters, S. L. & Oliver, J. M. Multiphase modelling of
the influence of fluid flow and chemical concentration on tissue growth in a
hollow fibre membrane bioreactor. Math. Med. Biol. 31, 393–430 (2014).

11. O’Dea, R. D., Nelson, M. R., El Haj, A. J., Waters, S. L. & Byrne, H. M. A multiscale
analysis of nutrient transport and biological tissue growthin vitro. Math. Med. Biol.
32, 345–366 (2015).

12. Davit, Y. et al. Homogenization via formal multiscale asymptotics and volume
averaging: how do the two techniques compare? Adv. Water Resour. 62, 178–206
(2013).

13. Deisboeck, T. S., Wang, Z., Macklin, P. & Cristini, V. Multiscale cancer modeling.
Annu. Rev. Biomed. Eng. 13, 127–155 (2011).

14. Price, J. C., Krause, A., Waters, S. & El Haj, A. J. Predicting bone formation in MSC
seeded hydrogels using experiment based mathematical modelling. Tissue Eng.
Part A. https://doi.org/10.1089/ten.tea.2020.0027 (2020).

15. Klein, A. M., Doupé, D. P., Jones, P. H. & Simons, B. D. Mechanism of murine
epidermal maintenance: cell division and the voter model. Phys. Rev. E 77, 031907
(2008).

16. O’Dea, R. D., Byrne, H. M. & Waters, S. L. Continuum modelling of in vitro tissue
engineering: a review. Comput. Model. Tissue Eng. 229–266. https://doi.org/
10.1007/8415_2012_140 (2012).

17. Osborne, J. M., Fletcher, A. G., Pitt-Francis, J. M., Maini, P. K. & Gavaghan, D. J.
Comparing individual-based approaches to modelling the self-organization of
multicellular tissues. PLoS Comput. Biol. 13, e1005387 (2017).

18. Othmer, H. G. & Kim, Y. Hybrid models of cell and tissue dynamics in tumor
growth. Math. Biosci. Eng. 12, 1141–1156 (2015).

19. Greulich, P. & Simons, B. D. Dynamic heterogeneity as a strategy of stem cell self-
renewal. Proc. Natl Acad. Sci. USA. 113, 7509–7514 (2016).

20. Twycross, J., Band, L. R., Bennett, M. J., King, J. R. & Krasnogor, N. Stochastic and
deterministic multiscale models for systems biology: an auxin-transport case
study. BMC Syst. Biol. 4, 34 (2010).

21. Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev.
Biomed. Eng. 19, 221–248 (2017).

22. Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for health-
care: review, opportunities and challenges. Brief. Bioinforma. 19, 1236–1246
(2018).

23. Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning. Springer
Ser. Stat. https://doi.org/10.1007/978-0-387-84858-7 (2009).

24. Vellido, A. The importance of interpretability and visualization in machine
learning for applications in medicine and health care. Neural Comput. Appl.
https://doi.org/10.1007/s00521-019-04051-w (2019).

25. Sharpe, J. Computer modeling in developmental biology: growing today,
essential tomorrow. Development 144, 4214–4225 (2017).

26. Blanchard, G. B., Fletcher, A. G. & Schumacher, L. J. The devil is in the mesoscale:
mechanical and behavioural heterogeneity in collective cell movement. Semin.
Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2018.06.003 (2018).

27. Schumacher, L. J., Kulesa, P. M., McLennan, R., Baker, R. E. & Maini, P. K. Multi-
disciplinary approaches to understanding collective cell migration in develop-
mental biology. Open Biol. 6, 160056 (2016).

28. Rulands, S. & Simons, B. D. Tracing cellular dynamics in tissue development,
maintenance and disease. Curr. Opin. Cell Biol. 43, 38–45 (2016).

29. Kalamakis, G. et al. Quiescence modulates stem cell maintenance and regen-
erative capacity in the aging brain. Cell 176, 1407–1419.e14 (2019).

30. Kamimoto, K. et al. Heterogeneity and stochastic growth regulation of biliary
epithelial cells dictate dynamic epithelial tissue remodeling. Elife 5, e15034
(2016).

31. Rost, F. et al. Accelerated cell divisions drive the outgrowth of the regenerating
spinal cord in axolotls. Elife 5, 1–16 (2016).

32. Chara, O., Tanaka, E. M. & Brusch, L. Mathematical modeling of regenerative pro-
cesses. 108, 283–317 (Elsevier Inc., 2014).

33. Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during
axolotl limb regeneration. Science 0681, eaaq0681 (2018).

34. Aztekin, C. et al. Identification of a regeneration-organizing cell in the Xenopus
tail. Science 364, 653–658 (2019).

35. Warner, J. F., Amiel, A. R., Johnston, H. & Röttinger, E. Regeneration is a partial
redeployment of the embryonic gene network. bioRxiv 33, 1–28 (2019).

36. Fumagalli, M. R., Zapperi, S. & La Porta, C. A. M. Regeneration in distantly related
species: common strategies and pathways. npj Syst. Biol. Appl. 4, 5 (2018).

37. Anderson, W. D. et al. Computational modeling of cytokine signaling in microglia.
Mol. Biosyst. 11, 3332–3346 (2015).

38. Chen, C.-C. et al. Organ-level quorum sensing directs regeneration in hair stem.
Cell Popul. Cell 161, 277–290 (2015).

39. Plikus, M. V. et al. Self-organizing and stochastic behaviors during the regen-
eration of hair stem cells. Science 332, 586–589 (2011).

40. Murray, P. J., Maini, P. K., Plikus, M. V., Chuong, C.-M. & Baker, R. E. Modelling hair
follicle growth dynamics as an excitable medium. PLoS Comput. Biol. 8, e1002804
(2012).

41. Lei, M. et al. Self-organization process in newborn skin organoid formation
inspires strategy to restore hair regeneration of adult cells. Proc. Natl Acad. Sci.
USA 114, E7101–E7110 (2017).

42. Bardsley, K., Deegan, A. J., El Haj, A. & Yang, Y. Current state-of-the-art 3d tissue
models and their compatibility with live cell imaging. Adv. Exp. Med. Biol. 1035,
3–18 (2017).

43. Ng, J., Spiller, K., Bernhard, J. & Vunjak-Novakovic, G. Biomimetic approaches for
bone tissue engineering. Tissue Eng. Part B: Rev. 23, 480–493 (2017).

44. El Haj, A. J. & Cartmell, S. H. Bioreactors for bone tissue engineering. Proc. Inst.
Mech. Eng. H. 224, 1523–1532 (2010).

45. Plunkett, N. & O’Brien, F. J. Bioreactors in tissue engineering. Technol. Health Care
19, 55–69 (2011).

46. Sanaei, P., Cummings, L. J., Waters, S. L. & Griffiths, I. M. Curvature- and fluid-
stress-driven tissue growth in a tissue-engineering scaffold pore. Biomech.
Modeling Mechanobiol. 18, 589–605 (2019).

47. Neßler, K. H. L. et al. The influence of hydrostatic pressure on tissue engineered
bone development. J. Theor. Biol. 394, 149–159 (2016).

48. Coy, R. et al. Combining in silico and in vitro models to inform cell seeding
strategies in tissue engineering. J. R. Soc. Interface 17, 20190801 (2020).

49. Bidan, C. M. et al. Geometry as a factor for tissue growth: towards shape
optimization of tissue engineering scaffolds. Adv. Healthc. Mater. 2, 186–194
(2013).

S.L. Waters et al.

7

Published in partnership with the Australian Regenerative Medicine Institute npj Regenerative Medicine (2021)    24 

https://doi.org/10.1089/ten.tea.2020.0027
https://doi.org/10.1007/8415_2012_140
https://doi.org/10.1007/8415_2012_140
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/s00521-019-04051-w
https://doi.org/10.1016/j.semcdb.2018.06.003


50. Rumpler, M., Woesz, A., Dunlop, J. W. C., van Dongen, J. T. & Fratzl, P. The effect of
geometry on three-dimensional tissue growth. J. R. Soc. Interface 5, 1173–1180
(2008).

51. Guyot, Y., Papantoniou, I., Luyten, F. P. & Geris, L. Coupling curvature-dependent
and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a
3D computational model of a complete scaffold. Biomech. Model. Mechanobiol.
15, 169–180 (2016).

52. Visser, J. et al. Reinforcement of hydrogels using three-dimensionally printed
microfibres. Nat. Commun. 6, 6933 (2015).

53. Chen, M. J. et al. Multiscale modelling and homogenisation of fibre-reinforced
hydrogels for tissue engineering. Eur. J. Appl. Math. 31, 143–171 (2020).

54. Castilho, M. et al. Mechanical behavior of a soft hydrogel reinforced with three-
dimensional printed microfibre scaffolds. Sci. Rep. 8, 1245 (2018).

55. Penta, R., Ambrosi, D. & Shipley, R. J. Effective governing equations for poroelastic
growing media. Q. J. Mech. Appl. Math. 67, 69–91 (2014).

56. Collis, J., Brown, D. L., Hubbard, M. E. & O’Dea, R. D. Effective equations governing
an active poroelastic medium. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20160755
(2017).

57. Pearson, N. C., Oliver, J. M., Shipley, R. J. & Waters, S. L. A multiphase model for
chemically- and mechanically- induced cell differentiation in a hollow fibre
membrane bioreactor: minimising growth factor consumption. Biomech. Model.
Mechanobiol. 15, 683–700 (2016).

58. Holden, E. C., Chapman, S. J., Brook, B. S. & O’dea, R. D. A multiphase multiscale
model for nutrient-limited tissue growth, part ii: a simplified description. ANZIAM
J. 1–14, https://doi.org/10.1017/s1446181119000130 (2019).

59. Dalwadi, M. P., Jonathan Chapman, S., Waters, S. L. & Oliver, J. M. On the
boundary layer structure near a highly permeable porous interface. J. Fluid Mech.
798, 88–139 (2016).

60. Glen, K. E., Cheeseman, E. A., Stacey, A. J. & Thomas, R. J. A mechanistic model of
erythroblast growth inhibition providing a framework for optimisation of cell
therapy manufacturing. Biochem. Eng. J. 133, 28–38 (2018).

61. Mehrian, M. et al. Maximizing neotissue growth kinetics in a perfusion bioreactor:
an in silico strategy using model reduction and Bayesian optimization. Biotechnol.
Bioeng. 115, 617–629 (2018).

62. Becker, N. B., Günther, M., Li, C., Jolly, A. & Höfer, T. Stem cell homeostasis by
integral feedback through the niche. J. Theor. Biol. 481, 100–109 (2019).

63. Tian, X.-J. et al. Sequential Wnt Agonist Then Antagonist Treatment Accelerates
Tissue Repair and Minimizes Fibrosis. iScience 23, 101047, https://doi.org/
10.1016/j.isci.2020.101047 (2020).

64. Jin, W. et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of ther-
apeutic mesenchymal stem/stromal cells in mice. PeerJ 6, e6072 (2018).

65. Campbell, K., Naire, S. & Kuiper, J. H. A mathematical model of cartilage regen-
eration after chondrocyte and stem cell implantation – I: the effects of growth
factors. J. Tissue Eng. 10, 204173141982779 (2019).

66. Campbell, K., Naire, S. & Kuiper, J. H. A mathematical model of cartilage regen-
eration after chondrocyte and stem cell implantation – II: the effects of co-
implantation. J. Tissue Eng. 10, 204173141982779 (2019).

67. Chen, M. J. et al. Identifying chondrogenesis strategies for tissue engineering of
articular cartilage. J. Tissue Eng. 10, 2041731419842431 (2019).

68. Smye, S. W. The physics of physik. J. R. Coll. Physicians Edinb. 48, 3–8 (2018).
69. Babtie, A. C., Chan, T. E. & Stumpf, M. P. H. Learning regulatory models for cell

development from single-cell transcriptomic data. Current Opin. Syst. Biol. 1–10
https://doi.org/10.1016/j.coisb.2017.07.013 (2017).

70. Thomas, P., Popović, N. & Grima, R. Phenotypic switching in gene regulatory
networks. Proc. Natl Acad. Sci. https://doi.org/10.1073/pnas.1400049111 (2014).

71. Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to
understand gene regulation. Science 336, 183–187 (2012).

72. van Leeuwen, I. M. M. et al. An integrative computational model for intestinal
tissue renewal. Cell Prolif. 42, 617–636 (2009).

73. Pearson, N. C., Waters, S. L., Oliver, J. M. & Shipley, R. J. Multiphase modelling of
the effect of fluid shear stress on cell yield and distribution in a hollow fibre
membrane bioreactor. Biomech. Model. Mechanobiol. 14, 387–402 (2015).

74. Stacey, A. J., Cheeseman, E. A., Glen, K. E., Moore, R. L. L. & Thomas, R. J.
Experimentally integrated dynamic modelling for intuitive optimisation of cell
based processes and manufacture. Biochem. Eng. J. 132, 130–138 (2018).

75. Yeo, E. F. et al. Experimental and mathematical modelling of magnetically
labelled mesenchymal stromal cell delivery. https://doi.org/10.1101/
2020.10.27.356725 (2020).

ACKNOWLEDGEMENTS
The authors gratefully acknowledge funding in the form of an EPSRC Healthcare
Technologies Discipline Hopping Award (S.L.W.: EP/R013128/1, A.J.E.H.: EP/R013209/
1); EPSRC Healthcare Technologies Awards (A.J.E.H.: EP/P031137/1, S.L.W.: EP/
P031218/1 & EP/S003509/1); MRC (S.L.W. & A.J.E.H.: MR/T015489/1, AJEH: MR/
R015635/1). L.J.S. was supported by a Chancellor’s Fellowship from the University of
Edinburgh. A.J.E.H. is supported by ERC Advanced grant DYNACEUTICS No. 789119.

AUTHOR CONTRIBUTIONS
The three authors listed on this manuscript have contributed equally to the writing of
this review and the figures included.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to A.J.E.H.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

S.L. Waters et al.

8

npj Regenerative Medicine (2021)    24 Published in partnership with the Australian Regenerative Medicine Institute

https://doi.org/10.1017/s1446181119000130
https://doi.org/10.1016/j.isci.2020.101047
https://doi.org/10.1016/j.isci.2020.101047
https://doi.org/10.1016/j.coisb.2017.07.013
https://doi.org/10.1073/pnas.1400049111
https://doi.org/10.1101/2020.10.27.356725
https://doi.org/10.1101/2020.10.27.356725
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Regenerative medicine meets mathematical modelling: developing symbiotic relationships
	Introduction and vision
	A brief introduction to common modelling approaches
	Mathematical models in regenerative medicine research
	Basic regeneration biology
	Bioreactors
	Clinical translation

	Conclusion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




