
212  |   	﻿�  CPT Pharmacometrics Syst Pharmacol. 2022;11:212–224.www.psp-journal.com

Received: 1 March 2021  |  Revised: 20 October 2021  |  Accepted: 8 November 2021

DOI: 10.1002/psp4.12748  

A R T I C L E

A stochastic mixed effects model to assess treatment effects 
and fluctuations in home-measured peak expiratory flow 
and the association with exacerbation risk in asthma

Jacob Leander1,2,3   |   Mats Jirstrand2   |   Ulf G. Eriksson1  |   Robert Palmér1

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution-NonCo​mmercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 Astrazeneca. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Clinical Pharmacology and 
Quantitative Pharmacology, Clinical 
Pharmacology & Safety Sciences, R&D, 
AstraZeneca, Gothenburg, Sweden
2Fraunhofer-Chalmers Centre, 
Chalmers Science Park, Gothenburg, 
Sweden
3Department of Mathematical Sciences, 
Chalmers University of Technology and 
University of Gothenburg, Gothenburg, 
Sweden

Correspondence
Jacob Leander, Pepparedsleden 1, 
AstraZeneca, Mölndal, Sweden.
Email: jacob.leander@astrazeneca.com

Funding information
The clinical studies upon which these 
analyses are based were funded by 
AstraZeneca. This work was also 
partially funded by the Swedish 
Foundation for Strategic Research 
(Grant AM13-0046).

Abstract
Home-based measures of lung function, inflammation, symptoms, and medica-
tion use are frequently collected in respiratory clinical trials. However, new sta-
tistical approaches are needed to make better use of the information contained in 
these data-rich variables. In this work, we use data from two phase III asthma clin-
ical trials demonstrating the benefit of benralizumab treatment to develop a novel 
longitudinal mixed effects model of peak expiratory flow (PEF), a lung function 
measure easily captured at home using a hand-held device. The model is based on 
an extension of the mixed effects modeling framework to incorporate stochastic 
differential equations and allows for quantification of several statistical proper-
ties of a patient's PEF data: the longitudinal trend, long-term fluctuations, and 
day-to-day variability. These properties are compared between treatment groups 
and related to a patient's exacerbation risk using a repeated time-to-event model. 
The mixed effects model adequately described the observed data from the two 
clinical trials, and model parameters were accurately estimated. Benralizumab 
treatment was shown to improve a patient's average PEF level and reduce long-
term fluctuations. Both of these effects were shown to be associated with a lower 
exacerbation risk. The day-to-day variability was neither significantly affected by 
treatment nor associated with exacerbation risk. Our work shows the potential of 
a stochastic model-based analysis of home-based lung function measures to sup-
port better estimation and understanding of treatment effects and disease stabil-
ity. The proposed analysis can serve as a complement to descriptive statistics of 
home-based measures in the reporting of respiratory clinical trials.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Home-based measurements of lung function are frequently collected in respira-
tory clinical trials. Novel statistical methods for analyzing these data-rich meas-
urements are emerging, but more work is needed to better characterize the data 
and what it can tell us about treatment effects and disease stability.
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INTRODUCTION

Respiratory clinical trials commonly include the collec-
tion of home-based measurements, allowing for the fre-
quent monitoring of patients. Home-based measurements 
may include, for example, peak expiratory flow (PEF), 
forced expiratory volume in 1 s, fractional exhaled nitric 
oxide (FeNO), and patient reported outcomes, such as 
symptoms and reliever medication use. Currently, the use 
of these variables is often limited to the triggering of alerts, 
for example, that the patient should contact the treating 
physician, or as exploratory efficacy end points reported 
with descriptive statistics. However, in the search for new 
end points to characterize respiratory disease severity and 
treatment efficacy, new ways of analyzing these data-rich 
variables are emerging.

One concept currently being evaluated for use in respira-
tory clinical trials is disease fluctuations,1 that is, seemingly 
random deviations in frequently measured disease variables. 
CompEx2 is one example of a novel end point where changes 
in daily diary variables—specifically PEF, symptoms, and 
reliever use—are used to identify episodes of asthma de-
teriorations based on prespecified thresholds. Combined 
with severe exacerbations—a frequently used primary end 
point in late-phase asthma clinical trials defined as disease 
worsening requiring systemic corticosteroids or hospital 
admission—these deteriorations create a composite event 
end point with a higher event rate compared to exacerbations 
alone, thus providing an opportunity to detect treatment ef-
fects in shorter and/or smaller trials. Similar diary-based end 
points developed for chronic obstructive pulmonary disease 
(COPD) are COPDCompEx3 and EXACT-PRO.4

In addition to these event end points—which essen-
tially reduce the information in frequently sampled longi-
tudinal data to one or a few timepoints—other approaches 

to analyze disease fluctuations have been suggested. One 
such approach is detrended fluctuation analysis (DFA), 
which assesses the self-similarity (long-range correlation) 
of time series data.5,6 The self-similarity is quantified by 
a positive parameter �, where � = 0.5 indicates a noncor-
related random time series and 𝛼 > 0.5 indicates the pres-
ence of long-range correlations. DFA has mainly been 
applied to daily sampled PEF data,1,7–10 where a patient's 
�PEF is shown to be significantly associated and predictive 
of exacerbation risk. �PEF also appears to change with type 
of treatment,7 and results from Donaldson et al.10 indicate 
that fewer patients may be needed to detect a treatment 
difference in �PEF compared with exacerbation frequency.

Another stochastic property of daily sampled PEF 
data often assessed together with �PEF is the coefficient 
of variation (CVPEF), giving an overall measure of a pa-
tient's lung function variability over a certain time period. 
High CVPEF has been shown to be associated with loss of 
asthma control,7,9 further highlighting the value of assess-
ing lung function fluctuations in respiratory diseases.

Although �PEF and CVPEF seem to hold potential for 
use in disease management and as clinical trial end points, 
most analyses evaluating these variables have included a 
limited number of patients. In addition, the standard DFA 
comes with some limitations, including the assumed log-
log linearity of the measured signal's power spectrum, its 
sensitivity to missing values, and the need for rather long 
time series to avoid biased estimates of �.11 In large phase 
III clinical trials, diary compliance is not always perfect, 
and many patients can have periods of missing values. 
Patients may also end the trial early, with limited data 
available for estimating both �PEF and CVPEF.

In this work, we present an alternative way to model 
and analyze the statistical properties of PEF time series in 
a clinical trial setting. Specifically, we identified stochastic 

WHAT QUESTION DID THIS STUDY ADDRESS?
Can a stochastic model-based analysis of home-based measurements of peak ex-
piratory flow (PEF) be used to improve the understanding of lung function dy-
namics, treatment response, and exacerbation risk in asthma?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A stochastic model of home-measured PEF was developed, providing a robust 
way of characterizing statistical properties of the data. Results show that both 
trends and fluctuations in PEF can be affected by treatment and are associated 
with exacerbation risk.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
A stochastic model-based analysis of PEF can support better estimation and 
understanding of treatment effects, disease stability, and exacerbation risk. 
Furthermore, it can serve as a complement to descriptive statistics of home-based 
PEF in the reporting of clinical trials.
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differential equations mixed effects (SDEME) models as a 
suitable statistical framework to model PEF data.12–16 The 
framework provides several advantages: (1) stochastic dif-
ferential equations offer great flexibility when modeling 
stochastic processes and can be designed to have arbi-
trary complexity, (2) the use of mixed effects allows shar-
ing information on parameter values across individuals, 
(3) treatment effects can be easily incorporated and esti-
mated, and (4) missing values are typically not an issue.

We develop our SDEME model based on data from two 
pivotal phase III clinical trials demonstrating the effects of 
benralizumab (Fasenra®, AstraZeneca) on top of standard 
of care in patients with moderate to severe asthma.17,18 
The estimated model parameters—including a patient's 
long-term and short-term PEF variability as well as aver-
age PEF response—are compared with estimates of �PEF 
and CVPEF and related to asthma exacerbation risk using a 
repeated time-to-event (RTTE) model. We also investigate 
treatment differences in these model parameters.

METHODS

Clinical trial data

Patient-level data from two phase III, randomized, 
double-blind, parallel-group, placebo-controlled, multi-
center clinical trials including patients with moderate to 

severe asthma served as the basis for model development 
and analysis (Table 1). Both trials investigated the efficacy 
of benralizumab on top of standard of care and were se-
lected based on (1) a long study period and a large sample 
size; (2) the availability of daily, diary-based PEF meas-
urements; and (3) the presence of a significant treatment 
effect on lung function and exacerbations. The details of 
the trials have been presented elsewhere,17,18 but a sum-
mary follows.

Trial A (NCT01914757) enrolled patients aged 12–
75 years with severe uncontrolled asthma and at least two 
exacerbations while on medium-to-high-dosage inhaled 
corticosteroids (ICS) and long-acting β2-agonists (LABA) 
in the previous year. In total, 1306 patients were randomly 
assigned to either placebo, benralizumab 30  mg every 4 
weeks, or benralizumab 30 mg every 8 weeks (first three 
doses every 4 weeks) as an add on to their standard treat-
ment. The treatment period was 56 weeks.

Trial B (NCT01928771) enrolled patients aged 12–
75 years with a diagnosis of asthma for at least 1 year and 
at least two exacerbations while on high-dosage ICS and 
LABA in the previous year. In total, 1205 were randomly 
assigned to either placebo, benralizumab 30  mg every 
4 weeks, or benralizumab 30 mg every 8 weeks (first three 
doses every 4 weeks) as an add on to their standard treat-
ment. The treatment period was 48 weeks.

Both trials were conducted in accordance with the 
Declaration of Helsinki, the International Conference on 

T A B L E  1   Summary of clinical trial data sets

Data set A Data set B

Description CALIMA study17

(NCT01914757)
SIROCCO study18

(NCT01928771)

Treatment duration (weeks) 56 48

Treatment groups (1:1:1 randomization ratio) Placebo
Benralizumab 30 mg every 4 weeks
Benralizumab 30 mg every 8 weeks 

(three first doses every 4 weeks)

Placebo
Benralizumab 30 mg every 4 weeks
Benralizumab 30 mg every 8 weeks 

(three first doses every 4 weeks)

Number of patients in originala data set 1306 1205

Number of patients in analysisb data set 1245 1107

Analysisb data set characteristics

Age, mean (SD) 49.4 (14.2) 48.9 (14.4)

Number of males (%) 480 (39%) 375 (34%)

Baseline PEF, mean (SD) 248.1 (113.7) 236.1 (113.2)

Number of PEF observations 421 859 311 958

Average number of PEF observations/patients 338.8 281.8

Total number of moderate/severe exacerbations 989 1012

Number of patients with at least one exacerbation 516 474

Abbreviations: PEF, peak expiratory flow; SD, standard deviation.
aBefore removal of patients not eligible for data reuse.
bAfter removal of patients not eligible for data reuse.
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Harmonization Guidelines for Good Clinical Practice, and 
applicable regulatory requirements. Before the analysis, all 
informed consent forms were reviewed for data reuse in 
accordance with AstraZeneca data-sharing rules. Patients 
from countries where ethics committees do not approve 
data reuse as well as patients who had withdrawn consent 
were excluded. Consequently, the data used in this work are 
a subset of the original trial data and any direct comparison 
with the original trial results should be made with care (see 
Table 1 for a comparison of the number of patients included 
in the original trials and in this analysis). We refer to the 
trial data used in this analysis as data sets A and B.

PEF and exacerbations

Home-measured morning PEF (unit: L min−1) meas-
urements, collected daily in an electronic diary system, 
were considered for development of the SDEME model. 
Observations from 2 weeks before the first dose (baseline 
measurements) up to 4 weeks after the last dose were in-
cluded based on study designs and the pharmacokinetic 
properties of benralizumab.19

Before model development, obvious outliers in the PEF 
time series were removed. This was done by calculating 
the interquartile range (IQR) for each patient and remov-
ing observations outside the interval (Q1 – 2 × IQR, Q3 + 2 
× IQR), where Q1 and Q3 denote the first and third quar-
tiles of the observations. In total, 7077 of 740,894 (0.96%) 
PEF observations were removed.

For the analysis of association between the properties 
of a patient's PEF response and asthma exacerbation risk, 
exacerbations taking place after the first dose and up to 4 
weeks after the last dose were considered. Asthma exacer-
bations were defined as in the original study protocols, that 
is, as worsening of asthma that led to (1) use of systemic 
corticosteroids for 3 days or more or a temporary increase 
in a stable, background dosage of oral corticosteroids; (2) 
an emergency department or urgent care visit (<24 h) at-
tributed to asthma that required systemic corticosteroids; 
and/or (3) an inpatient admission to hospital (≥24  h) at-
tributed to asthma. Worsening of asthma was defined as 
any new or increased symptoms or signs that were concern-
ing to the patient or related to an Asthma Daily Diary alert.

Statistical modeling and analysis

The statistical modeling and analysis of the PEF and ex-
acerbation data consists of the following three parts: (1) 
development of an SDEME model of PEF, (2) the analysis 
of the association between a patient’s SDEME model pa-
rameter estimates and asthma exacerbation risk, and (3) 

the comparison of the SDEME model results to a stand-
ard DFA and coefficient of variation (CV) analysis of PEF 
data.

A stochastic differential equation mixed effects 
model of PEF

SDEME models are extensions of the frequently used non-
linear mixed effects models with differential equations, 
where the underlying dynamical system includes sto-
chasticity (e.g., biological and environmental stochastic 
effects). Thus, SDEME models provide a means to distin-
guish the following three sources of variability: interindi-
vidual variability (IIV), stochasticity in the dynamics (also 
known as system noise), and measurement noise.16,20 As 
this is—to the authors’ best knowledge—the first applica-
tion of an SDEME model to analyze daily lung function 
measurements, the model structure was developed with 
the following criteria in mind: (1) the model should be 
conceptually simple with interpretable parameters, (2) it 
should be able to describe the most important stochas-
tic characteristics and trends of the PEF data, and (3) it 
should be computationally feasible and robust enough to 
be applied to large sets of clinical trial data.

The PEF model is illustrated in Figure 1. The model 
has the following three components: one component 
that describes a deterministic response (i.e., the trend 
induced by treatment), one component that describes 
long-term fluctuations around the deterministic re-
sponse, and one additional component to capture day-
to-day variability. The three components are detailed in 
the next paragraphs.

The deterministic response was described using a turn-
over model given by the ordinary differential equation

In this equation, PEFbase (unit: L min−1) and eff  (unit-
less) represent the baseline PEF and asymptotic treatment 
effect (set to zero before treatment initiation), respec-
tively. The two arms with benralizumab treatment in each 
trial were pooled into a single active treatment group. 
The treatment effect was modeled as relative to baseline, 
which was supported by exploratory data analyses and 
model diagnostics. The parameter ktr (unit: day−1) is the 
rate constant of the turnover process describing the onset 
of treatment effect (different values estimated for active 
treatment and placebo, respectively). Exploratory anal-
yses revealed a strong influence of age (centered around 
50 years of age) and sex (female as the reference group) on 
the PEF baseline, and this together with a random effect, 

dx (t)

dt
=ktr

(

PEFbase (1+eff) −x (t)
)

, x (0) =PEFbase.
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�base, were incorporated to model the PEF baseline on an 
individual level:

where the covariate sex is 0 for female and 1 for male. In 
addition, eff  was allowed to take different values depending 
on treatment group (active or placebo) and modelled using 
an additive random effect �eff

The stochastic dynamics (here referred to as long-term 
fluctuations) is modeled by an Ornstein-Uhlenbeck (OU) 
process. The OU process is a stationary stochastic process, 
which tends to drift toward its mean (set to zero in this 
case). The process is described by the following stochastic 
differential equation:

where W (t) is a standard Wiener process, kv (unit: day−1) is the 
so-called mean reversion speed, and g (unit: L min−1 day−1/2) 
is a scaling factor for the stochastic component, referred to 

as the magnitude of the long-term fluctuations. Note that in 
the case g = 0, this corresponds to a standard turnover model 
with the constant solution v (t) = 0, whereas for g > 0, the 
process will fluctuate around 0. The larger the value of g, the 
more the fluctuations will deviate from the mean. The fre-
quency distribution and correlation over time of the fluctu-
ations is determined by kv (increasing correlation over time 
with decreasing mean reversion speed). The quantity 1∕kv is 
sometimes referred to as the characteristic correlation time of 
the process.

The actual PEF observations are finally modeled by the 
sum of the deterministic response, the long-term fluctua-
tions, and the day-to-day variability, denoted � e(tk):

where e(tk) ∼ 𝒩(0, 1), k = 1, ⋯ ,n are independent stan-
dard normal random variables, and � (unit: L min−1) is the 
magnitude (standard deviation) of the day-to-day variability. 
The day-to-day variability is assumed to include, for exam-
ple, uncorrelated physiological changes on short timescales 
and device measurement errors.

To account for IIV in the day-to-day variability, as well 
as the long-term fluctuations, random effects on � and g 
are introduced according to the following relationships:

PEFbase=
(

PEFbase, female+ sexΔPEFbase,male+

PEFbase, age(age−50)
)

exp
(

�base

)

,

eff = effk + �eff, k ∈ {plac, active}

dv (t) = −kv v (t) dt + g dW (t) , v(0) = 0,

PEF(tk) = x(tk) + v(tk) + �e(tk)

F I G U R E  1   Illustration of the longitudinal PEF model. The observed PEF time series is modeled by the following three components: 
trend, long-term fluctuations, and day-to-day variability. PEF, peak expiratory flow
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where treatment denotes the treatment covariate, which is 
set to 0 for placebo and 1 for active. The parameters �plac and 
gplac denote the population-typical values for the magnitude 
of the day-to-day variability and the magnitude of the long-
term fluctuations for the placebo group, respectively, and 
p�, active and pg, active denote multiplicate (additive on log-
scale) treatment covariate effects. Note that the inclusion of 
IIV on the day-to-day variability implies that the magnitude 
of the day-to-day variability varies between patients, but not 
within. The inclusion of IIV on the residual error has previ-
ously been adopted by others in the context of 
pharmacokinetic–pharmacodynamic modeling.21

In total, the model has four random effects, and the 
random-effects vector � =

(

�base, �eff, ��, �g
)

 is assumed to 
be multivariate normally distributed with a mean of zero 
and covariance matrix �.

Separate PEF models were estimated for data sets A 
and B.

Estimation of model parameters and 
model selection

The model parameters were estimated using the first-
order conditional estimation with interaction method, as 
implemented in the open-source Wolfram Mathematica 
package NLMEModeling.22,23 Because of the stochastic dy-
namics of the underlying system, the extended Kalman fil-
ter (EKF) was used to estimate the state of the system.16,24 
Similar to other implementations,25 NLMEModeling auto-
matically generates the necessary equations for the EKF.

Model selection was based on a combination of measures, 
including log-likelihood value, goodness-of-fit assessments, 
visual predictive checks, inspection of empirical Bayes es-
timates (EBEs), and parameter precision. Inclusion of off-
diagonal elements in the random-effects covariance matrix � 
was guided by empirical assessment of the EBEs. The shrink-
age for EBEs was calculated on the standard deviation scale.

The standard errors of the parameter estimates were 
calculated from the variance–covariance matrix of the pa-
rameter estimates.

Association with asthma exacerbation risk

The association between a patient’s PEF model param-
eters (using the EBEs) and the risk of asthma exacerba-
tions was assessed in an RTTE analysis based on pooled 

data from data sets A and B. The RTTE analysis was done 
based on a Cox proportional hazards model with a γ-
distributed frailty parameter, resulting in an RTTE model 
often referred to as a shared frailty model.26,27 The frailty 
describes the (unexplained) between–patient variability 
in exacerbation risk and acts proportionally on the base-
line hazard. Hence, the exacerbation risk for individual i 
is modeled according to the relationship

where h0(t) denotes the baseline hazard, ui is the γ-
distributed frailty, X i denotes the individual covariates, and 
� are the corresponding regression coefficients. Covariates 
considered in the RTTE analysis were the factors study, 
treatment group, age, and sex as well as the individual model 
parameters PEFbase, eff , and g.

The R package frailtyEM was used to perform the RTTE 
analysis using the Anderson–Gill method for counting 
processes to handle repeated events.28,29

Detrended fluctuation analysis

DFA is a method for studying long-range correlations in a sig-
nal. The output of the analysis is a positive scaling exponent 
α, where α = 0.5 indicates the signal is uncorrelated and in-
creasing values of α indicate increasingly stronger long-range 
correlations.5,6 Several published articles have used DFA to 
quantify long-range correlations in frequently measured PEF 
data and assessed its association with exacerbation risk.7,8,10

The DFA implementation in the Python package fa-
thon was used to calculate � in this analysis.30 Because 
of the sensitivity of the method to missing data and short 
time series, a DFA was only performed on patients with 
more than 6 consecutive months of PEF observations in-
cluding less than 3% missing values.7 Linear interpolation 
was used to get a regularly sampled time series in case of 
missing values. The steady-state CV (CVss), based on data 
100+ days after treatment initiation, was also calculated 
for each of these patients, and between–group (active vs. 
placebo) comparisons of α and CVss were performed on 
pooled data (data sets A and B) using a two-sample t-test. 
The � values were also correlated with the EBEs of g and 
� for each patient using the Spearman rank correlation.

RESULTS

Clinical data characteristics

The clinical trial data used in the analysis are summarized 
in Table 1. In total, 421,859 and 311,958 observations of 

� = �plac

(

p�, active
)treatment

exp(�� ),

g = gplac
(

pg, active
)treatment

exp(�g ),

hi (t) = h0 (t) uiexp
(

XT
i �

)

,
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morning PEF were available for analysis in data sets A 
and B, with an average number of 339 and 282 observa-
tions per patient, respectively. The total number of mod-
erate to severe exacerbations in the two analysis data sets 
were 989 in data set A and 1012 in data set B, with 516 
and 474 patients having at least one exacerbation, respec-
tively. The observed PEFbase was slightly higher in data set 
A compared with data set B (mean 248 L/min and 236 L/
min, respectively), whereas the age distribution in both 

trials were similar (median 49 years), and the majority of 
patients were female (61% and 66%, respectively).

Mixed effects PEF model

Parameter estimates for the two PEF models are listed in 
Table 2 and visual predictive checks are shown in Figure 2. 
Additional model diagnostics are provided in 

T A B L E  2   Estimated PEF model parameters for data sets A and B

Data set A Data set B

Parameter Description Unit Estimate
RSE 
(%)

Shrinkage 
(%)c Estimate

RSE 
(%)

Shrinkage 
(%)c

PEFbase, female Baseline PEF, female L min−1 212 1.04 202 1.18
ΔPEFbase, male Baseline PEF, male effect L min−1 59.4 6.61 45.4 9.41

PEFbase, age Baseline PEF, age effect year−1 −0.514 26.3 −0.504 28.1

ktr, placebo Rate constant, treatment, 
placebo

day−1 0.0104 8.90d 0.0103 10.2d

ktr, active Rate constant, treatment, 
active

day−1 0.0166 5.28d 0.0297 6.06d

kv Mean reversion speed, 
long-term fluctuations

day−1 0.0314 2.18d 0.0309 2.53d

effplac Treatment effect, placebo – 0.0313 24.6 0.0396 22.4

effactive Treatment effect, active – 0.0912 6.01 0.0956 6.31

�plac Magnitude of day-to-day 
variability, placebo

L min−1 27.9 1.36d 28.7 1.53d

p�, active Magnitude of day-to-day 
variability, active effect

– 0.996 1.61d 0.975 1.79d

gplac Magnitude of long-term 
fluctuations, placebo

L min−1 day−1/2 5.75 1.96d 6.29 2.16d

pg, active Magnitude of long-term 
fluctuations, active 
effect

– 0.953 2.27d 0.884 2.49d

�, IIVa

PEFbase 0.404 1.57 1.90 0.455 1.65 1.95

� 0.418 1.45 1.27 0.449 1.52 0.853

g 0.535 1.68 4.44 0.568 1.76 3.51

eff 0.180 2.42 14.1 0.182 2.86 16.0

� (off-diagnal elements)b

PEFbase − � 0.447 4.12 0.492 3.70

PEFbase − g 0.411 4.72 0.487 3.92

� − g 0.673 1.98 0.679 2.05

� − eff 0.128 17.1 0.170 13.7

g − eff 0.268 8.76 0.293 8.60

Abbreviations: CV%, percent coefficient of variation; IIV, interindividual variability; PEF, peak expiratory flow; RSE, relative standard error.
aReported on the standard deviation scale.
bReported as pairwise correlations.
cCalculated on the standard deviation scale.
dEstimated on log-scale, reported as CV%.
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Figures S1–S4. Parameter estimates were estimated with 
adequate precision (relative standard error percentage, 
<30 for all parameters). The PEFbase were estimated 
slightly higher in data set A, and there was a significant 
effect of both sex and age in both trials. The estimated as-
ymptotic treatment effects effactive were similar (9.1% and 
9.6%, respectively), whereas the placebo effect effplac was 
slightly higher in data set B (3.1% and 4.0%, respectively).

During model development, correlations between the 
EBEs were apparent, and a full random-effects covariance 
matrix was assessed. However, the correlation between 
the baseline and treatment random effect was small and 
hence fixed to zero to improve numerical stability. The 
shrinkage of the random-effect parameters was small 
(largest 16.0% for the random effect on treatment effect 
in data set B).

The rate constant ktr for the treatment response 
were estimated higher in the active than in the pla-
cebo group, with the time to reach 90% of steady state 
being 80–140  days for the active groups and 220  days 
for placebo.

The magnitude of the long-term fluctuations g was sig-
nificantly lower in the active group compared with placebo: 
−4.7% (95% confidence interval [CI], −8.8% to −0.36%) in 
data set A and −11.6% (95% CI, −15% to −7.2%) in data set B. 
No significant difference was seen in the magnitude of the 
day-to-day variability �, but there was a trend toward lower 
values in the active group: −0.4% (95% CI, −3.5% to +2.9%) 
in data set A and −2.5% (95% CI, −5.9% to +0.98%) in data 
set B. Similar parameter estimates were obtained using data 
up to the first exacerbation only, as listed in Table S1.

In Figure 3, the observed PEF time series (black dots) 
for six randomly selected patients are depicted together 
with the model prediction for PEF (yellow) and the deter-
ministic treatment response (black, solid line).

Association with exacerbation risk

The results of the RTTE analysis are presented in Table 3. 
Both sex and age were found to be nonsignificant  
(p values of 0.63 and 0.41, respectively) and were not 

F I G U R E  2   Visual predictive checks for the two analysis data sets. The black lines show the 10th, 50th, and 90th percentiles of the 
observations. The shaded areas are the 95% confidence intervals of the median (light blue) and the 10th and 90th (light gold) percentiles 
predicted by the model. PEF, peak expiratory flow

(a) (b)

(c) (d)
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included in the final time-to-event model. Study, treatment 
group, PEFbase, eff , and g were found to be significantly as-
sociated with exacerbation risk. Overall, the risk of exacer-
bation was slightly higher in data set B, with a hazard ratio 
(HR) of 1.20 (95% CI, 1.05–1.36) compared with data set A. 
The estimated HR for active treatment versus placebo was 
0.70 (95% CI, 0.61–0.79), with an additional benefit of active 
treatment being described via some of the PEF parameters. 
Specifically, both a larger PEF treatment effect asymptote 
and a reduced magnitude of long-term fluctuations were 
associated with a lower exacerbation risk (HR < 1). Finally, 

a high PEFbase was also associated with lower risk, whereas 
� had no significant association with exacerbation risk (p = 
0.57). The RTTE results for the sensitivity analysis, listed in 
Table S2, identified the same significant covariates.

DFA analysis

About one third of all patients (data set A, n = 464; data set 
B, n = 355) fulfilled the data quality criteria (≥6 months 
of data, <3% missing values) to be included in the DFA 

F I G U R E  3   Observed and model-predicted PEF response for six randomly selected patients from data set B. The black solid lines show 
the deterministic treatment response, whereas the yellow fluctuating curves show the long-term fluctuations around the deterministic 
response. The light-blue shaded areas reflect the uncertainty in the prediction (± standard deviation). PEF, peak expiratory flow
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analysis. The distribution of α and CVss values in placebo 
and active patients (pooled from the two data sets) are 
shown in Figure 4a,b. On average, both α and CVss were 
lower in patients on active treatment, but only the differ-
ence in CVss was statistically significant (p < 0.05).

Figure  4c,d illustrate the correlations between α and 
g and α and �. The scaling exponent α exhibited a pos-
itive correlation with g (Spearman ρ = 0.55; p < 0.001) 
and a negative correlation with � (Spearman ρ = −0.16;  
p < 0.001).

Covariate Description
Hazard 
ratiob

RSE 
(%) p value

Study Study effect, data set B 1.20 6.61 p < 0.01

Treatment Treatment group, active 0.697 6.80 p < 0.001

PEFbase Baseline PEF (L min−1) 0.996 0.0373 p < 0.001

eff Asymptotic treatment effect (%) 0.981 0.231 p < 0.001

� Magnitude of day-to-day variability (L min−1) 0.998 0.329 0.573

g Magnitude of long-term fluctuations  
(L min−1 day−1/2)

1.10 1.22 p < 0.001

Note: Estimated variance of the frailty: 1.13 (95% confidence interval, 0.950–1.29).
Abbreviations: PEF, peak expiratory flow; RSE, relative standard error.
aPlacebo as a reference treatment group, and data set A as reference study group.
bHazard ratio for one unit increase in continuous variables.

T A B L E  3   Hazard ratios with 
corresponding standard errors and p 
values for the estimated repeated time-to-
event modela

F I G U R E  4   Detrended fluctuation analysis results and comparison to individual stochastic differential equations mixed effects model-
derived parameters (pooled data). Box plots for (a) CVss and (b) α for the two treatment groups. Correlation between α and (c) the magnitude 
of the long-term fluctuations g and (d) the magnitude of the day-to-day variability �; solid lines show a local regression weighted smoother. 
CVss, steady-state coefficient of variation

(a) (b)

(c) (d)
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DISCUSSION

As the use of home-based assessments in respiratory trials 
increases, the amount of clinical data available to charac-
terize patients and treatment effects is rapidly growing. To 
make the most out of the data, new statistical approaches 
are required.

By developing an SDEME model, we have been able 
to characterize trends and fluctuations in frequently sam-
pled, home-measured PEF data from a large number of 
patients with asthma enrolled in two phase III clinical 
trials. With the model, we show that benralizumab, an es-
tablished effective treatment of asthma, both improves a 
patient's average PEF level and reduces the magnitude of 
long-term fluctuations around that level. Furthermore, we 
show that these effects can be associated with a reduced 
asthma exacerbation risk.

Our developed PEF model adequately described the 
observed data in both trial data sets, with consistent es-
timates of the model parameters overall. The population-
typical eff  of benralizumab (defined as percent change 
from baseline) was estimated to approximately 9.5% 
compared with 3.5% for placebo, whereas g was 5%–12% 
smaller in the benralizumab group. The RTTE analysis 
indicates that these population-typical improvements 
in the average PEF level and long-term fluctuations are 
associated with an exacerbation risk reduction of 11%  
(p < 0.001) and 3%–7% (p < 0.001), respectively. It should 
be noted that these effects constituted only a part of the 
overall risk reduction, as benralizumab also showed an 
additional 30% risk reduction (p < 0.001) not explained 
by changes in PEF parameters. Interestingly, the magni-
tude of the day-to-day variability � was neither affected 
by treatment nor associated with exacerbation risk (p = 
0.573), suggesting that it is particularly longer term PEF 
fluctuations that are important.

As a drop in PEF is often seen during an asthma exac-
erbation, it may be no surprise that PEF fluctuations are 
associated with exacerbation risk. However, in our sensi-
tivity analysis—where we only use data up to before the 
first exacerbation—we still saw a significant association 
between a patient's estimated g and exacerbation risk.

Comparing the results the SDEME model to the DFA 
method, an expected positive correlation between α and g 
and negative correlation between g and � were observed—
noting that a direct comparison between the approaches is 
not straightforward.31 In the subset of patients selected for 
DFA, there was a nonsignificant trend of lower α values in 
patients treated with benralizumab as well as a significant 
difference in CV values (lower in the active group). This is 
consistent with the significant treatment difference seen 
in g because a smaller g corresponds to both a smaller α 
and CV.

An important strength of the SDEME analysis, in con-
trast to the DFA method, is that information on g is shared 
between patients and that the weighting of patients with 
different amounts of data (including missing data) is auto-
matically taken care of in the estimation process. Similar 
to the DFA, however, our approach also involves making 
assumptions about the underlying data-generating pro-
cess. Importantly, we describe the trends in the PEF data 
using a turnover model, the long-term fluctuations using 
the OU process, and the day-to-day variability using a 
white noise process. The sampled version of the OU pro-
cess is in fact known to be equivalent to an autoregressive 
process of order 1. Hence, the PEF model includes a cor-
relation between adjacent timepoints, similar to the ap-
proach described in Karlsson et al.,32 but is generalized to 
also allow for an independent and uncorrelated (between 
timepoints) part of the residual error.

Our work is limited by the fact that we did not ex-
plore alternative stochastic processes to describe the 
PEF data. Thus, we cannot conclude how well the OU 
process compares with other possible stochastic models. 
The SDEME framework, however, makes it convenient 
to extend our model to possibly capture more complex 
stochastic characteristics of the data. The OU process 
is a linear dynamical system, meaning that the Kalman 
filter provides an optimal estimator.33 To handle more 
complex and possibly nonlinear models, one could 
consider nonlinear estimators, for example, particle 
filters.34 There are most likely also other types of vari-
ables and information that could be added to our model 
to explain some of the fluctuations in PEF. Examples of 
such variables could be known external stimuli, for ex-
ample, seasonality, rescue medication use, and change 
in treatment. Another natural extension of the current 
model would be to incorporate PEF measured in the 
evening. However, there is evidence on a difference in 
the PEF level between morning and evening,35 which an 
extended model would have to account for.

For future perspectives, one could potentially develop 
stochastic models that simultaneously integrate multiple 
types of home-based measurements, for example, FeNO, 
rescue medication use, and patient-reported symptoms. 
Such models would have the potential advantage to pro-
vide a more robust estimate of disease fluctuations com-
pared with studying each variable in isolation.

In conclusion, we have developed a novel, extendable, 
model-based approach for analyzing home-based mea-
surements of PEF collected in respiratory clinical trials. 
Our model enables characterization of multiple statistical 
properties of PEF time series data to support better esti-
mation and understanding of treatment effects, disease 
stability, and exacerbation risk. We recommend includ-
ing this type of model-based analysis as a complement to 



      |  223A STOCHASTIC MIXED EFFECTS MODEL OF HOME-MEASURED PEF

descriptive statistics of home-measured PEF data in the 
reporting of respiratory clinical trials.
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