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Original  Article

ABSTRACT
Introduction: Pelvis, long bones, and skull are good indicators of sexual dimorphism. In the skull, the supraorbital region is considered a 
highly sexually dimorphic part. Thus, the present study aimed to analyze the sexual dimorphism of Brazilian adult dry skulls using conventional 
and geometric morphometry.

Materials and Methods: Conventional morphometry was performed on 179 skulls, through the analysis of six linear measurements. For 
geometric morphometry, 89 skulls (right side) were selected and seven landmarks were considered. Generalized procrustes analysis, principal 
component analysis, and linear discriminant analysis were then carried out.

Results: All linear measurements presented differences between both sexes. Geometric morphometry showed that 77.05% of the sample 
variation could be explained by the first three principal components. Moreover, considering the centroid size, there was a difference in shape 
between the sexes. Geometric morphometry classified sex correctly in 77.32% of the skulls and conventional morphometry from 60.89% to 73.74%.

Conclusions: According to the analyses, the supraorbital region presents significant sexual dimorphism in Brazilian adult dry skulls. Moreover, 
it can be analyzed efficiently by both conventional and geometric morphometry, although the latter seems to be slightly more accurate.
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INTRODUCTION

Pelvis, skull, and long bones are good indicators of sexual 
dimorphism. In cases in which the pelvis and long bones cannot 
be located or there is not enough conservation for analysis, skull 
bones are the most efficient ones for sex determination.[1‑3] The 
external surface of the inferior (facial) portion of the frontal 
bone is shaped mainly by the supraorbital region, which 
presents a complex morphology[4] and can be considered an 
important highly sexually dimorphic part of the skull.[2,5‑7]

Male skulls generally have larger and more robust superciliary 
arches, whereas female ones present mild‑to‑moderate 
prominence. Moreover, the glabella shows greater variation 
between the sexes, being more prominent in males.[8] The 
supraorbital region is not only valuable as an indicator of 
sexual dimorphism but also to predict individual development 
since it is related to hormonal production, more specifically 
androgens.[9]

Considering that sexually dimorphic cranial features are 
traditionally assessed visually and scored using an ordinal 
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scale, a highly subjective method,[10] and that the Brazilian 
population has unique characteristics due to marked 
miscegenation,[11] conducting anthropology studies is not a 
simple task. Although the supraorbital region is considered 
useful for investigating postmortem remains of multi‑ethnic 
populations,[7,12‑14] other techniques such as geometric 
morphometry are of paramount importance since they allow 
efficient analyses of shape.[15]

In light of these facts, the present study aims to conduct 
both conventional and geometric morphometric analyses of 
the supraorbital region of Brazilian dry skulls considering 
sexual dimorphism.

MATERIALS AND METHODS

Ethical issues and sample selection
This study was conducted using 403 Brazilian adult dry 
skulls from the anatomical collection of skulls of the Federal 
University of São Paulo (São Paulo, Brazil), ”Museu de Crânios,” 
after approval by the local Research Ethics Committee (Ref. 
No. 36246420.2.0000.5505, dated 23 October 2020). Those 
with deformities from pathology, trauma, cranial surgery, 
or damage to the supraorbital region were excluded from 
analyses. So, 179 skulls were actually evaluated (112 males 
and 67 females older than 18 years; mean age = 38.40 years, 
standard deviation = 16.44 years).

Conventional morphometry
All the skulls were evaluated by only one experienced 
observer by using a digital caliper (Digimess, 100.174BL, 
Digimess Instrumentos de Precisão Ltda, São Paulo, SP, 
Brazil; accuracy ±0.03 mm). Each measurement was 
performed three times but only the mean value from them 
was considered.

Initially, two virtual points were determined in every skull. 
These points were defined by placing the measuring arms 
of the digital caliper concomitantly on the landmarks 
frontotemporale (the most anterior point on the temporal line 
of the frontal bone—ft) and frontomalaretemporale (the most 
posterolateral point of the frontozygomatic suture—fmt) and 
the distance halfway between them was then considered 
point A on the left side and point B on the right side.[10,16] 
Next, the following morphometric analyses[10,17] were carried 
out bilaterally in all specimens: [Figure 1]
1) The distance from A or B to the outermost projection of 

the glabella (point G);
2) The distance from A or B to the outermost projection of 

the superciliary arch (point SA);
3) The distance between the temporal lines of the frontal 

bone, i.e., from A to B;

4) Considering a parasagittal plane (a plane virtually 
situated parallel to the sagittal plane), the maximum 
superoinferior height of the superciliary arch, i.e., the 
distance from point M (the outermost projection of the 
medial region of the superciliary arch) to the supraorbital 
margin—“medial supraorbital height”;

5) Considering a parasagittal plane (a plane virtually 
situated parallel to the sagittal plane), the maximum 
superoinferior height of the supraorbital trigone, i.e., the 
distance from point L (the outermost projection of the 
lateral region of the superciliary arch) to the supraorbital 
margin—“lateral supraorbital height”;

6) Considering a parasagittal plane (a plane virtually situated 
parallel to the sagittal plane), the distance from the 
point I (located halfway between points L and M) to the 
supraorbital margin—“intermediate supraorbital height”.

The data were tabulated into Microsoft Office Excel™ 
spreadsheets (Microsoft Corporation, Santa Rosa, California, 
USA) and analyzed descriptively and inferentially in the 
Statistics Package for Social Sciences—version 22.0™ (IBM, 
Armonk, USA) and Past™—version 4.03.[18] When applicable, 
P values of less than 0.05 were regarded as statistically 
significant.

Geometric morphometry
Among the skulls previously evaluated, the more 
representative ones (i.e., those without fractures or damages 
to any region) were selected for geometric morphometry 
analysis, totalizing 89 specimens (49 males and 40 females).

Firstly, the specimens were placed on a sheet of graph 
paper and then photographed. Image deformation obtained 

Figure 1: Points and measurements used for conventional morphometric 
analysis. Note that some landmarks are well‑established craniometrics points 
and others were determined according to anatomic structures and planes
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from the lens of a Finepix S1800 camera (Fujifilm Holdings 
Corporation, Tokyo, Japan) could then be identified by digital 
measurements in the TPSDig2™—version 2.30 (the State 
University of New York at Stony Brook, New York, USA). 
Following, the skulls were positioned with the right side 
facing the camera, 24 cm away from the camera lens, and 
with the mastoid process and the alveolar maxillary processes 
positioned perpendicularly to a straight line in relation to 
the camera lens. The points depicted in Figure 2 were used 
for analysis in the TPSDig2™: 1) Glabella (craniometric 
landmark); 2) Nasion (craniometric landmark); 3) Frontomalare 
orbitale (craniometric landmark); 4) Frontomalare temporale  
craniometric landmark); 5) Frontotemporale (craniometric 
landmark)[16] [Figure 2a]; 6) 30° angle between the glabella 
and the frontotemporale (a semilandmark determinated by 
the authors) [Figure 2b]; 7) 60° angle between the glabella 
and the frontotemporale (a semilandmark determinated by 
the authors) [Figure 2c].

After digitizing the landmarks, a generalized procrustes analysis 
was performed. Then, the covariance matrix was generated 
and principal component analysis (PCA) was performed using 
MorphoJ™—version 1.07a.[19] Simultaneously, relative warps 
were generated by TPSRelw™—version 1.53[20] for evaluating 
size variation, and centroid size was used for evaluating the size 
of each region.[19,21] Linear discriminant analysis was conducted 
using Past™—version 4.03.[18] When applicable, P values of less 
than 0.05 were regarded as statistically significant.

RESULTS

Conventional morphometry
All the measurements showed statistically significant 
differences between male and female skulls, according to the 
independent samples t test [Table 1]. The linear discriminant 
analysis for each analysis (both antimeres) is shown in Table 2, 
presenting values from 60.89% to 73.74% according to the 
correct sex classification.

Geometric morphometry
Multivariate analysis of variance (MANOVA) of the first 
ten principal components (PCs) showed a statistically 
significant difference between the shape of the supraorbital 
region of male and female skulls (Wilks’ lambda = 0.57, 
p = 2.47e‑7). Figure 3 shows that, although the distribution 
of skulls of both sexes was homogeneous on the PC1 and 
PC2 axes, the averages from females and males diverge. 
Moreover, female skulls were positioned lower than 
male ones on the vertical axis (PC2). Lastly, the first three 
PCs [Figure 4] were responsible for 77.05% of the observed 
variance: PC1, eigenvalue = 0.014, variance = 42.62%; 

Table 1: Results, in millimeters, from conventional 
morphometric analysis regarding sexual dimorphism

Measurements Skulls P
Male Female

Mean Standard 
deviation

Mean Standard 
deviation

1—right 54.64 2.81 52.87 2.54 <0.001*
1—left 53.64 2.91 51.46 2.74 <0.001*
2—right 39.37 3.27 37.14 2.84 <0.001*
2—right 37.99 3.08 35.72 2.90 <0.001*
3—right 100.57 4.78 96.95 4.07 <0.001*
4—right 11.94 1.72 10.36 1.72 <0.001*
4—left 12.27 1.73 10.73 1.67 <0.001*
5—right 5.15 0.94 4.70 0.87 0.002*
5—left 5.04 0.92 4.50 0.78 <0.001*
6—right 5.83 1.32 4.80 0.93 <0.001*
6—left 5.65 1.26 4.58 0.94 <0.001*
*Statistically significant value—independent samples t test

Table 2: Using linear discriminant analysis for conventional 
morphometry, rates of correct sex classification

Measurements Accuracy (%)
1—right/left 65.36
2—right/left 71.5
3—right/left 64.25
4—right/left 73.74
5—right/left 60.89
6—right/left 69.27

Figure 2: Points used for geometric morphometry analysis. (a) Well‑established craniometrics points as landmarks. (b) A semilandmark determinated by 
the authors: 30° angle between the glabella and the frontotemporale. (c) A semilandmark determinated by the authors: 60° angle between the glabella 
and the frontotemporale

cba
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PC2, eigenvalue = 0.007, variance = 21.22%; PC3, 
eigenvalue = 0.004, variance = 13.20%.

The size of the region was analyzed using the independent 
samples t test and showed a statistically significant difference 
between the size of the centroids between male and female 
individuals (p < 0.001).

Figures 5 and 6 graphically illustrate the differences in the 
shape of the supraorbital region of the skulls. Figure 5 
represents the first two relative warps, which explained 

68.91% of the total sample variation. By means of vectorial 
estimation of the morphological variation for the extremities 
of the axes, the possible amplitude of the difference in shape 
could be identified concerning the sample and taking into 
account the first two relative warps. Figure 6 summarizes the 
difference in shape, in which male skulls had a more projected 
glabella and a sharper curvature of the frontal bone.

The linear discriminant analysis resulted in a value of 77.32% 
concerning the correct sex classification.

DISCUSSION

The “Museu de Crânios” of the Federal University of São Paulo 
presents the largest number of identified skulls in Brazil, a 
country with about 200 million inhabitants marked by intense 
miscegenation due to immigration.[11,22] Although there is a 
consensus in the literature that human skull morphology is 
related to the population origin,[4,5,19] very few studies have 
addressed Brazilians. Moreover, most of them have used 

Figure 3: Scatter plot of  individuals between  the PC1 and PC2 axes and 
ellipses of the means (confidence interval = 95%). In grey are the male skulls 
and in black are the female ones. PC: principal component

Figure 4: Graphical  representation of  the variation  in  the  shape of  the 
supraorbital region concerning the first three principal components of male 
and female skulls. In grey are the male skulls and in black are the female 
ones. PC: principal component

Figure 6: Shape differences in the configuration between mean female and 
male skulls. In grey are the male skulls and in black are the female ones

Figure 5: Representation of the first (horizontal axis) and second relative 
warps (vertical axis). Shape estimation of the skulls that would be in the 
extremity of the axes
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conventional morphometry.[23‑26] To the best of the authors’ 
knowledge, the present study is the first one combining 
both morphometry methods for studying the supraorbital 
region of Brazilian individuals, an important highly sexually 
dimorphic part of the skull.[8,10]

Conventional morphometry can evaluate only partially 
the shape of the objects since linear angles and distances 
do not effectively represent the real anatomy (e.g., the 
existence or not of bone projections).[27] On the other hand, 
geometric morphometry provides analyses of shape and size 
separately.[28]

By using conventional morphometry, all the linear 
measurements evaluated showed statistically significant 
differences between male and female skulls, the same 
reported by a study in the USA.[10] Through geometric 
morphometry, the shape and size of the supraorbital region 
also presented a significant difference between both sexes. 
PCA demonstrated that Brazilian skulls present about 77% of 
the shape variation explained by the first three PCs. A study 
in Colombia[13] and another one in the USA[7] reported that 
this variation could be explained mainly by the first two 
PCs (82% and 84%, respectively) while the others were less 
important for shape variation. Therefore, as each PC can be 
considered as a vector that summarizes the variation in the 
data,[29] Brazilian skulls probably present a more complex 
variation in shape concerning the supraorbital region.

By evaluating the relative warps, the first two explained 
about 70% of the anatomical variation. The figures resulting 
from this technique depicted the trends of variation through 
deformation in shape.[20] Thus, the results confirmed that 
there is a variation in the curvature of the frontal bone, as 
well as in the glabella, of male and female Brazilian skulls.

Discriminant function analysis showed that geometric 
morphometry is better to classify the Brazilian skulls into sex 
than linear measurements from conventional morphometry. 
However, both morphometry analyses presented a relatively 
high success rate in relation to sex classification. Studies in 
Colombia, USA, and Germany also assessed the supraorbital 
region by geometric morphometry and reported higher 
degrees of accuracy in classifying different samples into sexes: 
84.31%,[13] 79.8%,[7] and 79.1%.[14]

Although animal studies suggest that geometric morphometry 
is considered a convenient, low‑cost, and quick‑to‑perform 
technique,[30‑32] it requires sophisticated statistical approaches, 
which would make it a time‑consuming procedure and could 
discourage its use routinely.[33] Mikery et al.[34] showed similar 

results when both conventional and geometric morphometry 
were compared but the latter required more time and effort. 
On the other hand, given the present study, the authors can 
affirm that analyses of conventional morphometry were much 
easier and quicker to perform, with no need for special and 
complex equipment.

CONCLUSION

According to the analyses, the supraorbital region presents 
significant sexual dimorphism in Brazilian adult dry skulls. 
Moreover, it can be analyzed efficiently by both conventional 
and geometric morphometry, although the latter seems to 
be slightly more accurate.
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