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Abstract

Cancer cells acquire drug resistance via various mechanisms including enhanced cellular cytoprotective and antioxidant
activities. Heme oxygenase-1 (HO-1) is a key enzyme exerting potent cytoprotection, cell proliferation and drug resistance.
We aimed to investigate roles of HO-1 in human cholangiocarcinoma (CCA) cells for cytoprotection against
chemotherapeutic agents. KKU-100 and KKU-M214 CCA cell lines with high and low HO-1 expression levels, respectively,
were used to evaluate the sensitivity to chemotherapeutic agents, gemcitabine (Gem) and doxorubicin. Inhibition of HO-1
by zinc protoporphyrin IX (ZnPP) sensitized both cell types to the cytotoxicity of chemotherapeutic agents. HO-1 gene
silencing by siRNA validated the cytoprotective effect of HO-1 on CCA cells against Gem. Induction of HO-1 protein
expression by stannous chloride enhanced the cytoprotection and suppression of apoptosis caused by anticancer agents.
The sensitizing effect of ZnPP was associated with increased ROS formation and loss of mitochondrial transmembrane
potential, while Gem alone did not show any effects. A ROS scavenger, Tempol, abolished the sensitizing effect of ZnPP on
Gem. Combination of ZnPP and Gem enhanced the release of cytochrome c and increased p21 levels. The results show that
HO-1 played a critical role in cytoprotection in CCA cells against chemotherapeutic agents. Targeted inhibition of HO-1 may
be a strategy to overcome drug resistance in chemotherapy of bile duct cancer.
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Introduction

Cholangiocarcinoma (CCA) is a malignant tumor of the bile

duct, which originates from the bile duct epithelial cells

(cholangiocytes). CCA is a devastating malignancy with poor

prognosis. CCA is a rare type of cancer worldwide, however

populations residing in the Southeast Asian region are at very high

risk. The important risk factors are liver fluke infection and

possible involvement from chronic infection with hepatitis B and C

viruses [1,2]. Early diagnosis and extensive surgery offers the only

chance for prolonged life. Unfortunately, most patients are

diagnosed at the advanced stage of disease and current biomarkers

are of limited value [3,4]. Chemotherapy is a remaining option.

However, current chemotherapy has not been shown to

substantially improve survival in patients with unresected CCA

[3,5]. Many chemotherapeutic drugs as well as targeted chemo-

therapeutic agents have been tested as single agents or in

combinations. Nevertheless, drug resistance or drug inefficacy

remain major obstacles in the treatment of CCA [6]. It is apparent

that a new strategy of chemotherapeutic treatment is urgently

needed in management of the unresectable CCA.

Heme oxygenase-1 (HO-1) is one of the powerful cytoprotective

enzymes. HO-1 plays critical roles in physiological iron homeo-

stasis, antioxidant defense, anti-inflammatory and anti-apoptotic

effect [7]. It is induced by various stimuli such as hypoxia, UV-

radiation, heavy metals, chemotherapeutic drugs and oxidative

stress [8,9]. HO-1 catalyzes the first and rate-limiting step in the

degradation of heme to biliverdin, carbonmonoxide (CO) and

ferrous iron. Biliverdin is further converted to bilirubin by

biliverdin reductase. Biliverdin and bilirubin are the most potent

endogenous reactive oxygen species (ROS) scavengers [7]. CO is

also an efficient anti-inflammatory mediator in several models of

inflammation and tissue injury [10,11]. The increased expression

of HO-1 has been observed in several cancers including brain

tumor, melanoma, chronic myeloid leukemia, and lymphosarcoma

[12], suggesting possible contribution of HO-1 to tumor

progression through promotion of angiogenesis, metastases and

pro-proliferation [13]. HO-1 expression may contribute to

resistance to chemotherapeutic agents such as cisplatin, doxoru-

bicin and gemcitabine in some human cancers [9,14,15]. Thus,

some studies revealed that suppression of HO-1 activity or HO-1

knockdown by siRNA increased the chemosensitivity of AML

cells, pancreatic and lung cancer cells [9,14,16], but was not

effective in other cancer cells [17]. The inhibition of HO-1 by zinc

protoporphyrin IX (ZnPP) induced apoptotic cell death and this

may be associated with the increase in ROS production. Similarly,

HO-1 gene silencing by specific siRNA also induced ROS
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generation [17]. However, the exact mechanism of the sensitizing

effect to chemotherapeutic agents confered by suppression of HO-

1 is largely unknown. Mitochondria may be a primary target of

HO-1 inhibition, as ZnPP and triiodothyronine induced the

opening of the mitochondrial permeability transition (MPT) pore

leading to liver injury [18].

In the present study, we investigated whether HO-1 in CCA

cells plays a critical role in cytoprotection against chemothera-

peutic agents. The results show that inhibition of HO-1 induced

the sensitization of CCA cells to gemcitabine (Gem) and

doxorubicin (Dox). Inhibition of HO-1 could be a strategy to

enhance the response of CCA to chemotherapeutic drugs.

Materials and Methods

Cell lines and cell cultures
The human cholangiocarcinoma (CCA) cell lines; KKU-100

and KKU-M214 used in this study were kindly provided by Dr.

Banchob Sripa of Department of Pathology, Faculty of Medicine,

Khon Kaen University. Both cell lines were cultured in complete

media consisting of Ham’s F12 media, supplemented with 10%

fetal calf serum, 12.5 mM HEPES, pH 7.3, 100 U/ml penicillin

G and 100 mg/ml gentamicin. The cells were subcultured every 3

days using 0.25% trypsin-EDTA and the medium was renewed

after an overnight incubation. The cultured cells were changed to

incubate in serum-free defined Ham’s F12 medium immediately

before further treatment.

Cytotoxicity assay
Cytotoxicity was determined by fluorescent staining using

acridine orange and ethidium bromide (AO/EB) as described

previously [19]. KKU-100 (7,500 cells/well) and KKU-M214

(5,000 cells/well) cells were cultured in 96 well-plate and allowed

to attach overnight. On the next day, the medium was removed

and gemcitabine (GemzarH, Eli Lilly, IN, USA: Gem) dissolved in

phosphate-buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl,

10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4), doxorubicin HCl

(Boryung Pharm, Seoul, South Korea: Dox) dissolved in DMSO

(100 mM) and further diluted with PBS, 4-hydroxy-2,2,6,6-

tetramethylpiperidine-1-oxyl (Tempol), dissolved in PBS, zinc

protoporphyrin IX (ZnPP; HO-1 inhibitor), dissolved in DMSO

(50 mM) and further diluted with PBS or stannous chloride

(SnCl2; HO-1 inducer) dissolved in PBS, or combinations of them

were added to the media culture to final concentrations as

indicated in results section and incubated for a designated period

of time. Then, cells were washed once with PBS and stained with

AO/EB. The cells were examined using a Nikon Eclipse TS100

inverted microscope with excitation and long–pass emission filters

of 480 and 535 nm, respectively. The fluorescent images were

taken at predetermined areas with a Nikon Coolpix digital camera.

The numbers of viable, apoptotic and necrotic cells which were

stained with green fluorescence, bright orange fluorescence and

green fluorescence with appearance of cell shrinkage, condensa-

tion and fragmentation of the nuclei, respectively, were enumer-

ated. The cytotoxicity value was calculated as = (number of viable

cells in treatment wells)/(number of viable cells in control

cells)6100.

HO-1 small interfering RNA transfection
The transfection of HO-1 siRNA was performed using

siGENOME SMARTpool (M-006372-02-0005: Dharmacon,

CO, USA) at a final concentration of 200 nM and lipofectamine

2000 (Invitrogen, CA, USA) according to the manufacturers’

instructions. HO-1 expression was specifically suppressed by

introduction of siRNA against human HMOX1 (Gene Id:

3162). - In brief, cells were grown in a 6-well plate to reach a

confluence of 70%. For each well, 100 pmoles of HO-1 siRNA

were mixed with 2 mL of lipofectamine 2000 and 500 mL of

serum- and antibiotic-free Ham’s F12 medium was added. Cells

were exposed to the transfection mixture for 6 h. At the end of

incubation period, 1.5 mL of antibiotic-free Ham’s F12 complete

medium was added and the cells were cultured for an additional

18 h. The siGENOME non-targeting siRNA (D-001210-02-05:

Dharmacon), as a negative control was introduced to the cells

using the same protocol. Total RNA and protein were extracted

from cells 24 h after transfection using previously described

methods [20,21]. Efficiency of the transient transfection was

determined by real-time polymerase chain reaction (PCR) using

specific primers and Western blotting.

Cytotoxicity of Gem to HO-1 knock-down CCA cells was

performed. KKU-100 cells (7,500 Cells/well) were grown in 96-

well plate to reach the confluence of 70%. For each well, cells were

transfected with 3 rmoles of HO-1 siRNA reagent mixed with

0.06 mL of lipofectamine 2000 in serum- and antibiotic-free Ham’s

F12 medium. Cells were kept in the transfection mixture for 6 h.

Then, 100 mL of antibiotic-free Ham’s F12 complete medium was

added and the cells were kept for an additional 18 hours. Then,

cells were treated with varied concentrations of Gem for further

24 h and cytotoxicity assay was performed as described as above.

Real-time polymerase chain reaction
KKU-100 and KKU-M214 cells were seeded at the density of

1.56105 cells/well in 6 well-plates and allowed to growth for 24 h.

Total RNA was isolated using a previously described method [20].

Total RNA (1 mg) was then reverse transcribed to single-stranded

cDNA by the ImProm-IITM reverse transcription system (Pro-

mega, WI, USA) at conditions of 42uC for 60 min. The reverse

transcription products served as a template for real-time PCR.

The primer sequences were as follows: HO-1: forward, 59-CTG

ACC CAT GAC ACC AAG GAC-39 and HO-1 reverse: 59-AAA

GCC CTA CAG CAA CTG TCG-39, b-actin: forward 59-AGT

GTA GCC CAG GAT GCC CTT-39 and b-actin: reverse, 59-

GCC AAG GTC ATC CAT GAC AAC-39. The PCR was

performed in a final volume of 15 mL containing cDNA template,

5 mM of each HO-1 primer or 2.5 mM of each b-actin primer in

SsoFastTM EvaGreen Supermix with low Rox (Bio-Rad, CA,

USA). After an initial denaturation step at 95uC for 10 min, 40

cycles for HO-1 and b-actin were performed as follows:

denaturating for 15 sec at 95uC, annealing for 30 sec at 55uC
and extension for 45 sec at 72uC. To verify the purity of the

products, a melting curve analysis was performed after each run.

To quantify the relative expression of genes, the relative

quantitation using standard curve method was used. The amount

of HO-1 mRNA was expressed as a ratio to b-actin mRNA.

Western blot analysis
Western blot analysis was used to determine the expression

levels of HO-1, p21Cip/WAF1, cytochrome C, and b-actin. KKU-

100 (7.56105) and KKU-M214 (66105) cells were cultured in

100 mm3 dishes and treated with drug or drug combinations. The

cultured cells were washed with PBS, lysed with RIPA buffer

[150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1%

SDS, 50 mM Tris–HCl (pH 7.4), 50 mM glycerophosphate,

20 mM NaF, 20 mM EGTA, 1 mM DTT, 1 mM Na3VO4 and

protease inhibitor cocktail (M221: Amresco, OH, USA) at 4uC for

15 min and transferred into a microtube. After vigorous vortex

mixing, the suspension was centrifuged at 12,0006g for 20 min

and supernatant was collected and stored at 270uC until use. The

Inhibition of HO-1 Sensitized Cholangicarcinoma
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protein samples were mixed with SDS loading buffer and

subjected to separation by electrophoresis in 8–10% SDS-

polyacrylamide gel. The bands were blotted onto a PVDF

membrane. The membranes were blocked for 1 h at room

temperature with 5% (w/v) skimmed milk powder in Tris buffered

saline (TBS) containing 0.1% Tween-20. The PVDF membrane

was incubated overnight at 4uC with primary antibodies of rabbit

polyclonal anti-human HO-1 (1:1000) (ADI-SPA-895: Enzo Life

Sciences, Switzerland), rabbit monoclonal anti-human p21Cip/

WAF1 (1:500) (#2947: Cell Signaling Technology, MA, USA),

mouse monoclonal anti-human cytochrome c (1:1000) (sc-13560)

and horseradish peroxidase (HRP)-goat polyclonal anti-human b-

actin (1:2500) (sc-1616 HRP) in TBS. After washing with TBS the

blots were incubated for 1 h at room temperature with the HRP-

conjugated secondary antibodies (anti-rabbit IgG-HRP sc-2004,

anti-mouse IgG-HRP sc-2005, anti-goat IgG-HRP sc-2354). After

removal of the secondary antibody and TBS buffer washes, the

blots were incubated in ECL substrate solution (SuperSignal West

Pico Chemiluminescent Substrate: Thermoscientific, IL, USA).

The densities of the specific protein bands were visualized and

captured by ImageQuantTM 400.

Measurement of intracellular ROS accumulation
To monitor the intracellular accumulation of ROS, the

lucigenin-enhanced chemiluminescence method was used for

detecting superoxide anion according to the previously described

method [20]. Briefly, KKU-100 cells were cultured in 35-mm

dishes overnight. After treatment with compounds for 3 h,

cultured cells were rinsed, incubated in PBS containing lucigenin

and measured for luminescent signal in a 20/20 n Luminometer

(Turner Biosystem, CA, USA).

Measurement of mitochondrial transmembrane potential
To analyze the mitochondrial transmembrane potential (Dym),

the lipophilic cationic fluorescent probe; JC-1 (Cayman Chemical,

MI, USA) was used as previously described [21]. KKU-100 cells

were seeded in a 96-well plate for an overnight before treatment

with compounds for 6 or 24 h. Cultured cells in the plate were

centrifuged at 1,500 rpm 25uC for 5 min and were loaded with

JC-1 dye for 30 min at 37uC. Then, cultured cells were rinsed,

incubated in JC-1 assay buffer and Dym was analysed in a

fluorescent microscope. JC-1 forms J-aggregates in cells with

healthy mitochondria, which can be detected with fluorescent

settings of excitation and emission wavelengths at 560 and

595 nm, respectively. Cells with depolarized mitochondria, JC-1

existed as J monomers can be detected with excitation and

emission wavelengths at 485 and 535 nm, respectively. The

change of the orange fluorescence in healthy cultured cells to

green fluorescence is an indicative of depolarization of Dym.

Statistical analysis
Data are expressed as mean 6 SEM of three separated

experiments. An analysis of variance was used to determine

significant differences between each experimental group. The level

of significance was set at P,0.05.

Results

Basal HO-1 expression and inducible expression by
anticancer agents

The two cholangiocarcinoma cells, KKU-100 and KKU-M214,

were used to determine the basal expression levels of HO-1. The

mRNA and protein expressions of HO-1 were determined by real-

time PCR and Western blot analysis. At basal condition, KKU-

100 showed the higher HO-1 mRNA and protein levels than

KKU-M214 cells (Fig. 1A–B). To examine whether anticancer

agent could induce HO-1 in CCA cells, two lines of cells were

incubated with 1 mM of Gem and the time-course of HO-1

protein expression was examined. Both KKU-100 and KKU-

M214 cells treated with Gem showed a rapid increased HO-1

protein expression within 3 h when compared with concurrent

controls and returned to control level by 24 h (Fig. 2).

Effect of HO-1 inhibition on the sensitivity of CCA cells to
anticancer agents

The cytoprotective effects of HO-1 in CCA cells to anticancer

agents were explored using high and low HO-1 expressing KKU-

100 and KKU-M214 cells cultured with HO-1 inhibitor. Both

cells were exposed to Gem (0.001–0.1 mM) in the presence of HO-

1 inhibitor, ZnPP (0.01 and 0.1 mM) for 24 h. As shown in Fig. 3A

and 3B, ZnPP rendered both CCA cells to be highly susceptible to

cytotoxic effect of Gem, which can be seen as the downward shift

of the dose-response curves of Gem in the presence of ZnPP.

Similar downward shift of the dose-response curves in the presence

of ZnPP was observed in KKU-100 cells to another chemother-

apeutic agent, Dox (Fig. 3C). The presence of ZnPP augmented

significantly Gem- or Dox-induced cell growth inhibition and

induction of apoptotic cell death in both cell lines (Fig. 3D, E and

F). ZnPP itself showed only a slight cytotoxicity at the

concentrations used in this study (data not shown).

HO-1 induction enhanced resistance of CCA cells to
anticancer agents

To validate the cytoprotective roles of HO-1, SnCl2, a HO-1

inducer, was used in combination with Gem or Dox. KKU-100

and KKU-M214 cells were exposed to SnCl2 and changes in HO-

1 protein was evaluated by Western blot analysis. SnCl2 (10 mM)

induced HO-1 protein expression with a similar pattern in both

cell types with maximal induction observed during 6–24 h

Figure 1. HO-1 mRNA and protein expressions in CCA cells. (A)
The basal mRNA expression of HO-1 in CCA cells; KKU-100 and KKU-
M214 cells. Total RNA of cells were collected and analysed by real-time
RT-PCR. The bars represent relative expression of HO-1 normalized with
b -actin. The expression of HO-1 in KKU-100 cells is much higher than
that of KKU-M214 cells, p,0.05. (B) The basal protein expression of HO-
1 in KKU-100 and KKU-M214 cells. Total cell lysates were prepared and
subjected to Western blot analysis using b-actin as a loading control.
Image samples of HO-1 and b -actin are shown in the top panel of the
figure. HO-1 protein in KKU-100 cells is relatively higher than that of
KKU-M214 cells. The bars represent mean6SEM, each from three
separated experiments. *, p,0.05 vs KKU-100 group.
doi:10.1371/journal.pone.0034994.g001
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(Fig. 4A). KKU-100 and KKU-M214 cells were treated with Gem

(0.1 mM) or Dox (0.5 mM) with or without SnCl2 for 24 h.

Induction of HO-1 was associated with increased cell viability

more than 2 fold after treatment with Gem or Dox (Fig. 4B).

Induction of HO-1 by SnCl2 decreased the apoptotic and necrotic

cell death induced by Gem and Dox in both CCA cells (Fig. 4C).

SnCl2 alone was slightly toxic at the concentrations used in this

study (data not shown).

HO-1 gene silencing sensitized CCA cells to
chemotherapeutic agents

To further validate that HO-1 inhibition indeed induced

sensitization of CCA cells to anticancer agents, the effects of

HO-1 gene silencing to Gem was examined. Since both KKU-100

and KKU-M214 cells showed similar responses to HO-1 inhibitor

and inducer, KKU-100 cells were employed as a representative of

CCA cells. The levels of HO-1 mRNA (Fig. 5A) and immuno-

reactive HO-1 protein (Fig. 5B) were dramatically decreased 24 h

after transfection of HO-1 siRNA. Then, HO-1 knocked-down

KKU-100 cells were exposed to various concentrations of Gem

(0.001–0.1 mM) for further 24 h. The IC50 concentration of Gem

in non-targeting control was 0.036060.0042 mM, whereas that in

HO-1 knockdown cells was 0.000560.0001 mM (Fig. 5C)

(p,0.001), showing that the inhibition of HO-1 sensitizes KKU-

100 cells to be highly susceptible to Gem.

ZnPP induced intracellular ROS formation and
mitochondrial dysfunction

From the above experiments, HO-1 inhibition by ZnPP

enhanced the susceptibility of CCA cells to the cytotoxic effect

of Gem. To explore the underlying mechanisms of enhanced

cytotoxicity by the combination of Gem and ZnPP, the

intracellular ROS formation was assessed. Treatment with ZnPP

alone caused a remarkable increase in ROS formation as early as

3 h. The combination of ZnPP and Gem showed further increase

in ROS levels (Fig. 6A). Gem alone showed no effect on ROS

formation. To test whether the ROS was indeed responsible to

enhance the cytotoxicity of Gem, the superoxide dismutase (SOD)-

mimetic compound, Tempol, was used to scavenge O2
N2 induced

by combined ZnPP and Gem treatment. The concentrations of

Tempol to be used in studies were evaluated in a previous

experiment which had shown to inhibit ROS formation and

produce minimal toxicity. Moreover, it is verified that Tempol

(500 mM) does not inhibit HO-1 activity. ZnPP-enhanced

cytotoxicity of Gem was abolished by the presence of Tempol

(Fig. 6B). Tempol alone has little cytotoxicity to the cells. Since

ROS formation is thought to be involved in induction of cell killing

in association with mitochondrial pathway, KKU-100 cells were

treated with the combination of ZnPP and Gem and the Dym

were evaluated using JC-1 assay. Gem treatment alone had no

effect on the Dym (Fig. 6 C, inset b & f), whereas ZnPP and the

combination of ZnPP with Gem induced the depolarization of

Dym as evident by the change of red fluorescent staining in healthy

mitochondria (Fig. 6C, inset a & e) to green fluorescent staining in

depolarized mitochondria (Fig. 6C, inset c, d, g & h).

Combination of ZnPP and Gem altered the expression of
proteins related to cell proliferation and apoptosis

To investigate further the effects of combined Gem and ZnPP if

it was mediated via mitochondrial pathway, cytochrome c, release

from the mitochondria in response to pro-apoptotic stimuli, was

determined. The combined drug treatment exerted significant

increase in levels of cytochrome c protein when compared with the

controls. ZnPP or Gem alone did not induce the release (Fig. 7).

Since the combined Gem and ZnPP suppressed the tumor cell

growth, a protein related to cell proliferation; the p21Cip/WAF1 was

analyzed by Western blotting. Gem or ZnPP alone did not affect

the p21Cip/WAF1 protein expression, whereas the combination of

Gem and ZnPP caused marked induction of p21Cip/WAF1 and was

associated with marked antiproliferative effect.

Figure 2. Time-course of HO-1 protein induction by Gem. (A) KKU-100 cells and (B) KKU-M214 cells were cultured for overnight and exposed
to Gem (1 mM) for 3, 6, 12 and 24 h. The cultured cells exposed to vehicle only were performed as concurrent control groups. Total cell lysates were
collected at the indicated time points and subjected to Western blot analysis using b-actin as a loading control. The relative expression of HO-1 was
normalized with b actin. The bars show the HO-1 expression in Gem-treated group and concurrent control group. The bars represent mean6SEM,
each from three separated experiments. *,p,0.05 vs concurrent controls.
doi:10.1371/journal.pone.0034994.g002
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Discussion

HO-1 has a potent cytoprotective activity against noxious

stimuli in inflammatory diseases such as sepsis, inflammatory

bowel disease, or in various oxidative injuries [7]. Moreover, HO-

1 plays a protective role in normal tissues as well as in cancer cells

[22,23]. Our study demonstrated that HO-1 plays a critical role in

CCA cells in cytoprotection against anticancer agents, regardless

of the basal HO-1 expression levels of the cells. Inhibition of HO-1

by ZnPP or HO-1 siRNA could sensitize CCA cells to the

cytotoxicity of anticancer agents, whereas the induction of HO-1

exerted a cytoprotective and drug resistant effects. The sensitiza-

tion of CCA cells by HO-1 inhibition is probably involved with

generation of ROS, which leads to the loss of DYm, and initiates

apoptotic cell death processes.

Altered expression of drug metabolizing enzymes, such as

UGT1A, UGT2B, SULT1C [24], NAT2 [25] and GSTO [26] have

been reportedly associated with intrahepatic cholangiocarcinoma

in endemic area of liver fluke infection. However, there is still no

evidence to establish their roles in protecting cancer cells. Elevated

expression of HO-1 has been reported in various human tumors

including renal cell carcinoma, prostate tumors, bladder and

pancreatic cancers [15,27,28,29], with close association to the

disease states. In the present study, HO-1 induction by SnCl2
caused a significant cytoprotection against chemotherapeutic

agents regardless of basal HO-1 expression. On the other hand,

treatment with anticancer agent also strongly up-regulated HO-1

expression, implying that adaptive defense response in CCA cells is

induced to endure the drugs. These results suggest that role of

HO-1 in cytoprotection is very critical even in low basal level of

HO-1 expression. It should be noted that cytoprotective effect

conferred by HO-1 is not specific to Gem but also to Dox and

perhaps to some others, in spite of the different mechanisms of

actions of these anticancer agents. These results also suggest that

the resistance of CCA cells to anticancer agents is, at least in part,

due to induction of HO-1. Overall, the inhibition of HO-1 may

Figure 3. Inhibition of HO-1 activity enhances the cytotoxic effect of Gem. KKU-100 and KKU-M214 cells were treated with the varied
concentrations (0.001, 0.01 and 0.1 mM) of Gem (A,B,D and E) and (0.01, 0.1, 0.5 and 1 mM) of Dox (C and F) with or without 0.01 and 0.1 mM of ZnPP
(HO-1 inhibitor) for 24 h. KKU-100 and KKU-M214 cells were evaluated for cytotoxicity (A,B and C) and apoptosis (D,E and F) by fluorescent dye
staining. The cytotoxicity of the drugs are in concentration-response manner, whereas in co-treatment of drug and ZnPP, the concentration-response
curves are shifted downward, indicating enhancement of the response to drug combinations. The bars at the right panel show percent of apoptotic
cell death when cells were treated with anticancer drugs in combination with various concentrations of ZnPP (0.001–0.1 mM). The bars represent
mean6SEM, each from three separated experiments. *, p,0.05 vs drug alone (Gem and Dox).
doi:10.1371/journal.pone.0034994.g003
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overcome the intrinsic as well as acquired resistance to

chemotherapeutic agents.

Subsequently in this study, we investigated further as to how

HO-1 inhibition induces the sensitization in CCA cells to

anticancer agents. HO-1 possesses an indirect antioxidant effects

probably via generation of biliverdin/bilirubin, carbon monoxide,

and other oxidative stress responses [11,30]. Bilirubin is a potent

antioxidant by recycling between biliverdin and bilirubin during

the catalytic cycle of oxidation and reduction [11]. Inhibition of

HO-1 by ZnPP resulted in significant increase in ROS formation

[17,23,29]. Our results showed that ZnPP caused marked increase

in ROS levels in KKU-100 cells, whereas Gem treatment alone

did not induce ROS. Moreover, combination of ZnPP and Gem

enhanced more ROS production than ZnPP alone. Our study

further verified that ROS is essential for the chemosensitizing

effect, as scavenging of ROS by Tempol virtually abolished the

sensitizing effect of ZnPP. Moreover, these results imply that

inhibition of HO-1 increases the oxidative stress, where ROS may

be derived from the metabolism of the cells themselves [7,30].

The loss of Dym is regarded as an early event of mitochondrial

dysfunction. It is apparent that a small change in mitochondrial

permeability transition (MPT) could depolarize the mitochondria,

whilst increasing number of MPT leads to necrosis and apoptosis

[31]. The increase of ROS production in ZnPP treated groups was

associated with the loss of Dym. Our recent study on chemopre-

ventive effect of curcumin has demonstrated a temporal

relationship of ROS formation, depolarization of mitochondria

and induction of apoptosis [32]. An inducer such as ROS may

attack and modify membrane proteins of MPT pores leading to

the aggregation of misfolded proteins creating regulated PT pores

[31]. In this circumstance, the cells are in a state of highly

susceptible to further attack by inducers of MPT. Role of ROS

induced by ZnPP in relation to mitochondrial function and

induction of apoptotic cell death is needed further clarification.

Alternatively, inhibition of HO-1 activity results in an increase

accumulation of protoporphyrin in mitochondria [33] and this

lead to depolarization of Dym and sensitize MPT to cytotoxic

agents. Protoporphyrin IX has been suggested to be a ligand of

peripheral benzodiazepine receptor, a component of MPT pores,

thereby sensitizes MPT [34,35]. The present study showed that

only the combination of ZnPP and Gem enhanced cell killing

effect, whilst ZnPP alone at sub-micromolar concentrations caused

Figure 4. Induction of HO-1 suppressed the cytotoxicity of Gem and Dox. (A) The time-course of HO-1 induction by SnCl2 (10 mM) in KKU-
100 and KKU-M214 cells. The cells were cultured for overnight and exposed to SnCl2 for 3, 6 and 24 h before whole cell lysates were collected and
HO-1 protein was determined by the Western blotting, using b-actin; as loading control. The HO-1 protein expression in KKU-100 and KKU-M214 cells
is relative stable during the first 6 h of exposure to SnCl2, whereas high HO-1 expression is evident during 6 to 24 h. The cytotoxicity of Gem (0.1 mM)
and Dox (0.5 mM) with or without SnCl2 (10 mM) was determined in both cell lines after incubation for 24 h. The cell viability (B), apoptotic and
necrotic cells (C) were evaluated by fluorescent dye staining. Data represent mean6SEM, each from three separated experiments. *, p,0.05 vs drug
alone.
doi:10.1371/journal.pone.0034994.g004
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Figure 5. Knockdown of HO-1 by siRNA sensitized KKU-100 cells to Gem. The mRNA (A) and protein (B) levels of HO-1expression in KKU-100
cells are shown. KKU-100 cells were transfected with siRNA against HO-1 for 24 h and total RNA was prepared and analyzed by reverse transcription-
PCR. In similar experiments, cell lysates were collected and HO-1 was determined by the Western blotting in KKU-100 cells, using b-actin, as loading
control. (C) The cytotoxicity and IC50 of Gem in knocked down KKU-100 cells was determined. After transfection for 24 h, KKU-100 cells were treated
with varied concentrations of Gem (0.001, 0.01, 0.05 and 0.1 mM) for another 24 h. The cell viability was evaluated by fluorescent dye staining. Data
represent mean6SEM, each from three separated experiments. *, p,0.05 vs non target knocked down cells.
doi:10.1371/journal.pone.0034994.g005

Figure 6. ZnPP induced the intracellular reactive oxygen generation, depolarization of mitochondrial transmembrane potential
and cytotoxcity. (A) The generation of ROS induced by ZnPP (0.1 mM) and combination of ZnPP and Gem (0.01 mM) for 3 h in KKU-100 cells as
measured by lucigenin-enhanced chemiluminescent method. *, p,0.05 vs ZnPP alone and #, vs Gem alone. (B) The ROS scavenger, Tempol
(500 mM), inhibited cytotoxicity of the combination of ZnPP (0.1 mM) and Gem (0.01 mM) in KKU-100 cells The cell viability was evaluated by
fluorescent dye staining. *, p,0.05 vs the combination of ZnPP and Gem. Data represent mean6S.E.M., each from three independent experiments.
(C) The induction of depolarization of the mitochondrial transmembrane potential (Dym) using JC-1 fluorescent probe, in KKU-100 cells after
treatment with Gem+/2ZnPP for 6 h (a,b,c, &d) and 24 h (e,f,g & h). The healthy mitochondria, JC-1 forms J-aggregates and display strong red
fluorescent signal, whereas the depolarized mitochondria, JC-1 exists as monomers and show green fluorescent signal.
doi:10.1371/journal.pone.0034994.g006
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the release of ROS in association with loss of Dym, but this was

still insufficient to induce cell death. Our study is in agreement

with recent reports, ZnPP alone shows no effect on MPT, however

ZnPP in combination with triiodothyronine induced oxidative

stress, MPT opening and apoptotic cell death [18]. Furthermore,

effect of protoporphyrin IX at nanomolar range in enhanced

rotenone-induced cytotoxicity is demonstrated to be due to MPT

opening, because the effects were inhibited by cyclosporine A, an

inhibitor of MPT [35].

The sensitizing effect is consistent with present experiment in

that no increased release of cytochrome c by ZnPP or Gem alone,

whereas the drug combination increased release of cytochrome c.

It is noted that Gem alone may not exert cytotoxic effect via

mitochondrial pathway, as Gem did not induce changes of Dym

and cytochrome c levels. Gem is known to induce cell cycle arrest

and apoptosis by p53-dependent and independent pathways. [36].

Our study observed that combination of ZnPP and Gem induced

an increased level of the protein p21, which is a p53-dependent

downstream gene product, and a potent cyclin-dependent kinase

inhibitor. Gem or ZnPP alone did not exert any significant

changes in p21. It is probable that induction of mitochondrial

dysfunction induces p21 accumulation [37]. This is consistent with

a strong antiproliferation effect of Gem and ZnPP combination.

In summary, HO-1 plays an important role in cytoprotection in

both low and high HO-1 expressing CCA cells. Inhibition of HO-

1 induced ROS formation, which may initiate the loss of Dym and

sensitizes CCA cells to a cytotoxic effect of anticancer agents.

Thus, targeted suppression of HO-1 may be a strategy to

overcome drug resistance in cholangiocarcinoma chemotherapy.
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