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Abstract

Cell-based tissue repair of the tooth and — tooth-supporting — periodontal ligament (PDL) is a new attractive approach that complements
traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic
approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological
agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL
and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or
progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue.
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Introduction

Our understanding of tooth development and biology of tooth
diseases has tremendously advanced in the past two decades.
Tooth pathology occurs mainly as a result of periodontal disease
or carious lesions. Recent insights on the reparative capability of
periodontium and dental pulp in conjunction with progress in
stem cell biology, molecular biology and material science will
enable us to develop novel therapies using engineered biological
compounds and cell based therapeutics. In order to achieve a
dental engineering therapy it is necessary to address all the cells
and tissues involved in the formation, maintenance and repair of
the tooth. Resembling other epithelial appendages, the tooth
develops from a series of epithelial/mesenchymal interactions.
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Once formed the mesenchymal components of the tooth (dentine
and periodontal ligament [PDL]) persist and are capable of only
limited repair in response to injury. Here we will explore how
tissue engineering can take advantage of these repair processes
enhancing them and achieve artificial but biological tooth repair.

The need for tooth tissue engineering

One of the unwanted effects of increase longevity in the population
is the increase of dentition decay. By the end of last century nearly
25% of the US population aged 65 to 75 years old had lost their
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natural teeth. This problem has a substantial effect in the popula-
tion’s quality of life [1]. Preventive dental care reduces the setback
of dental decay, but the problem persists. The only solution to
tooth perish has been restorative prosthetics in the form of
implants. Implant technology is indeed ancient, as the earliest
known dental prosthetics dates back to 2500 Bc in Egypt and the
first known tooth replacement was documented from the Mayan
culture in ap 600 [2].

Despite the long history of dental implants there are still
limitations in functionality and longevity of the implants mainly
due to alveolar bone loss. The tooth organ interacts actively with
the alveolar bone through the PDL. Implants lack the plasticity and
the biological interactions with the bone that the natural tooth has.
PDL biology and bioengineering have advanced tremendously
addressing the problems with periodontal diseases and have
attempted to alleviate the tooth implants side effects [3].

The hard tissues of the tooth’s crown provide a barrier against
bacteria. When a traumatic injury or a carious lesion breaks down
this barrier, repair takes place to prevent invasion of the pulp
chamber by bacteria. The capacity for pulp cells to resist and
repair injuries is fundamental for the maintenance of tooth
integrity and homeostasis. In the adult pulp, cell division and the
secretory activity of odontoblasts are limited [4], but these
processes may be re-activated after injury. In the case of severe
tooth lesions the spontaneous regenerative power of the peri-
odontium or the dental pulp is often insufficient resulting in tooth
lost. In these cases tissue engineering and regenerative medicine
could find indication.

Cellular components and development of tooth

The usage of stem cells systems as a tool for tissue engineering
has great potential. Stem cell research has resulted in many clini-
cal applications. Examples of cell based therapies include repair of
skin [5], bone [6, 7], articular cartilage [8], cardiac tissues [9, 10]
and neuronal tissue in Parkinson’s disease [11, 12]. Through a
series of epithelial-mesenchymal interactions, teeth share similar
patterns of gene expression and morphological events with the
early stages of other epithelial appendages like lung, hair and
breast. The epithelia-mesenchymal interactions in tooth are
regulated by bone morphogenetic protein (BMP)-2, BMP-4 and
Midkine [13-16], whereas fibroblast growth factors (FGFs) are
involved in cell proliferation and regulation of specific target genes
[17-19]. During tooth initiation and morphogenesis Wnt3, Wnt7b,
Wnt10a and Wnt10b in conjunction with sonic hedgehog (SHH)
regulate cell proliferation, migration and differentiation [20, 21].
From all these molecules, BMP4 and FGF8 constitute essential
early oral epithelial signals that have a crucial role in activating
specific homeobox genes in the underlying mesenchyme. It has
been proposed that these two molecules could control tooth
patterning in rodents: BMP4 directs the shape of incisors and
FGF8 the shape of molars [22]. The mesenchyme of the develop-
ing incisors expresses a specific complement of genes (Msx1,
Msx2) regulated by the influence of BMP4 from the epithelium. In
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the molars the mesenchyme posses a different complement of
genes (DIx1, DIx2, Barx1) regulated by FGF8 also from the overly-
ing epithelium. The specific complement of these transcription
factors dictates the development of the tooth germs towards an
incisorform or molariform shape [23]. Based on the restricted
expression domains of signalling molecules and homeobox genes
in the cranial neural crest cell-derived mesenchyme of the maxilla
and mandible, a ‘co-operative genetic interaction’ model has been
proposed [22]. The presence of all these transcription factors
appears to be required for a transcriptional program responsible
for the characteristic growth and morphology of teeth [23]. The
molecular mechanisms governing these events have been exten-
sively reviewed in detail [24-28]. These molecular mechanisms
can be used as bases to establish possible mechanisms needed
for tooth regeneration [29-31]. In the final stages of tooth devel-
opment, enamel and dentine form as the outcome of the interac-
tions of the mentioned molecules resulting in the differentiation
of the oral ectoderm and cranial ectomesenchyme, respectively.
These interactions progressively lead to transformation of the
tooth germs into complex mineralized structures. Mesenchymal
cells form the dental follicle and dental pulp, and the oral ectoderm
form the inner dental epithelium. In terms of mineralized tissue,
pulp mesenchymal cells differentiate into odontoblasts and inner
dental epithelium into ameloblasts. Odontoblasts are the cells
responsible for the formation of mineralized dentine, whilst
ameloblasts are responsible for the formation of enamel. Once the
mineralization of the crown is completed the tooth starts to erupt
in the oral cavity, while the root continues to develop. Hertwing’s
epithelial root sheath, a derivative from the outer dental epithelium
and the inner dental epithelium will spear head the growth of the
root [32-34]. Root development will be accomplished together
with the organization of innervation, vascularization and anchoring
to the surrounding alveolar bone. This anchoring process will be
accomplished mainly by the relationship of three main tissues in
the periodontium: cementum, alveolar bone and PDL (Fig. 1). PDL
contains a great variety of cells and extracellular matrix. The
cellular components include osteoblasts, fibroblasts cemento-
blasts, osteoclasts, cementoclasts, epithelial rests of Malassez and
endothelial cells as well as several connective tissue cells [35].

Bases for tooth tissue engineering

In the natural course of the life of the tooth crown, the mineralized
tissues may be damaged, thus jeopardizing the integrity of the
tooth. In the case of dentine this damage can be repaired naturally.
Dentine repair can be achieved from surviving odontoblasts (reac-
tionary dentinogenesis) or, in the case of severe damage cells of
the dental pulp having stem cells properties are re-activated to
form new odontoblasts that will replace the apoptotic odonto-
blasts and repair the injury. Signalling molecules that are
expressed by pulp cells (e.g. BMPs, transforming growth factor
[TGF]-B, insulin-like growth factor [IGF]-1) play an important role
in the pulp healing during dentine repair. Several studies have
shown the importance of these molecules in dentine repair
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Fig. 1 Schematic representation of a human molar and histology of the dental root area showing the various dental tissues.

[36-39]. The damage caused to the enamel cannot be repaired
naturally because the cells responsible for its formation disappear
after the enamel is fully formed. Enamel is the hardest mineralized
tissue of the body and acts as a biological barrier that protects the
pulp-dentine complex. Enamel interacts with dentine through the
dentine/enamel junction. The replacement of enamel with bioma-
terials, ceramics and precious metals has been well documented
and is of common practice in clinic. PDL repair and regeneration
has been extensively studied. The complexity of PDL cellular com-
ponents, extracellular matrix and tissues interactions requires a
tight control in the cellular deposition. Cell-occlusive barriers that
restrict the repopulation of epithelial and connective tissue in
favour of PDL cells and cementoblasts have been used since the
mid-1970s [40]. These barriers range from cellulose in earlier pro-
cedures to a more convenient usage of synthetic absorbable mate-
rial. These materials have been used in conjunction with biological
factors like BMP2 to enhance the regeneration of bone [41].

The patient as a recipient and as the source of cells

The outcome of all tissue engineering approaches using autolo-
gous cell preparations is influenced by the patient selection
because the patient is at the same time the source of the cells and
the recipient of his/her own treatment.

The identification of a proper indication and the selection of
patients are crucial for the evaluation of the efficacy of a treatment.
Patient-related factors, such as age, body weight, general health
status, size and site of the lesion may influence the outcome of
stem cell-based treatments. Tooth damage is the result of differ-
ent mechanisms of injury combined with the incapacity of intrin-
sic dental tissue repair. Because the reasons for this can be differ-
ent in individual patients, it is conceivable that there is no ideal
approach to dental tissue repair. However, as our understanding of
dental damage and repair mechanisms advance, we might be able
to adapt appropriate and more personalized treatment strategies.
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In autologous cell-based approaches the patient is also the
source of the therapeutic preparation. Consequently, patient-related
factors may influence the quality and properties of the therapeutic
preparation. Factors include the age of the patient and the healthy
or pathological condition of the dental pulp and PDL at the moment
of operation. The influence of these factors on the efficacy of cell
preparations for cell-based dental treatments has not been inves-
tigated exhaustively [42]. Although the entire procedure of stem cell
isolation, expansion and preparation is perfectly standardized, cell
preparations from every individual patient have to be considered
as single/special batches and be quality controlled accordingly.
The amount and complexity of quality controls make these proce-
dures expensive, thereby limiting their routine applicability.
Nonetheless, autologous cell therapies offer the advantages of min-
imal risk of disease transmission and of immunological rejection.

Dental stem cell based tissue engineering

The cells represent the active component of cell-based therapies.
Hence, besides the patient-related factors discussed above, any
cell product will be affected also by the preparation technology.
With regard to dental cells, various cell types are needed to form
a tooth. In order to tissue engineer a tooth, which is a complex
organ, these cells need to come together in a spatially and tempo-
rally controlled manner. Because the mature tooth cannot repair
or make de novo enamel we will focus on the bioengineering of
dentine from pulp and the PDL complex including cementum and
alveolar bone. Dental stem cells, originally derived from the
ectomesenchyme, are considered a new source of human adult
stem cells for regenerative medicine. These can be obtained from
either shed primary teeth or extracted permanent teeth (Fig. 2).
These stem cells can be used to perform autologous cell replace-
ment. The source of the cells is of most importance and the pos-
sibility of harvesting the needed cells from the patient makes this
process very attractive. A key question that needs to be addressed
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Fig. 2 The various steps leading to the formation of single cell colonies derived from human dental pulp.

is if these dental cells are indeed stem cells. Different studies have
provided evidence that dental pulp and PDL cells have mesenchymal
stem cell features, based on their ability to differentiate into carti-
lage, bone, fat, muscle, muscle and neural tissue [43]. Apart from
the dental pulp and PDL, mesenchymal stem cells have a diverse
distribution in vivo as they can be derived from most, if not all,
connective tissues including bone marrow, adipose, periosteum,
synovial membrane, skeletal muscle, dermis, pericytes, blood,
trabecular bone, human umbilical cord and lung [44].

Dental pulp stem cells (DPSCs)

The pulp has been long recognized as an organ with good repara-
tive and regenerative capacity. Cells present in the dental pulp are
capable of terminally differentiate into odontoblast-like cells to
form reparative dentine. Gene therapy approaches have been
tested and demonstrated the higher odontogenic differentiation
ability of pulp cells transfected with growth/differentiation factor
11 [45]. The use of the synthetic glucocorticoid dexamethasone
and growth factors like BMP2 to induce differentiation of pulp cells
into odontoblast-like cells has been also examined [46, 47]. Adult
dental pulp and the pulp of exfoliated deciduous human teeth have
also been identified as a potential stem cell source. DPSCs exhibit
a multipotent character and the potential to differentiate into chon-
drocytes, adipocytes [48], osteoblasts/osteocytes [49, 50],
myocytes [49], neuronal cells [51] and cardiomyocytes [52].
DPSCs were firstly isolated from the human pulp tissue approxi-
mately 10 years ago [53]. DPSCs were isolated from human adult
third molars with enzyme treatment of pulp tissues [53, 54]. Pulp
tissue from exfoliated deciduous human teeth was also used as a
source of DPSCs [55]. These studies demonstrated that the den-
tal pulp contains self-renewing, highly proliferative multipotent
stem cells. It has been suggested that these cells reside within
perivascular niches [56, 57]. DPSCs are able to form a vascular-
ized pulp-like tissue in vivo, which is surrounded by a layer of
odontoblast-like cells [53]. A special feature of DPSCs is their
potential for odontoblastic differentiation, as characterized by
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polarized cell bodies and accumulation of mineralized nodules [58,
59]. Further studies showed that DPSCs do express several stem
cell markers including c-kit, CD34, STRO-1 and CD146 [60, 61].
However, the detection of other specific stem cell markers
expressed by dental pulp cells is under investigation. DPSCs have
the potential to form bone-like tissues when transplanted into
immunocompromised animals [62]. Several DPSCs populations
can differentiate in vitro into adipocytes, neuronal-like cells and
cardiomyocytes as defined by cell morphology and the expression
of respective gene markers [57, 63—65]. DPSCs can also undergo
osteogenic, chondrogenic and myogenic differentiation in vitro
[50, 66-68]. Recently, dental stem cells were shown to be repro-
grammed into induced pluripotent stem cells (iPS) with a higher
rate compared to other cell types of human origin tried so far [69].
Furthermore, in vivo experimental evidence in animals suggests
that DPSCs could provide a novel alternative cell population for
repair and/or regeneration of the heart [52], bone [62, 70], mus-
cles [71], brain [51] and tooth [72-74]. Of note, last year the first
clinical application for alveolar bone reconstruction using DPSCs
was successfully carried out in a patient [75].

The clinical application of DPSCs in regeneration
of the pulp/dentin complex

Dental caries is a very common oral disease. It is essentially an
infection of the mineral tissues of the tooth, which eventually
reaches the dental pulp of the tooth causing inflammation and
potentially tooth loss. The dental pulp has important functions to
provide nutrients, oxygen and nerve supply to the tooth. In addi-
tion, a crucial property of the dental pulp is to foster cells of the
immune system that would tackle the infection, and to produce
reactionary or reparative dentin formation in response to external
stimuli, including bacterial invasion [76-78]. In clinical terms,
regeneration of pulp is not yet a routine treatment modality in
endodontics. Instead, entire pulp amputation is the choice of treat-
ment, which is followed by the mechanical and chemical disinfec-
tion pulp cavity and its filling with an artificial material. Despite
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that the tooth is saved in its functional position, it is not vital any
further and could not fulfil to the full extent its role. The regenera-
tion of the dentine-pulp interface would be the ideal therapy, aim-
ing to re-build a dentinal bridge at the affected site, sealing off the
infection and other external stimuli. At present this is not yet
achievable. There have been approaches to use growth factors
with the appropriate delivery systems, or other regenerative mate-
rial, as agents for immediate capping of the exposed pulp [79-83].
However, such situations require that the pulp has been exposed
to a minimal extent, and inflammation is limited. This is hardly the
case in chronic pulpitis that is the most frequent development of
deep carious lesions.

If regeneration of the dentine-pulp complex can be achieved,
this would require the re-vascularization and re-innervation of the
pulp and, importantly, the deposition of new dentine by odonto-
blasts. The use of DPSCs holds a strong promise in this respect,
as they can be isolated from the adult dental pulp tissue [53].
When in contact with dentin in vitro, DPSCs can acquire odonto-
blast-like cell morphology with a polarized cell body and a cell
process extending into the existing dentinal tubules [54]. These
can be differentiated into odontoblasts that will form dentine [58,
59, 84], endothelial cells that would support the re-vascularization
[67, 85] and neurons which could support the re-innervation of
the regenerated pulp tissue [63]. Transplantation of DPSCs in
mice can regenerate pulp-dentine tissue complexes, with dentinal
tubule-like structures [53, 86, 87]. A recent in vivo beagle dog
study also demonstrated that a combination of calcium hydroxya-
patite and DPSCs was able to regenerate dentin [88]. Although
these biological principles prove that pulp regeneration can be
achieved via the DPSCs, further studies are required to investigate
the potential clinical application in human beings.

Periodontal tissues as a source and niche
for stem cells

When considering dental stem cells and their niches, one has also
to include the tissues surrounding the teeth. These are termed
‘periodontal tissues’ or periodontium, and consist of the gingiva,
the cementum of the tooth root, the surrounding alveolar bone, as
well as the interconnecting PDL.

Although the PDL is a physically small tissue, it is unique
among the various ligament and tendon systems of the body, in
the sense that it is the only soft tissue to span between two
distinct hard tissues, namely the cementum of the root and the
alveolar bone [89]. This tissue acts as a suspension for the tooth,
adapting to the mechanical loads of the oral cavity. Collectively the
periodontal tissues are specifically tailored to support the tooth in
its functional position. The pathological damage of the periodontal
tissues due to a very common inflammatory condition is termed
periodontitis. This disease may eventually lead to exfoliation of the
adult tooth, due to lack of supporting tissue. One of the major
challenges in dentistry has been the regeneration of the disease-
affected periodontal tissues, in a manner that recapitulates embry-
onic tooth development.
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Early observations indicated that the periodontal tissues have a
regenerative capacity and that multipotent progenitor cells may
exist within the periodontium [40]. Extensive studies in experi-
mental animal models have depleted the various periodontal tis-
sues and investigated the regenerative capacities of the remaining
tissues each time [90, 91]. It was concluded that the PDL tissue
has the regenerative capacity and can form not only the intercon-
necting collagen tissue, but also alveolar bone and cementum
[92-94]. From these early observations, it was concluded that the
PDL tissue contains progenitor cells for fibroblasts, osteoblasts
and cementoblasts [95]. Several studies demonstrated that PDL
from mouse molars contains a slowly dividing population of pro-
genitor cells that is located in perivascular sites [96, 97], as well
as in the periosteal and endosteal spaces of the alveolar bone [98].
It was further demonstrated that PDL contains renewable and
differentiated populations of cells [99, 100]. Similarly to the other
tissues, PDL cells form a heterogeneous cell population com-
posed predominantly of fibroblasts, but also of stem cells that
exhibit various developmental potentials. Recent advancement of
technologies identifying and characterizing adult stem cells has
led to the first substantial evidence that a putative stem-cell pop-
ulation exists within PDL. PDL stem cells (PDLSCs) were positive
for the stem cell markers STRO-1 and CD146 and were able to dif-
ferentiate into cementoblasts, adipocytes and osteoblasts [101].
After culture expansion, these human cells were transplanted into
immunocompromised mice and were shown to contribute to peri-
odontal tissue repair forming a PDL/cementum-like structure.
Nevertheless, whether this tissue can function to the full extent as
a normal PDL tissue is still under examination. Another study has
shown that cryopreserved PDL can retain stem cells-like charac-
teristics, suggesting that long term storage is possible [102].
In vitro studies have also found that PDLSCs were capable of
differentiating into mesodermal (i.e. adipocytes, osteoblasts,
chondrocytes), ectodermal (i.e. neurons), and endodermal (i.e.
hepatocytes) lineages [103]. In addition, rat PDLSCs have the
capacity to differentiate into vascular cells forming blood vessel-
like structures [104]. These findings suggest that the PDL consti-
tutes an important stem cell source not only for the regeneration
of periodontal tissues [105], but also for the regeneration of other
tissues and organs. Despite the strong promise that PDL holds for
regenerative clinical dentistry, there is a however need for further
characterization of the PDLSCs.

Gingiva is the oral mucosal tissue that surrounds the teeth and
covers the alveolar bone. It functions as a protective mechanical
barrier for the tooth supporting tissues and as a biological barrier
conferring distinct immunity to oral infection. It is composed of an
epithelial layer with an underlying vasculated connective tissue. As
the epithelial layer has the capacity for continuous renewal, it is
anticipated that this tissue could be a source of stem cells. Cells
with mesenchymal stem cell properties have recently been iso-
lated from gingival tissues and characterized [106-108]. These
cells have unique immunomodulatory functions, clonogenicity, as
well as self-renewal and multi-potent differentiation capacities.
Very recently gingival fibroblasts have been evaluated as source of
iPS cells. These cells gave rise to high-quality iPS cells suggested
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that gingival fibroblasts could be promising for cellular repro-
gramming and pluripotency for future clinical applications [109].

The root cementum is an avascular and unnerved mineralized
tissue with ultrastructural similarity to bone that covers the entire
root surface. It is the interface between the dentinal tissue and the
PDL and contributes to periodontal tissue repair and regeneration
after damage. The organic extracellular matrix of cementum con-
tains proteins that selectively enhance the attachment and prolif-
eration of cell populations residing within the PDL space
[110-114]. Human cementum-derived cells have been isolated,
cloned and characterized in vitro and in vivo [115]. When trans-
planted subcutaneously in immunodeficient mice, the mineralized
matrix produced by these cells exhibited several features identical
to cementum, and differed from the mineralized matrix produced
by human bone marrow stromal cells [116].

The alveolar bone is a part of the periodontal tissues, func-
tioning as an anchorage of the tooth root to the alveoli and
resorbing the forces generated by the function of mastication.
Progenitor cells which are responsible for alveolar bone forma-
tion lay in the periosteal region, the PDL or around the blood
vessels. Alveolar bone marrow is considered as a useful and eas-
ily accessible source of progenitor cells, as they have similar
osteogenic potential to those derived from the iliac crest [117].
The periosteum is also considered as a suitable cell source for
bone regeneration [118-121].

Past, current and future approaches
in periodontal regeneration

Periodontal disease is perhaps the most common infectious dis-
ease in human beings caused by bacteria present in the oral cav-
ity, which attach on the teeth and cause inflammation of the peri-
odontal tissues. Epidemiological studies show that approximately
7-13% of the global population is at high risk of developing severe
forms of destructive periodontitis [122], posing a tremendous
burden to health care. This creates a need to develop new thera-
pies directed at the attenuation of the disease and regeneration of
the lost tissues, including the PDL and alveolar bone. Periodontal
regeneration is defined as reproduction or reconstruction of a
functional attachment apparatus consisting of new cementum,
alveolar bone and PDL, on a root surface that was previously
exposed due to progression of periodontitis.

Early regeneration approaches have focused on providing
appropriate conditions for wound healing. These included a range
of surgical procedures along with use of bone grafts as tissue sub-
stitutes, barrier membranes to prevent the unfavourable tissues
from the healing area [92, 123, 124], and more lately, growth fac-
tors as means to induce the wound healing capacity of the remain-
ing tissue. One of the very early approaches for regeneration of the
lost periodontal tissues was mechanical or surgical removal of the
diseased tissues [125, 126], allowing establishment of health via
reduction of inflammation. Histological studies in both human
beings and animals showed that these approaches do not ensure
a predictable outcome of periodontal regeneration and often result
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in healing with epithelial lining rather than new tissue formation
[127, 128]. At a later stage the surgical therapy was combined
with the placement of bone grafts in the defect, aiming to stimu-
lating periodontal regeneration. A wide range of bone grafting
materials has been applied including autografts (such as intra-oral
or iliac crest), and commercially available allografts (i.e. freeze-
dried bone), xenografts and alloplasts (i.e. hydroxyapatite,
B-tricalcium phosphate) [93, 129, 130]. These materials were
expected to fill the space and to either contain the appropriate cell
source, or provide the mechanical scaffold for the surrounding
cells to repopulate the healing area.

To date, periodontal regeneration is considered to be biologi-
cally possible but clinically unpredictable. As earlier suggested,
the cell type that repopulates the root surface after the therapy
determines the nature of healing. In this respect, PDLSCs may
hold a strong promise for improvement of periodontal regenera-
tion approaches. Recent studies have applied populations of
PDLSCs in animal models with improved success outcome for
periodontal regeneration [101, 105]. Although similar human
studies are not yet available, such cell-based therapy approaches
may become visible in the future of periodontal regeneration.

Molecular mechanisms and factors regulating
regeneration of periodontal tissues

Predictable periodontal tissue regeneration needs to ideally reca-
pitulate embryonic development, following similar morphogenetic
gene expression patterns. Although it is evident that there are
many factors that may prove important for controlling periodontal
tissue formation, this section focuses on the growth factors and
enamel matrix proteins with a proven role in controlling the behav-
iour of cells within the periodontal tissues.

The principle of therapeutic application of growth factors for
the restoration of damaged tissues is based on adult tissue
regeneration by mimicking the processes of embryonic and
post-natal development [131-134]. The most studied growth
factors for periodontal regeneration have been platelet-derived
growth factor (PDGF), epidermal growth factor (EGF), FGF, IGF
and different BMPs. The PDGF members has been extensively
evaluated in both in vitro and in vivo [135-138]. These studies
concluded that PDGF alone or in combination with the other
growth factors seem to have a positive effect on periodontal
healing and regeneration.

Another promising group of growth factors is the BMP family,
consisting of members of the TGF-B superfamily. These secretory
signal molecules have a variety of functions during morphogene-
sis and cell differentiation [139-141]. A wide body of evidence
from periodontal regeneration studies indicate that BMPs are
capable of inducing formation of new alveolar bone and cemen-
tum [141-143]. However, because classic BMPs induce the differ-
entiation of cells along an osteogenic pathway, ankylosis can be a
frequent side-effect, characterized by the absence of the mediating
PDL between the alveolar bone and cementum [144]. Hence,
BMPs have not yet been approved for periodontal applications and
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further experimentation is needed for improving the capacity for
periodontal regeneration.

Amelogenins are proteins secreted by ameloblasts and are
considered to play a major role in regulating formation of enamel
[145]. The rationale for the potential use of enamel proteins in
periodontal tissue regeneration therapies is justified by their pres-
ence in initial cementum formation, during normal development of
the tooth attachment apparatus [146, 147]. The commercially
available enamel matrix protein product namely, Emdogain
(Straumann AG, Basel, Switzerland), has been in the market for
over a decade now [148, 149]. This is a purified acid extract of
proteins containing predominantly amelogenin from pig enamel
matrix. A large number of studies have investigated the mecha-
nisms of action and clinical efficiency of Emdogain [131, 146,
150-153]. Still, despite the encouraging clinical outcome, the
mechanism of action of Emdogain is not clear. It has been sug-
gested that its capacity to initiate the processes of periodontal
regeneration relies on the recruitment of cementoblasts onto the
root surface, hence stimulating the formation of root cementum.
Several in vitro studies suggest that Emdogain could act as a sig-
nalling molecule for epithelial-mesenchymal interactions, which
can regulate the activity of follicle cells, PDL cells, odontoblasts,
gingival fibroblasts and cementoblasts [142, 154-159]. Along
with clinical and experimental animal confirming the clinical
efficiency of Emdogain in periodontal regeneration procedures
[158, 160, 161], recent systematic reviews are also in support of
these findings [162-164].

Taken together, these molecular factors are likely to con-
tribute to the regeneration of the periodontal tissues by targeting
periodontal progenitors that reside within putative stem cell
niches of the periodontium. The potential effects include prolif-
eration and differentiation along pathways parallel to tooth root
development. Nevertheless, this should not be over-interpreted.
One should consider the multiplicity of the cells and complexity
of tissues within the periodontal environment, their responsive-
ness of cells to the type or dose of the growth factors used, as
well as the previously diseased tissue substrate due to inflam-
mation. Therefore, as much as an identical recapitulation of
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developmental events is desirable, it may be very difficult to
achieve due to these reasons.

Further studies will be still needed to identify right cell pop-
ulations (progenitor or stem cells), signalling molecules that
control cell behaviour and scaffold material to act as carriers for
the cells and stimulating molecules (i.e. bioreactors). Once
these parameters are more clearly defined and the respective
wound healing events are clarified, the clinical efficiency of suit-
able treatment modalities would need to be further assessed.
Moreover, as the oral microenvironment is not aseptic, any
periodontal regenerative activity involving differentiation of
potent stem cells is likely face bacterial challenge. Therefore, it
is suggested that any regenerative approach involving stem
cells in the oral cavity would need to take this aspect under
consideration, in order to achieve predictable and optimal
therapeutic outcome.

Scaffolding and material science

The use of scaffolds in tooth repair has been extensively used and
studied. Scaffolds are particularly useful when a 3D structure is
needed (Fig. 3). The viability and cytotoxicity of 3D scaffolds need
to be assessed. Dental pulp cells are viable and show signs of
vitality when placed in biodegradable porous calcium polyphos-
phate scaffolds [165]. Biodegradable scaffolds are very useful
because the aim of cell-based tooth tissue engineering should be
to utilize cells that will differentiated in correct 3D field and even-
tually produce a permanent mineralized matrix. Studies using
hydroxyapatite-tricalcium phosphate have shown that STRO-1*
dental pulp cells are able to differentiate into odontoblast-like
cells producing mineralized matrix [166]. Recently new technolo-
gies on material science have made possible the printing of cells
on to 3D structures and microenvironments to direct cell differ-
entiation into specific fates [167, 168]. These emerging technolo-
gies on material science offer bio-printing as an alternative way of
creating 3D structures useful for tissues engineering and should
be closely follow.

© 2011 The Authors
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Conclusions

Although the prospective of tooth tissue engineering is very
attractive, we are far from performing routine clinical procedures.
Despite the large amount of interest in this field, no clinical trials
have been performed for dentine repair and very limited clinical
applications are available in periodontal disease treatment. Cell
based bioengineering and material sciences have to define condi-
tions for manufacturing consistent and reproducible products,
which are quality controlled for safety and efficacy. In addition, cell
therapies are in their infancy and many issues need to be taking
into account. The use of culture expanded cell populations needs
to take into account the possibility of genetic and epigenetic insta-
bility, which could possibly result in malignant transformation.
The paracrine effects, interactions with the host and immune
response following cell transplantation also need to be taking into
consideration. For example, the transplantation of bone marrow
stem cells to cure diabetes mellitus in an animal model resulted in
the reduction of hyperglycaemia by the regeneration of the recipi-
ent’s own pancreatic cells. This regeneration was initiated in

J. Cell. Mol. Med. Vol 15, No 5, 2011

response to the transplanted cells [169]. In the case of tooth engi-
neering, the possibility of autologous cell replacement and the
usage of cells naturally occurring in the site of injury may mini-
mize the risk of side effects. In addition, a better understanding of
the biology of tooth repair opens the exciting prospect to develop
cell free approaches. The utilization of bioactive factors and bio-
materials will support and enhance the intrinsic mechanisms of
tooth repair.
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