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Abstract

Background: Analysis of large-scale experimental datasets frequently produces one or more sets
of proteins that are subsequently mined for functional interpretation and validation. To this end, a
number of computational methods have been devised that rely on the analysis of functional
annotations. Although current methods provide valuable information (e.g. significantly enriched
annotations, pairwise functional similarities), they do not specifically measure the degree of
homogeneity of a protein set.

Results: In this work we present a method that scores the degree of functional homogeneity, or
coherence, of a set of proteins on the basis of the global similarity of their functional annotations.
The method uses statistical hypothesis testing to assess the significance of the set in the context of
the functional space of a reference set. As such, it can be used as a first step in the validation of sets
expected to be homogeneous prior to further functional interpretation.

Conclusion: We evaluate our method by analysing known biologically relevant sets as well as
random ones. The known relevant sets comprise macromolecular complexes, cellular components
and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent.
Finally, we illustrate the usefulness of our approach for validating ‘functional modules' obtained
from computational analysis of protein-protein interaction networks. Matlab code and
supplementary data are available at http://www.cnb.csic.es/~monica/coherence/

Background

An increasing number of functional data are available at
different genome databases and resources spanning all
biological levels. Functional information is usually pro-
vided as annotations associated with gene products using
functional terms from controlled vocabularies and ontol-
ogies [1]. This information is being exploited to perform
'functional computations' in quite different contexts and
applications. A first classification of these functional
methods distinguishes between predictive and descriptive
approaches.

Predictive approaches are intended to infer new func-
tional annotations for a gene product or a set of them
from available data (some recent reviews can be found [2-
4]). Most methods use implicit functional information
from experimental data (e.g. sequences, gene expression
data, protein-protein interactions or phylogenetic pro-
files) while some approaches rely only on explicit func-
tional information such as existing annotations [5-7] or a
combination of annotations and literature references [8].

In contrast, descriptive approaches are intended to per-
form functional validation and interpretation of experi-
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mental results. The objective of these methods is to
compare new experimental data with the current state of
knowledge as stored in curated databases. In this way,
experimental data can be validated and new insights can
be highlighted from the analysis. Among descriptive
methods, a distinction can be made between those that
perform functional analysis of a protein set and those that
perform pairwise functional analysis.

Given a set of proteins obtained from experimental or
computational analysis, currently available methods are
able to extract those functional annotations that best
describe that protein set [9-11] or to classify it into subsets
using functional annotations [12-15]. Nevertheless, the
most widely-used functional methods for analyzing pro-
tein sets are those described as annotation 'enrichment'.
These methods are used to find functional terms that are
statistically significant in a protein set given a reference set
(typically a whole organism or the genes spotted in a DNA
microarray). A large variety of tools are available to per-
form such analyses (see a recent review [16] or the Gene
Ontology (GO) web site http://www.geneontology.org/
go.tools.html). Those tools first retrieve all annotations of
a protein set of interest from a functional scheme. The
number of proteins annotated with each functional term
is then counted in both the input and reference sets.
Finally, a statistical test (e.g. %2, binomial, hypergeometric
or Fisher's exact test) is applied to measure the signifi-
cance of each functional term, and this is subsequently
adjusted for multiple testing. The result of this type of
analysis is therefore a list of functional terms with their
corresponding p-values. Those terms with p-values indi-
cating statistical significance are considered representative
and therefore give information about the 'enriched' func-
tions in the protein set. Although some methods have
been developed to obtain enriched co-annotations (e.g.
[17]), most tools analyze functional terms independently,
thus providing a view of the local significant functions of
a protein set.

In addition, several studies have been reported that aim to
establish a similarity score for a pair of proteins, account-
ing for the resemblance of their functional annotations.
To this end, several similarity measurements have been
described [13,15,18-23], each following different, though
in many cases related, approaches. Pairwise protein simi-
larities can be computed through a combination of func-
tional term-term similarities (as in [21]) or by measuring
global protein-protein functional similarity directly (as in
[13]). These measurements can be applied to any control-
led vocabulary scheme, although most of them exploit the
hierarchical nature of functional ontologies such as Gene
Ontology [24] and the MIPS Functional Catalogue (Fun-
Cat) [25].

http://www.biomedcentral.com/1471-2105/9/444

Although these methods provide valuable information,
they do not specifically address the issue of functional
homogeneity, i.e. whether a set of proteins participates in
related cellular processes, performs similar molecular
activities, confers similar phenotypes, etc. An experimen-
tal set of proteins is usually grouped on the basis of shared
experimental features (gene expression profiles, interac-
tion partners, etc), and it is expected that such a set can be
distinguished from a random set when considering a par-
ticular functional aspect. Therefore, a method that meas-
ures the degree of overall functional homogeneity of a
protein set would be useful for validating experimentally
or computationally derived sets, highlighting those that
merit further investigation. For example, when protein-
protein interaction networks are analyzed to discover
functional modules, protein clusters could first be filtered
on the basis of functional homogeneity, avoiding any
additional functional interpretation for those heterogene-
ous cases.

To this end we propose a new descriptive method, based
on functional annotations, that evaluates the statistical
significance of the overall homogeneity of a protein set.
Given a set of proteins, we first compute its degree of
homogeneity (in terms of a functional coherence score)
accounting for the global similarity of their functional
profiles. This coherence score is computed using a previ-
ously-reported global pairwise functional similarity meas-
ure. Then we assess whether this score is statistically
significant given a reference set (usually a complete organ-
ism, or the set of genes present in the experimental set-
ting). This significance is measured in terms of the
number of proteins in the reference that are also similar to
the set at its particular coherence level. Note that a very
homogeneous protein set (with a high coherence score)
will not be statistically significant in the context of a refer-
ence set if it contains only a few proteins of the reference
that are functionally related. On the other hand, a rela-
tively homogeneous set (with a lower coherence score)
might be significant if it contains a sufficient number of
functionally related proteins of the reference.

To the best of our knowledge no previous method relying
on functional annotations has addressed this task specifi-
cally. Nevertheless, previous studies have sought to evalu-
ate the overall functional coherence of a set of proteins
using literature analysis [26,27]. In these methods a
coherence score is assigned to a group of proteins from the
perspective of the relevant published literature. The litera-
ture is known to report information that is both related
and complementary to functional annotations [28]. It is
therefore expected that the overall functional coherence of
a protein set could also be computed from functional
annotations. Nevertheless, it is not obvious how to com-
pute that overall functional coherence from the output of
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current enrichment analysis tools. As noted by Zheng and
Lu [27], standard enrichment methods present some
drawbacks, including: (i) they ignore the relationships
among GO terms; (ii) when multiple GO terms are
‘enriched' within a protein group, it is difficult to derive a
quantitative metric that gives and overall reflection of the
functional relationships of the proteins or their statistical
significance evaluations. In the present work, we have
addressed these limitations by providing a complemen-
tary descriptive method that (i) considers relationships
among functional terms, both hierarchical and arising
from co-annotation, (ii) measures the overall functional
homogeneity of a protein set and its statistical signifi-
cance.

Methods

Protein representation

A protein is represented as an n-dimensional vector, each
dimension corresponding to one of the n functional
annotations of the reference set (in this work, the com-
plete genome). Therefore, each functional term will corre-
spond to a coordinate of the vector space representation.
In the case of hierarchical functional schemes (e.g. Gene
Ontology and MIPS FunCat) this representation is con-
structed by assigning 1 to each functional term annotated
to a gene product and to its corresponding ancestor terms
in the hierarchy. The remaining vector coordinates are
equal to 0.

To account for the specificity and generality of functional
terms, a weighting scheme is applied to this vector repre-
sentation using the information content of each term. The
information content (IC) of a term is inversely related to
its probability of annotation in the reference set Pr(t). The
weight is formally calculated as:

w,c(t) = -In(Pr(t)) = -In(#genes,/m) (1)

where Pr(t) is the probability of annotation of a term ¢,
estimated as the number of gene products associated with
t (#genes,) divided by the total number of protein-term
associations (m) in a reference set R. Note that the total
number of gene products associated with ¢ is the sum of
those directly annotated with ¢ and those annotated with
any of its descendants in the functional hierarchy.

Similarity measure

The similarity between two proteins p; and p; is computed
using the cosine similarity of their corresponding func-
tional representations, as in [29]:

piehj piepj

Y PR N TN TR
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where p; ® p; is the dot product between the two vectors p;
and p;.

The similarity between a protein p and a set of proteins P
is defined as the average pairwise similarity of the protein
p to each protein in the set:

Y sim(p,p;i)
sim(p, P) = piel ()
|P|
where |P| denotes the cardinality of the set, i.e. the
number of distinct elements it contains.

Coherence score

The coherence score of a set of proteins of interest, S, is
defined in this work as the average functional similarity of
its distinct protein pairs:

S| IS
score(S) = i=lj=itl
IS|(s|-1)/2

Therefore, the coherence score will range from 0 (no
coherence) to 1 (full coherence, corresponding to exactly
the same functional annotations for all proteins in S).

Statistical significance of the coherence score

To assess the significance of the coherence score calculated
for a set S in the context of a reference set R, we take into
account the proteins in R that are functionally related to S.
The definition of functional-relatedness is somewhat arbi-
trary. Therefore, for evaluation purposes, we use three dif-
ferent criteria to decide whether a protein is functionally
related to the set S. In turn, these three criteria define three
neighbourhoods in the n-dimensional functional space.
Therefore, each criterion is established for a set in the con-
text of a reference and for the particular coherence score
obtained for the set as computed in equation (4). These
three criteria are as follows.

e The first criterion defines proteins to be functionally
related to S if their similarity to the set, as defined in equa-
tion (3), is greater than or equal to the coherence score of
the set. This establishes a neighbourhood around the
most homogeneous proteins of the set. Proteins in S ful-
filling this criterion are defined as the 'core' of S, denoted
as C(S). Thus, according to the first criterion, a protein p
R is functionally related to S if sim (p, S) > score(S).

® The second criterion defines proteins to be functionally
related to S if their similarity to at least one protein in
C(S), as defined in equation (2), is greater than or equal
to the coherence score of the set. This second neighbour-
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hood can be described as open to the core of the set (as it
captures proteins similar to one protein in the core). Thus,
according to the second criterion, a protein p € R is func-
tionally related to S if Ip; € C(S), sim(p, p;) = score(S).

e The third criterion defines proteins to be functionally
related to S if their similarity to at least one protein in S,
as defined in equation (2), is greater than or equal to the
coherence score of the set. This third neighbourhood is
open to the set (as it captures all proteins similar to one
protein in the set). Thus, according to the third criterion,
a protein p € Ris functionally related to S if 3p;e S, sim(p,
p;) 2 score(S)

The numbers of proteins in S and in R that fulfil each cri-
terion are counted and denoted s and r respectively (see
Figure 1). Each criterion can be also interpreted as attach-
ing a binary variable (‘functionally related to S') to each
protein in the reference set: those that fulfil the criterion
are tagged as 'functionally related to S', and those that do
not as 'non-functionally related'. The proteins can also be
described by a second binary variable ('S membership').
In this way, a 2 x 2 contingency table is built. The inde-
pendence of these two variables (‘functionally related to S'
and 'S membership') can be assessed by computing the
cumulative hypergeometric distribution, where p-value is

http://www.biomedcentral.com/1471-2105/9/444

Given a reference set R with r elements 'functionally
related to S', p-value gives the probability of drawing s or
more elements 'functionally related to S' when |S| ele-
ments are selected from R at random. In this work, |S] is
the cardinality of the protein set to be analyzed, and |R| is
the total number of gene products in the genome taken as
reference. We obtain a p-value for each of the criteria
described above (pv1, pv2 and pv3 respectively).

In summary, the coherence score of a protein set provides a
global measure of the functional homogeneity of its proteins.
Meanwhile, the significance measures we propose (pvl, pv2,
pv3) account for the probability of obtaining a set from a ref-
erence with a given number of proteins functionally related to
that set, just by chance. Note that the definitions of the three
criteria for functional relatedness depend on the coherence
score of the set. In this sense, the greater the coherence score,
the fewer proteins in the reference will be found to be func-
tionally related. Nevertheless, a particular set with a high
coherence score might not be significantly coherent given the
reference if it contains only a few of the proteins in the refer-
ence that are functionally related to the set (the exact number
of proteins to be significant depends on both the size of the set
and the number of similar proteins in the reference). Mean-
while, a set with a relatively low coherence score can be signif-
icantly coherent with respect to a reference if it contains a

defined as: certain number of proteins of the reference that are function-
ally related at that coherence level.
rY |R|-r
Is| | . Sl Results
p — value = z ! | |_l (5) We have assessed the validity of our method by perform-
- IR ing several analyses. First, we evaluate the method by
S|
/' N ,' N Vi -\
Aa'\ ! )/'\ /—\\a'\ (S /\ ~ /—\a'\ ‘\ )

Criteria 1 A Criteria 2

A Criteria3 A

® proteins in S

Figure |

A other proteins in R )

functionally related to S

Functional relationships. lllustration of the three criteria established to assess the significance of the coherence score of a

protein set (S) in the context of a reference set (R). Proteins in S are represented as pentagons (namely proteins a, b, c and d),
and the remaining proteins in R as triangles. Dashed circles surround proteins functionally related to S according to the defini-
tions provided in the Methods section. Proteins a, b and c form the 'core' of the set S.
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comparing the results obtained from the analysis of pro-
tein sets known to be homogeneous to those obtained
from randomly created sets. Secondly, we analyze its
robustness in terms of the functional similarity used, the
completeness of functional annotation of the organism
and the inclusion or exclusion of annotations obtained by
automatic methods. Finally, we demonstrate the useful-
ness of our approach for a particular application: the vali-
dation of functional modules obtained from the analysis
of protein-protein interaction networks.

Evaluation

To assess the validity of our method for characterizing the
functional coherence of a set of proteins, as well as its sig-
nificance, we analyzed both positive and random sets in
the context of one of the most complete and expert-vali-
dated annotated genomes: Saccharomyces cerevisiae. In this
scenario, our positive sets (those that are expected to be
functionally homogeneous) correspond to macromolecu-
lar complexes, cellular components and proteins partici-
pating in the same pathway. As proteins in a complex or
component act co-ordinately, participating in one or
more cellular processes, these protein sets are expected to
be significantly coherent from the biological process point
of view. The same is expected in the case of proteins in the
same pathway. Therefore, we restrict our analysis to GO
'biological process' terms (Gene Ontology annotation
release 2007-12).

Specifically, positive sets from S. cerevisiae were compiled
from (i) the Gene Ontology cellular component ontology
(release 2007-12), (ii) MIPS complex catalogue (release
18-05-2006) available from the CYGD [30] and (iii) Kegg
Pathways [31] (downloaded 17-12-2007). For each pro-
tein set we computed the coherence score in terms of GO
'biological process' annotations as well as corresponding

http://www.biomedcentral.com/1471-2105/9/444

significance measures in the context of the whole genome.
The results of the analysis are available at the project web
site. The proportion of statistically significant (p-value <
0.05) and statistically highly significant (p-value < 0.001)
sets according to the three criteria proposed are shown in
Figure 2.

Kegg pathways

98 protein sets containing at least two proteins annotated
with a 'biological process' term were compiled from the
Kegg pathways of S. cerevisiae. The coherence scores of
these sets are in the range of 0.06-1, with set sizes
between 2 and 147 proteins. Only 4 pathways are not sig-
nificantly coherent (pvl > 0.05), namely 'Limonene and
pinene degradation', 'Lipoic acid metabolism', Tryp-
tophan metabolism' and 'Alkaloid biosynthesis II'.

GO cellular components

For each GO cellular component (GOcc) term we created
a protein set comprising the gene products annotated in
the S. cerevisiae genome. Both direct and hierarchical asso-
ciations were considered, so a set comprises all the gene
products directly annotated with a GOcc term as well as
those annotated with its descendants in the GO structure.
As some GOcc terms comprised exactly the same set of
proteins, we analyzed only distinct sets. Of the 552 dis-
tinct protein sets, we analyzed 503 that contained at least
two proteins annotated in the 'biological process' cate-
gory. The coherence scores range from 0.01 (less coher-
ent) to 1 (most coherent), with set sizes in the range 2 to
4682 gene products (corresponding to GO:0005623
'cell'). A simple estimator of 'random' similarity is the
average similarity between all possible protein pairs
(mean pairwise similarity). Sets that are not significantly
coherent according to the three criteria established, with

pv<0.05 pv<0.001
100.0% 100.0%
80.0% Bpvi 80.0% | [mpn
60.0% mp2 60.0% Bp2
40.0% opé 40.0% Op@
20.0% 20.0% :J:i]:
0.0% 0.0%
Gocc  MIPS- Kegg Gavin  Ho  Krogan Gocc MIPS- Kegg Gavn  Ho  Krogan
curated curated
Figure 2

Significant protein sets (S. cerevisiae). The percentages of significant (pv < 0.05) and highly significant (pv < 0.001) S. cere-
visiae protein sets from curated databases (GO cellular components, MIPS complexes, and Kegg pathways), and complexes
from systematic studies in the MIPS complex database (Gavin et al. [32], Ho et al. [33] and Krogan et al. [34]).
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coherence scores above these mean pairwise similarities
in the S. cerevisiae genome, are shown in Table 1.

MIPS complexes

The catalogue of MIPS complexes comprises both curated
data and the results of systematic analyses of protein com-
plexes based solely on high-throughput methods [32-34].
We have analyzed those complexes separately (see Figure
2). Two hundred and seventeen protein sets correspond-
ing to expert-annotated complexes contained at least two
proteins with 'biological process' annotations. Their
coherence scores range from 0.07 to 1, with set sizes in the
range 2 to 81 proteins. Only two of these were not signif-
icant according to pvl: 'Mitochondrial processing com-
plexes' (440.20) and 'DNA helicases' (410.40.40). The
data from systematic analyses included 224 sets obtained
by Gavinet al. [32], 532 by Ho et al. [33] and 62 by Krogan
et al. [34].

Random sets

In order to ensure that our method does not provide sig-
nificant sets by chance, we analyzed various randomly cre-
ated sets of different sizes. Out of a total of 100,000
random sets, with a uniform size distribution from 2 to
200 proteins at 2-protein intervals (similar to the sizes of

Table I: Non-significant cellular components

http://www.biomedcentral.com/1471-2105/9/444

most positive sets), 4455 were found to be statistically sig-
nificant (p-value < 0.05) according to pv1, 4379 according
to pv2 and 682 according to pv3. These figures imply an
FDR at or below a p-value of 0.05 using pv1, 0.045 using
pv2 and a lower 0.0068 using pv3. The numbers of highly
significant sets (p-value < 0.001) drop to 115 (pv1l), 104
(pv2) and 20 (pv3) (with corresponding FDR at or below
a p-value of 0.001 of 0.0015 using pv1, 0.0010 using pv2
and a lower 0.0002 using pv3). Additional file 1 shows
the coherence scores and p-values (pvl, pv2 and pv3) of
random sets plotted against size. As expected, the coher-
ence scores of larger random sets tend towards the mean
pairwise similarity of the whole genome (0.115).

As shown in Figure 2, expert-annotated datasets (GOcc
annotations, curated MIPS complexes and Kegg path-
ways) are mostly significant (e.g. 94-99% with pvl <
0.05). Nevertheless, they exhibit a wide range of coher-
ence scores, in some cases even less than that expected by
chance. This means that most sets corresponding to
known macromolecular complexes, cellular components
and pathways are significant in the context of the global
functional landscape of S. cerevisiae, though some of them
are quite heterogeneous. On the other hand, the propor-
tion of significantly coherent sets corresponding to com-

GO Cellular component Size Score p-value s r
1.08E-01 2 752
GO:0005641 nuclear envelope lumen 4 0.22 4.32E-01 2 1754
6.22E-01 2 2314
2.36E-01 2 944
GO:0031588 AMP-activated protein kinase complex 5 0.18 1.08E-01 4 2148
2.71E-01 4 2828
2.07E-01 2 1480
GO:0000306 extrinsic to vacuolar membrane 3 0.17 5.10E-01l 2 2560
6.47E-01 2 3027
4.35E-01 3 1970
GO:0031314 extrinsic to mitochondrial inner membrane 6 0.14 5.13E-01 4 2955
6.10E-01 4 3192
6.33E-01 2 1934
GO:0031902 late endosome membrane 5 0.14 3.25E-01 4 2996
7.84E-01 4 4159
1.60E-01 3 1045
GO:0005775 vacuolar lumen 7 0.13 2.29E-01 4 1855
2.40E-01 6 3301
2.05E-01 4 1105
GO:0031307 integral to mitochondrial outer membrane 11 0.12 7.20E-01 5 2513
8.66E-01 9 4449
3.30E-01I 7 2223
GO:0031312 extrinsic to organelle membrane 13 0.12 6.42E-02 12 3540
4.45E-01 12 4352
3.41E-0l 3 1739
GO:0009898 internal side of plasma membrane 6 0.12 4.98E-01 5 3709
8.66E-01 5 4496

GO cellular components with coherence scores above mean pairwise similarity in reference set, which are not significant (p-value > 0.05) according

to the three criteria. Size of reference set |R| is 5051 gene products.
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plexes derived from high-throughput methods stored in
the MIPS catalogue [32-34] is lower than the expert-anno-
tated datasets according to the three criteria (see Figure 2).
Furthermore, the results of the analysis of random sets
confirm that the probability of obtaining significant and
highly significant coherence scores in such sets is very low.

As most expert-annotated data on known biologically
meaningful sets are statistically significant, while the
probability of obtaining significant sets just by chance is
low, the measures proposed in this work seem to be valu-
able criteria for assessing the significance of the functional
coherence of a protein set. Therefore, this significance can
be used as a means of validating new experimental or
hypothetical functional modules (e.g. co-expressed genes,
protein-protein interaction clusters).

Robustness

To evaluate the extent to which the statistical significance
of the coherence score depends on various conditions
such as functional similarity and completeness of annota-
tion, we conducted the following experiments.

Functional similarity

The coherence score and the neighbourhoods constructed
depend on a particular definition of global functional
similarity. Therefore, we wanted to test the effect of choos-
ing a different functional similarity measure. For that pur-
pose we used Jaccard similarity on a set representation of
gene products. The similarity between two gene products
A and B is computed as the ratio of the number of com-
mon terms to the number of terms in A and B, as defined
in equation (6), with no weights accounting for specifi-
city/generality of terms. The number of significant sets
among the expert-annotated datasets was, in general,
slightly lower than the results obtained using cosine sim-
ilarity (see Table 2 for details).

(6)

Annotation

Current functional annotation schemes are not complete
and therefore, in our particular analysis, a number of bio-
logical processes might still not be described in detail.
Also, the proportion of gene products annotated depends
on both the level of functional characterization of an
organism and the maturity of genome annotation
projects. In order to verify whether this has an impact on
the significance of coherent sets, we analyzed the GO cel-
lular components from Candida albicans, an incipient
project in which only an estimated 15.5% of the gene
products have so far been annotated (see annotation sta-
tistics in Table 3). We can guess the degree of complete-
ness of an organism as the percentage of gene products

http://www.biomedcentral.com/1471-2105/9/444

Table 2: Significant sets, Jaccard similarity

Dataset Sets p-value < 0.05 p-value < 0.001

GOcc 503  pvl 460 (-10, -1.99%)
pv2 440 (-9, -1.79%)
pv3 381 (-19, -3.78%)

MIPS-curated 217  pvl 214 (-1, -0.46%)
pv2 212 (-3,-1.38%)
pv3 207 (-6, -2.76%)

Kegg 98 pvl 94 (0, 0.00%)
pv2 92 (-4, -4.08%)
pv3 92 (0, 0.00%)

425 (-9, -1.79%)
384 (-8, -1.59%)
320 (-18, -3.58%)
201 (-3, -1.38%)
182 (-9, -4.15%)
180 (13, -5.99%)
91 (0, 0.00%)

88 (-1, -1.02%)
83 (+1, +1.02%)

Number of significant and highly significant sets within expert-
annotated data (GO cellular components, MIPS-curated complexes
and Kegg pathways) analyzed using Jaccard similarity. Increase/
decrease from analysis using cosine similarity is shown in parenthesis.

annotated and the number of distinct terms used. Assum-
ing S. cerevisiae and C. albicans to be comparable in terms
of biological complexity, we see that the current func-
tional space of C. albicans is more incomplete in terms of
biological processes than that of S. cerevisiae (nearly half
the terms and fewer annotations per term). As expected
from these data, the proportion of statistically significant
coherent sets among cellular components in C. albicans is
lower than in S. cerevisiae (see Figure 3). Nevertheless, pv1
still seems a good estimator at this lower limit of genome
annotation.

Inferred from Electronic Annotations (IEA)

Assignment of GO terms to gene products can be inferred
from electronic annotations that have not yet been
reviewed by a curator. Therefore, it might be desirable in
some cases to rely only on expert-validated annotations.
As all the annotations provided for S. cerevisiae are expert-

pv<0.05
100.0%

80.0% -
60.0% - Opvi
mpv2
40.0% - opv3

20.0%

0.0% -

S. cerevisiae  C. albicans S.pombe S. pombe all
non-l1EA
Figure 3

Significant protein sets. The percentage of significant pro-
tein sets (pv < 0.05) corresponding to GO cellular compo-
nents from different organisms: S. cerevisiae, C. albicans, S.
pombe (only non-IEA associations) and S. pombe (all associa-
tions).
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Table 3: GO annotation statistics

Dataset % Products  Annotations BP terms
S. cerevisiae 78.0% 10622 2296
C. albicans 15.5% 1156 116
S. pombe non-IEA 75.3% 8023 2267
S. pombe all. 80.5% 9981 2321

Statistics computed from the GO release 2007—12 corresponding to
the following organisms: S. cerevisiae, C. albicans and S. pombe (both
excluding and including 'Inferred from Electronic Annotations').

validated (non-IEA codes), we analyzed GO cellular com-
ponents for a closely similar organism for which IEA
annotations are plentiful: Schizosaccharomyces pombe (S.
pombe). Nearly 20% of the assignments of biological proc-
ess (BP) terms were inferred from electronic annotations
with 270 products annotated only with IEA codes. The
electronic annotations increase the number of BP terms
per product (from 2.0 to 2.4) and also increase the
number of cellular components analyzed. The analyses
performed with and without IEA annotations give very
similar results (see Figure 3).

Analysis of protein-protein network modules

Some recent work in the analysis of protein-protein inter-
actions (PPIs) has concentrated on the detection of the
modular organization of cellular function [35]. A func-
tional module can be described as a group of physically or
functionally linked molecules that work together to
achieve a relatively distinct function [36]. Macromolecu-
lar complexes, cellular components and biological path-
ways are well-known examples of functional modules.
Generally, computational methods try to find functional
modules from a PPI network fulfilling topological con-
straints (e.g. densely connected regions for protein com-
plexes), which are further tested for a common cellular
function or relationship to an already-described complex.
Nevertheless, there is a lack of reliable criteria for evaluat-
ing the quality of complexes derived from the analysis of
PPI networks, making it difficult to assess the biological
relevance of the derived modules [37].

Information about the overlap with known complexes,
cellular co-localization, average semantic similarities for
pairs of interacting proteins, and phenotype divergence
[37-39] has been used to assess the quality of modules
obtained from network analysis. As the preliminary
results obtained from our study of MIPS complexes show
(see Figure 2), there are proportionately more significant
sets within the curated complexes than among the com-
plexes obtained from systematic analysis [32-34]. This
suggests that our method can be used to qualify a poten-
tial module in terms of its homogeneity and completeness
through the analysis of 'biological process' annotations.

http://www.biomedcentral.com/1471-2105/9/444

Therefore, we computed the coherence score (and its sta-
tistical significance) of a series of functional modules
obtained from more recent computational analyses of S.
cerevisiae PPI networks (see Figure 4 for results). These
datasets correspond to the following studies:

e Chen & Yuan [39] used an extension of a betweenness-
based partition for analyzing a weighted graph built from
the integration of various proteomics and microarray
datasets.

e Krogan et al. [38] obtained a new TAP-MS interaction
network and used a Markov clustering algorithm to detect
complexes.

® Pu et al. [37] performed a comparative study of PPI net-
works, analyzing inter alia a Consolidated PPI network
[40] that included data from Krogan et al. [38] and Gavin
et al. [41].

e Dutkowski & Tiuryn [42] detected conserved functional
modules through the alignment of yeast, worm and fly
PPI networks. We have analyzed the protein sets corre-
sponding to yeast proteins in these modules.

The conserved modules identified by Dutkowski & Tiuryn
[42] show the highest percentage of significant sets,
although they describe fewer modules. In their analysis,
evolutionary constraints were used as a guarantee to
ensure the biological significance of functional units.

Moreover, the proportion of significant complexes is
greater in the data obtained by the analysis of the Consol-
idated network by Pu et al. [37] than in those obtained by
Krogan et al. |38]. Therefore, this larger proportion of sig-

500
400
O Al sets
300 —l
| pvi
200 opv
Opv3
100 +
0 , .
Chen & Yuan Krogan 2006 Pu Dutkowski &
Tiuryn
Figure 4

Significant functional modules. Total number of protein
sets and significant sets (pv < 0.05) corresponding to the
functional modules obtained from the analysis of protein-
protein interaction networks: Chen & Yuan [39], Krogan et
al. [38], Pu et al. [37], Dutkowski & Tiuryn [42].
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nificant complexes agrees with other quality parameters
computed by [37], namely overlap with known com-
plexes and co-localization.

Discussion

In this work we present a descriptive method, based on
the analysis of functional annotations, for scoring the
degree of homogeneity of a protein set and assessing its
significance in the context of a reference set. The method
has been evaluated using positive and randomly created
datasets. Analysis of known biologically meaningful pro-
tein sets corresponding to macromolecular complexes,
cellular components and pathways of S. cerevisiae revealed
that most of them are significant in the context of the
organism used as reference. However, the coherence
scores obtained vary considerably, from very homoge-
nous sets to fairly heterogeneous. This shows that the
overall similarity of functional annotations (i.e. the coher-
ence score) is not a good indicator of the functional com-
pleteness and separation of a protein set in the context of
an organism. Therefore, in addition to measuring the
functional homogeneity, a statistical assessment is per-
formed.

The coherence score proposed in this work is based on
previously-defined pairwise functional similarities. Pair-
wise similarity methods are increasingly used in quite dif-
ferent bioinformatics applications, such as prediction of
protein-protein interaction data [43], priorization of dis-
ease candidate genes [44], missing value estimation in
microarray data [45] and prediction of novel gene func-
tion [6]. Nevertheless, they have not so far been used to
quantify the functional homogeneity of a protein set. For
example, the average semantic similarity of interacting
proteins was previously used by Pu et al. [37] to evaluate
the quality of modules obtained from network analysis.
The coherence score described in this work is expected to
correlate with that measure, since it is defined as the aver-
age pairwise similarity between all distinct protein pairs.
Nevertheless, the two measures are not directly compara-
ble, for two reasons. First, the average similarity was
obtained by Pu et al. for pairs of interacting proteins
within the same module. In contrast, the coherence score
in the present work is computed over all protein-protein
pairs within a protein set, as we are not using data on
interactions themselves. Secondly, pairwise similarity is
computed using dissimilar approaches. The similarity
used by Pu et al., as described in [21], is computed by aver-
aging all functional term-term similarities between two
proteins. Specifically, a similarity is first established
among functional terms, using information from the GO
hierarchy, and then similarity between proteins is com-
puted by averaging pairwise term similarities. As semantic
similarity accounts for the average term-term similarities
of two proteins, it might underestimate or overestimate

http://www.biomedcentral.com/1471-2105/9/444

overall similarity, in contrast to the cosine and Jaccard
similarities used in the present work, which exhibit a
wider range of values, from 0 (no common terms) to 1
(exactly the same terms).

In addition to providing a coherence score, our method
assesses the statistical significance of the set in the context
of the global functional space of a reference, providing an
additional quality parameter. This statistical assessment is
performed globally, as all functional annotations of each
protein in the set are considered together in the analysis.
In contrast, most enrichment methods perform a local sta-
tistical assessment, as they analyze each functional term
individually. In this way, they provide a collection of func-
tional annotations together with their significance values.
Therefore, they are mainly used by experts in order to sup-
port the functional interpretation of their experimental
results. Nevertheless, it is not straightforward to use the
information provided by enrichment methods to account
for the functional homogeneity of a protein set. For
instance, neither the number of enriched functional terms
nor the averaged p-values of significant terms have previ-
ously been found to be good indicators of the homogene-
ity of a protein set [27]. In order to compare these
enrichment-based measures with the coherence score pro-
posed in this work, we analyzed the modules obtained by
Pu et al. [37], using GO 'biological process' terms in both
cases. Figure 5 shows the relationship between coherence
score and averaged p-values of significant terms, as well as
the number of enriched functional terms for those sets
with at least three proteins annotated, where at least one
term was found to be significant. Enrichment was per-
formed using the cumulative hypergeometric distribution
of each functional term annotated in the set (no correc-
tion was performed for multiple testing). As shown in Fig-
ure 5, and in agreement with previous studies using
literature analysis [27], there is no clear correlation
between the global coherence score and the two enrich-
ment-based measures.

Therefore, the coherence score and corresponding p-val-
ues are shown to be valuable indicators of the global func-
tional homogeneity of a protein set, complementing the
functional analysis performed by currently available
methods. To illustrate the type of information provided
by our method and other functional methods, as well as
their complementary relationship, we provide the results
of the analysis of 'biological process' annotations of one
of the functional modules obtained in [37]: 'Module 39
(see additional file 2). The exact application of the coher-
ence score together with other functional analysis meth-
ods will depend on the type of analysis desired. If
homogeneous sets are expected, our method can be used
for validation in order to discard those that are heteroge-
neous. This is the case for the discovery of functional
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Coherence score vs. enrichment-based metrics. Coherence score versus metrics computed from the output of enrich-
ment methods using 'biological process' annotations: (a) mean p-value of significant terms; (b) number of significant terms.

modules from protein-protein interaction networks,
where protein clusters can first be filtered on the basis of
functional homogeneity, avoiding any additional func-
tional interpretation of those cases that are clearly hetero-
geneous. In contrast, if novel functional associations are
sought, further analysis should be performed on those
sets that are not highly homogeneous.

Both the coherence score and significance measures are
computed from a set of functional annotations, from
which as a first step a similarity is established. This simi-
larity therefore depends, among other things, on the com-
pleteness of a genome annotation. In addition, we have
applied our method to the analysis of S. cerevisiae sets,
using an alternative similarity measure (Jaccard), to an
incipient annotation project, C. albicans, and to a genome
with nearly 20% of biological process term annotations
inferred from electronic resources, S. pombe. As with other
methods based on functional annotations, the complete-
ness of annotations is by far the most important limiting
factor in our methodology.

Finally, to illustrate the usefulness of our method, we have
applied it to various protein sets corresponding to hypo-
thetical functional modules and complexes obtained
from PPI network analysis. Our results seem to agree with
and complement other validation criteria, such as evolu-
tionary conservation and overlap with known complexes.

Conclusion

We have presented a method that scores the degree of
homogeneity, or coherence, of a protein set on the basis
of the global similarity of their functional annotations. It

uses statistical hypothesis testing to assess the significance
of the set in the context of the functional space of a refer-
ence set.

We can conclude that our method is complementary to
previous descriptive functional analysis approaches. On
the one hand, like enrichment methods, it analyzes a pro-
tein set. On the other, like some pairwise similarity meth-
ods, it measures the functional relatedness of proteins
from a global point of view. Finally, as in enrichment
methods, a statistical test is performed, in our case to eval-
uate the significance of the global coherence score of the
protein set in the context of a reference set. However, in
contrast to enrichment methods, it does not provide a
functional interpretation of the protein set, as it reports
two numerical values (coherence score and corresponding
p-value) but not functional terms. As such it is a good fil-
ter prior to functional interpretation in cases where
numerous protein sets are obtained (e.g. protein clusters
obtained from protein interaction networks, gene expres-
sion clusters).

The coherence score and corresponding significance
measures proposed in this work can be therefore used for
validation of experimental sets where functionally homo-
geneous protein groups are expected. This is the case for -
inter alia — cluster and bicluster analysis of gene expression
profiles, protein-protein interaction clusters and sets of
hypothetically homologous proteins.
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