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Objective. To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual
feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor
cortex in stroke individuals. Methods. A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and
SCOPUS to find relevant studies was performed. Results. A total of 19 articles were included. Two functional magnetic
resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in
stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two
clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional
hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related
areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the
sensorimotor cortex. Conclusions. MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by
stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS

and motor cortex.

1. Introduction

Stroke is one of the leading causes of adult disability. Patients
commonly suffer lasting motor impairments and functional
disability following a stroke [1]. A substantial number of
advanced rehabilitation strategies have been applied in upper
limb stroke rehabilitation, such as robot-assisted therapy [2],
constraint-induced movement training (CIMT) [3], and vir-
tual reality- (VR-) based rehabilitation [4], which are aimed
at helping stroke survivors relearn motor skills through
intensive training. These rehabilitation strategies have been
reported to improve patients’ motor functions by inducing
experience-dependent neuroplasticity in their damaged
hemispheres [5-7]. However, the neuroplasticity resulting
from intensive-based interventions may be limited if the
residual motor functions of the patients are also extremely
limited. It is crucial to find an adjunct therapy, on top of limb

training, to enhance the recovery of the ipsilesional motor
cortex of patients with severe hemiplegia, in order to over-
come the learned nonuse phenomenon in such patient pop-
ulations [8].

There is evidence to support the theory that cortical areas
involved in motor execution can be activated by observing
actions performed by others, which is attributed to the func-
tion of the mirror neuron system (MNS). The MNS is a class
of neural substrates that discharges during action observation
(AO) and action execution [9, 10]. The MNS is also associ-
ated with various human functions, such as motor prepara-
tion [11], motion imitation [12, 13], language [14], and
emotion recognition [15, 16]. In humans, the core MNS is
understood to be located in the inferior frontal gyrus (IFG),
including the ventral premotor cortex (PMv), the inferior
parietal lobule (IPL), and the intraparietal sulcus (IPS)
[9, 17]. An extended MNS involves additional brain regions,
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such as the primary motor cortex, the primary somatosen-
sory cortex, and the middle frontal cortex [18]. A bilaterally
distributed parietofrontal network with mirror neuron
(MN) properties (i.e., parietofrontal MNS) has been pro-
posed, which serves as a neural substrate to achieve the trans-
formation of visual information into cortical areas for motor
execution (i.e., visuomotor transformation) [19].

Based on this theory, researchers believe that the motor
cortex could be primed by activating the MNS, thus boosting
the efficacy of standardized rehabilitation for patients after
strokes [17, 20]. Subsequently, various rehabilitative strate-
gies, aimed at facilitating the motor cortex through activating
the MNS, have been applied in stroke rehabilitation, includ-
ing action observation training (AOT) [21, 22] and action
execution with MVF [23]. AOT usually consists of a session
of AO followed by a session of imitating the observed action
[22]. Some clinical trials have supported the efficacy of AO as
a motor priming tool in stroke rehabilitation [24-28]. Previ-
ous neuroimaging studies have identified a bilateral AO net-
work over the frontal, parietal, temporal, and occipital areas
in the brain, which encompass the core MNS [29, 30]. Action
execution with MVEF, including mirror therapy (MT) [23],
mirror box therapy [31], and VR-based MT [32], is already
a commonly employed regimen in stroke rehabilitation. By
virtue of MVF, patients receive a visual illusion showing that
their hemiplegic upper limbs are moving normally when they
move their nonparetic upper limbs simultaneously [23].
MVF could boost the effects of the conventional upper limb
rehabilitation of stroke [33]. It has been proposed that the
training-induced effects of MVF arise from the activation
of the ipsilesional primary motor cortex by enriching the
visual and proprioceptive inputs to the MNS [10, 19, 34],
but this hypothesis has not been duly confirmed in human
studies [35].

It is feasible nowadays for researchers to objectively mea-
sure the brain’s activities before and after interventions using
advanced functional neuroimaging and electrophysiological
techniques [36]. An increasing number of studies regarding
the effects of these two promising motor priming techniques
(AO and MVF) on brain activation in stroke individuals have
been published. However, there is a lack of focused reviews
investigating the effects of AO or action execution with
MVF on the activation of MNS and its subsequent effects
on the activation of the motor cortex in patients who have
had a stroke. We conducted this systematic review to evaluate
the concurrent and training effects of AO and action execu-
tion with MVF on the activation of the MNS in stroke indi-
viduals, by reviewing available experimental studies as well
as clinical trials with functional neuroimaging or electro-
physiological examinations. In order to understand the role
of the MNS in upper limb stroke rehabilitation, we have sum-
marized the following information in this review: (1) MNS
activation and (2) MNS activation and its relationship with
the activation of the motor cortex.

2. Methods

2.1. Literature Search. A literature search for relevant studies
was conducted using CINAHL (the Cumulative Index to
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Nursing and Allied Health Literature), PubMed, PsycINFO,
Medline, SCIE (Science Citation Index Expanded), and
SCOPUS. Two of the authors of this review independently
identified the relevant studies. Keywords used during the
search were “stroke” OR “hemiplegia”; “action observation”
OR “action observation training” OR “mirror visual feed-
back” OR “mirror neuron” OR “mirror therapy” OR “mir-
ror box therapy”; and “functional imaging” OR “functional
magnetic resonance imaging” OR “fMRI” OR “electroenceph-
alography” OR “EEG” OR “near-infrared spectrometry” OR
“NIRS” OR “magnetoencephalography” OR “MEG” OR “pos-
itron emission tomography” OR “PET”. The date of publica-
tion was limited to 10 years, from January 2007 to November
2017. The reference lists of the retrieved articles were manu-
ally searched to identify any further relevant articles.

2.2. Selection Criteria. We used the PICOS method to formu-
late our selection criteria. Studies that satisfied all the follow-
ing criteria were considered for this review.

Population (P): studies recruiting adult patients diag-
nosed with having had strokes; intervention (I): interventions
or experimental paradigms using AO or MVF in regard to
upper limb actions; comparison (C): control conditions with-
out AO or MVF or using sham AO or MVF; outcomes (O):
studies providing anatomical evidence of brain activation
induced by AO or action execution with MVF, as represented
by signal changes in PET, fMRI, or {NIRS; or using previ-
ously validated electrophysiological indices of MN activities,
such as event-related desynchronization (ERD) of the mu
band (i.e., mu suppression) [37] or the ERD of the beta band
(i.e., beta suppression) [38]; or employing an advance analy-
sis to explore the neural network related to AO or MVF,
including but not limited to dynamic casual modelling
(DCM) in regard to fMRI or a coherence analysis of EEG;
and study design (S): clinical trials investigating the training
effects or experimental studies investigating the concurrent
effects of the relevant experimental condition.

Studies were excluded if (1) they only recruited healthy
subjects or patients with other primary diagnoses (e.g.,
Parkinson’s disease); (2) they only focused on the lower limb
or trunk actions; (3) the final analyzed sample size was less
than five; (4) they were published as conference proceedings,
dissertations, or in books; and (5) they were not published in
English language.

2.3. Data Extraction. After identifying relevant studies, two
authors independently extracted the following information
from each article: (1) the characteristics of participants; (2)
the protocol of the intervention or experiment; (3) the
modalities of the functional neuroimaging or electrophysio-
logical techniques used in the study; and (4) the main results
of the studies. Any disagreement was settled by discussion
with the third author.

2.4. Quality Assessment. We assessed the quality of the
randomized controlled trials (RCTs) in regard to the training
effects of AOT or action execution with MVF in patients who
have had strokes, based on the Physiotherapy Evidence Data-
base (PEDro) scale. Both independent reviewers evaluated
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each article. The PEDro scale consists of 11 items. The first
criterion, item eligibility, is not scored, as it is used as a
component of external validity. The other criteria included
random allocation, concealment of allocation, baseline
equivalence, blinding procedure, intention to treat analysis,
adequate follow-up, between-group statistical analysis, mea-
surement of data variability, and point estimates. Any scoring
discrepancies were resolved.

3. Results

3.1. Identification Process for the Selection of the Studies. The
initial search yielded 332 results. After removing duplicates, a
total of 191 records were screened, of which, 138 citations
were excluded for the following reasons: the studies were
reviews or meta-analyses (n=18); the studies’ protocols
(n = 6); the studies focused on infants, children, or adoles-
cents (n =4); the studies enrolled only healthy participants
or patients with neurological diseases other than strokes
(n = 58); or the studies were irrelevant (n = 52). The remain-
ing 53 articles were subjected to full-text reading, of which 34
articles were removed for the following reasons: the studies
did not use functional neuroimaging or electrophysiological
techniques for stroke participants (n = 17); the final analyzed
sample sizes of the studies were less than five (n = 8); studies
of motion observation with a brain-computer interface (n = 2);
the visual feedback was based on the lower limbs or trunk
actions, rather than upper limb actions (n =4) [39-42]; or
the studies used EEG spectrum analysis alone (n=1) [43].
One study focused on the functional neuroplasticity
induced by observing the skills of tool use, which was
hard to compare with other protocols of AO. Another
study enrolled both patients who have had strokes and
brain tumors, and the data of stroke participants could
not be separated; these studies were hence excluded
[16, 44]. Finally, 19 articles satisfied our inclusion criteria
and were included in the present review [13, 22, 28, 34,
45-59]. Figure 1 shows the identification process for the
selection of studies.

3.2. Clinical Trials regarding the Training Effects of Long-
Term Intervention. Among the included studies, six studies
focused on the training effects of long-term therapeutic
programs [22, 28, 45, 46, 52, 59]. Four of these were RCT's
[22,28, 45, 52], and the other two were interventional studies
with pre-post comparisons [46, 59]. Three studies investi-
gated the training effects of bimanual training with MVF
(four- to eight-week interventions) [45, 46, 52]. Of these,
two identified a shift of activation toward the ipsilesional
hemisphere [46, 52], evidenced by fMRI. Cortical areas
activated by MVF mainly included the primary motor cortex
[46, 52] and the premotor cortex (PMC) [46]. A study with
EEG reported that mu suppression over sensorimotor cortex
(SMC) was higher in the group with MVF [45]. Sun et al,,
who also used mu suppression as an index, reported addi-
tional benefits of AO on the basis of motor imagery (MI) in
regard to enhancing mu suppression over the ipsilesional
SMC, compared with the control group (MI alone) [28]. A
fNIRS study measured the difference in brain activity of

participants before and after four weeks of MT in addition
to conventional rehabilitation; however, the difference in
the activation pattern over the primary motor cortex and
the precuneus was insignificant over time [59].

An RCT investigating the training effects of AO found
that the four-week AOT (AO followed by imitation) induced
more evident activation over bilateral PMyv, bilateral superior
temporal gyrus (STG), supplementary motor area (SMA)
over the contralesional hemisphere, and supramarginal gyrus
(SMG) over the ipsilesional hemisphere, relative to the con-
trol group watching nonbiological videos followed by action
execution [22]. Characteristics of these studies are summa-
rized in Table 1.

3.3. Experimental Studies with fMRI Findings. Eight articles
explored the concurrent effects of AO or action execution
with MVF on brain activation, evidenced by fMRI [34, 47,
48, 50, 53, 55-57]. In studies regarding MVF, Michielsen
et al. found that bimanual movement with MVF led to signif-
icant activation of the precuneus and the posterior cingulate
cortex (PCC), rather than the MNS [53]. However, Saleh
et al. [34, 55] reported that the ipsilesional primary motor
cortex was activated by MVF, and connectivity between the
ipsilesional primary somatosensory cortex and the primary
motor cortex was stronger, relative to the control group with-
out MVF [55]. The source of the ipsilesional primary motor
cortex activation was further found by the DCM to be the
contralesional intraparietal sulcus (IPS) [34]. Wang et al.
reported that lateralized activation toward the affected hemi-
sphere was in favor of virtual MVF, as reflected by the peak T
value of the precuneus in the majority of their samples [57].

For studies concerning AO, Szameitat et al. found that
AO of wrist movement activated the PMC and IPL; however,
the pattern of neural activation in action execution more
resembled MI, rather than AO [56]. Garrison et al. reported
that left IFG, SMG, and bilateral precentral gyrus were acti-
vated during right-hand (paretic side) observation of reach
and grasp actions. Lateralized activation toward the ipsile-
sional hemisphere was also noted [50]. During left-hand
AO (nonparetic side), the bilateral activation was relatively
symmetrical in stroke individuals. Brunner et al. [47] devised
a protocol to observe bimanual action; they reported that
stroke individuals (within one-to-two weeks after the stroke)
showed activation in inferior and superior parietal lobes,
IFG, and the primary motor cortex during AO. In the second
fMRI exam (three months after the stroke), the neural
response to AO was extended to more movement-related
areas, including the PMC, primary motor cortex, and the
SMA. The neural response to AO was increased from one
or two weeks to three months after the individual suffered a
stroke. Dettmers et al. compared the brain activities during
AO and MI of patients with left or right subcortical strokes
and reported that patients with left subcortical strokes pre-
sented higher levels of activity than those with right subcor-
tical strokes [48]. The brain activation induced by AO or
MVF shown by fMRI are summarized in Table 2.

3.4. Experimental Studies with EEG or MEG. Four experi-
ments measured the concurrent effects of AO on mu rhythm
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Records identified through database
searching (n = 332)
CINAHL = 14, PubMed = 89, PsycINFO =
g 46, Medline = 49, Web of Science = 131,
'§ SCOPUS =3 Additional records identified through other
= sources (n = 0)
|
0)
=
— Records after duplicates removed Records excluded (n = 138)
(n=191)
(i) Irrelevant study (n = 52)
o (ii) Review or meta-analysis (1 = 18)
'g (iii) Study protocol (n = 6)
E Records screened (iv) Study focusing on infants, children,
(n=191) or adolescents (1 = 4)
(v) Study enrolling only healthy
individuals or focusing on diseases
other than stroke (n = 58)
Full-text articles assessed for
eligibility
(n=53) Full-text articles excluded (n = 34)
>~
'.-'_5‘
£ (i) Study without functional
= neuroimaging or
electrophysiological examination
for stroke participants (n=17)
Studies included in qualitative
synthesis (ii) Study with final sample size less
(n=19) than five (n = 8)
(iii) Treatment protocol was motion
observation with brain-computer
- interface (n = 2)
£
:E Studies included in quantitative (&) ?rtlu_dyi)w ith a mixed disease group
synthesis B
(meta-analysis)
(n=0) (v) Treatment protocol was the
observation of tool use (n = 1)
(vi) Visual feedback of lower limb or
trunk actions (n = 4)
(vii) Study with EEG spectrum analysis
alone (n=1)

FiGure 1: Flowchart of literature search.

using EEG [13, 49, 51, 58]. Another study used MEG to
measure the difference in beta suppression during bimanual
movement with and without MVF [54]. Kuk et al. reported
the whole brain topography based on mu rhythm before
and after AO and found that the middle frontal gyrus
(MFG) was less active after a total of five sessions of AO
[51]. Frenkel-Toledo et al. reported that observations of

the reach-and-grasp hand action could induce mu suppres-
sion over the SMC, but the magnitude of mu suppression
was significantly lower in the affected hemisphere, relative
to the unaffected hemisphere. Mu suppression over the
unaffected side was attenuated in patients with lesions over
the right IPL [13, 49]. Tani et al. also showed that AO of the
open-and-close action by the paretic hand induced stronger
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TABLE 2: Brain activation or lateralization of brain activation measured by fMRI.

Concurrent effect of
MVE versus the control
without MVF during a

motor task

Brain areas
without MVF

Long-term rehabilitation
with MVF versus the control

Long-term rehabilitation
with AO versus the control
without AO

Concurrent effect of AO
versus the control

Frontal lobes

Ipsilesional
activation [34, 55]

Primary motor

cortex [46, 52]

Premotor cortex

Supplementary
motor area

Superior frontal
gyrus

Inferior frontal
gyrus

Prefrontal gyrus

Ipsilesional lateralization

Ipsilesional lateralization [46]

Bilateral activation [47]

ipsilesional lateralization [50]
Bilateral activation [47]; . L
ipsilesional activation [56] Bilateral activation [22]

Contralesional activation

Bilateral activation [47] [22]

Ipsilesional activation [48]

Bilateral activation [47];
ipsilesional lateralization
[48, 50]

Ipsilesional activation [48]

Parietal lobes

Pri . o
rmary Bilateral activation
somatosensory (34, 55]
cortex ’

Superior parietal
gyrus
Bilateral activation
[34, 53, 55]; ipsilesional
lateralization [57]

Precuneus

Inferior parietal

gyrus
Supramarginal Contralesional
gyrus activation [34, 55]
Intraparietal Contralesional
sulcus activation [34, 55]

Posterior cingular Contralesional

cortex activation [53]

Bilateral activation [47];
ipsilesional activation [48]

Ipsilesional activation [56];
bilateral activation [47]

Ipsilesional lateralization [50]  Ipsilesional activation [22]

Temporal lobes

Superior
temporal gyrus

Inferior temporal
gyrus

Bilateral activation [22]

Bilateral activation [47]

Occipital lobes
Occipital gyrus

Bilateral activation [47]

Notes: MVF: mirror visual feedback; AO: action observation. Garrison et al. [50]: results of AO of the paretic hand movement were used; Bhasin et al [46]: the
result of within-group difference was used, because the study did not have a control group.

mu suppression than the MI of the same action in stroke
individuals [58]. Interhemispheric imbalance of movement-
related beta suppression was noted in stroke participants in
the study by Rossiter et al. when performing the bimanual
open-and-close action. The initial asymmetricity was partially
attenuated by MVF [54]. Characteristics of the experimental
studies are summarized in Table 3, and brain activation
induced by AO or MVF, measured by fMRI, is summarized
in Table 2.

3.5. Methodological Quality of Included Randomized
Controlled Trials. Four RCTs were included in this review

[22, 28, 45, 52]. The results of the assessment of methodolog-
ical quality are summarized in Table 4.

4. Discussion

The present study is aimed at systematically evaluating the
evidence of MNS activation induced by AO or MVF and its
potential effects on the activation of the motor cortex in
patients who have had strokes. The main findings of the pres-
ent review are (1) the ipsilesional primary motor cortex can
be facilitated by MVF [46, 52], which may be achieved by
recruiting the MNS [34, 55]; (2) long-term action execution
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TaBLE 4: Methodological assessment of included studies using the
PEDro scale*.

Criterion Ertelt Michielsen Bae Sun
etal. [22] etal. [52] etal [45] etal. [28]

Eligibility criteria Yes Yes No Yes

Random 1 1 1 1

allocation

Concejaled 0 ] 0 0

allocation

Baseline

comparability ! L ! !

Blind subjects 0 0 0

Blind therapists 0

Blind assessors 0

Adequate | 1 0 ]

follow-up

Intentlon—t(?— 0 1 0 1

treat analysis

Betweeg group 1 1 1 1

comparisons

Point estimates 1 1 1 1

and variability

Total scores 5 8 4 7

*The PEDro scores were taken from the PEDro website, except Ertelt et al.
[22] and Sun et al. [28], which were rated by our team.

with MVF resulted in a shifted activation toward the ipsile-
sional hemispheres in patients who have had strokes; hence,
a more symmetrical state between the two hemispheres
may be achieved [46, 52]; (3) AO induced broader brain acti-
vation in the frontal, parietal, temporal, and occipital areas in
patients who have had strokes, which encompassed the MNS,
as well as cortical areas of motor execution, including the pri-
mary motor cortex, PMC, and SMA [22, 47, 48, 50]; (4) mu
suppression can be induced by AO in patients who have
had strokes; however, mu suppression over the affected
hemisphere is relatively diminished [13, 49, 58]; and (5)
MVF [45] or AO [28] embedded in long-term rehabilitation
could bring about additional neurophysiological effects in
patients after they have had strokes, reflected by more evi-
dent mu suppression, which may indicate that MN activities
can be increased by this training.

A classical pathological change following stroke involves
the activities of the affected hemispheres being suppressed,
while those of less affected hemispheres are heightened,
due to interhemispheric competition rivalry [60]; hence,
successful motor recovery in patients who have had strokes
could be achieved by normalizing the interhemispheric
asymmetricity and promoting the neuroplasticity of the ipsi-
lesional motor cortex [61, 62]. As the present review has
shown, long-term MVF can contribute to a shift in activa-
tion toward the affected hemisphere [46, 52]. Furthermore,
MVF transiently attenuates the asymmetric activities of
movement-related beta suppression [54]. These findings
can partially explain the beneficial effects of MT, which
induces more symmetrical activities between the two hemi-
spheres in patients who have had strokes. This is in line with

Neural Plasticity

previous findings regarding the effects of MVF on the
healthy brain [35]. However, evidence to support the way
in which AO can induce a shift of activation toward the
affected hemisphere is relatively limited [50].

The difference between the activation patterns of MVF
and AO can be identified. MVF mainly activates the ipsile-
sional primary motor cortex [34, 40, 46, 52, 55], the PMC
[46], the primary somatosensory cortex [34, 40, 55], and
the IPL [34, 55]. Two articles (one study) using effective con-
nectivity and DCM have proposed that MVF could increase
the connectivity between the ipsilesional primary somatosen-
sory and primary motor cortex [55]. This study also suggests
that the activation of the ipsilesional primary motor cortex
may arise from contralesional IPS [34], which is a part of
the MNS. These results are in line with the assumed functions
of the MNS: visuomotor transformation. However, this con-
clusion should be interpreted with caution, since some stud-
ies have not identified the MNS activation by MVF in either
patients who have had strokes [53] or healthy subjects [35].
The studies by Saleh et al. did not choose another frontal
MNS (e.g., PMC) as the node in the DCM [34, 55]. As the
first fMRI study with DCM that supports the activation of
the MNS induced by MVF and its subsequent effects on the
activation of the primary motor cortex [34], it is worthwhile
to further explore the neural network underlying the MVF, in
order to explain the role of the MNS in the network.

For AO, the activated brain regions were much broader,
including IFG [47, 50], the PMC [22, 47, 48], the IPL [47],
the primary motor cortex [47, 50], and temporal and occipi-
tal structures, which encompass the parietofrontal MNS as
well as the cortical areas for motor execution (e.g., the pri-
mary motor cortex, PMC, and SMA). Small et al. proposed
a model of brain repair after a stroke, which hypothesized
that the MNS activation induced by AO may promote the
reorganization of the cortical motor loop (i.e., the primary
motor cortex, PMC, and SMA), thereby improving the motor
functions of stroke survivors [63]. Our findings provide ana-
tomical evidence to support this model. Observations of the
bimanual action elicited a similar activation pattern as the
execution of the same action in one study [47], whereas
another study showed that AO (of a simple wrist movement)
activated a part of the PMC and IPL, which did not resemble
the activation pattern of action execution to such a great
extent [56]. This difference may be attributed to different
experimental paradigms of AO. The AO network, which
may be involved in the understanding of motor intention,
may have a stronger response to an object-directed or goal-
directed action [64, 65], relative to a single action without
meaning, although this is still inconclusive [66]. All in all,
the results are still consistent with previously defined bilateral
AO networks in healthy human brains [29, 30]. The neural
network underlying the AO remains unclear.

The activation patterns of MVF and AO are obviously
different. AO elicited broader activation of the frontal, parie-
tal, temporal, and occipital areas, while the activated regions
of MVF mainly covered the frontal and parietal structures.
The difference between these two regimens is that the partic-
ipants were required to perform bilateral or unilateral move-
ment themselves when observing the visual feedback in the
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MVF experiments, while this was not required in the AO
experiments. Previous studies have assumed that there are
different neural networks in response to AO and MVF
[35, 67], and this opinion was confirmed by the present
review in the stroke cohorts. Even though the underlying neu-
ral network cannot be fully understood at this stage, MNS
activation seems to play a key role in both AO- and MVE-
induced functional plasticities. There have been several TMS
studies that have provided indirect evidence of the activation
of the primary motor cortex by AO or MVF [27, 68]. There-
fore, these two modalities can be viewed as optional motor
priming tools for stroke rehabilitation. However, there is still
alack of studies directly comparing the clinical improvements
and the pattern of neuroplasticity induced by MVF and AO
[69] and whether or not the activation pattern is congruent
with the clinical improvements in patients with stroke.

Brain waveforms recorded by EEG are altered by AO,
reflected by lower alpha power and higher beta power over
the frontal, central, and occipital electrodes [41, 42]. Some
studies have also shown that the electrophysiological
responses to AO may decrease after repetitive stimulations
[43, 51]. These changes may be related to the changes in cog-
nitive activities related to the understanding of motor inten-
tion after receiving visual feedback [70]. However, pure
spectrum analysis is less likely than detailed EEG analyses,
for example, time-frequency analysis, to reflect MN activity
and stroke recovery [71, 72]. A recent meta-analysis indi-
cated that both AO and action execution could induce the
suppression of mu rhythm with a significant effect size [73].
This property of dual activation makes the mu suppression
a signature of human mirror neuron activity [37, 74].
Regarding the studies included in the present review, two
articles investigated AO-induced mu suppression in stroke
individuals and its relationship with brain lesions [13, 49].
They found that the magnitude of mu suppression was
reduced in the affected hemisphere, relative to the unaffected
hemisphere, which was also identified by another study [58].
Two RCTs demonstrated that AO- or MI-induced mu sup-
pression can be enhanced after long-term AOT [28] or train-
ing with MVF [45], which implies enhanced MN activities
after the AO or MI training. Lesion analysis also showed that
the damage over IPL or IFG was correlated with the dimin-
ished mu suppression, which indicates that mu suppression
may be a specific index of MN activities [13, 16, 49].

One study demonstrated that behavioral improvement is
correlated with the neural response to AO (measured by
fMRI) in stroke individuals, which indicates that the AO-
induced neural response is likely to be an indicator that can
evaluate the arm motor recovery of patients who have had
strokes within the first three months [47]. As the MNS is cor-
related with motion imitation [75], its activation may be a
neurobiomarker that can measure the potential of motor
learning in patients who have had strokes [47], which could
also be measured by mu suppression. The predictive value
of mu suppression and its relationship with motor improve-
ment remain speculative. Other frequency bands related to
action execution and AO, such as the beta band, might also
be suitable candidates in regard to measuring MN activities
[38, 76], although evidence of this in the stroke population
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is fairly limited [54]. As EEG is a relatively low-cost tech-
nique, further studies are encouraged to longitudinally
explore the role of the ERD of different frequency ranges over
various brain regions in patients who have had strokes. This
neurobiomarker may also serve as a useful reference of the
patients’ motor recovery trajectory and motor relearning
potential, promoted by MNS activation in stroke individuals.

There are some limitations in the present review. First,
the heterogeneous protocols of AO and MVF and different
experimental designs in regard to implementing neuroimag-
ing hindered us from giving a firm and precise conclusion.
Second, potentially confounding factors cannot be fully
explained, based on currently available evidence, such as
the dominance of handedness [48] and the nature of stroke
lesions [48], which may result in different responses to AO
and MVF. Further studies are warranted to answer these
questions. Finally, restricting our review to English publica-
tions may have resulted in language bias.

5. Conclusions

MVF may contribute to stroke recovery by revising the inter-
hemispheric imbalance, and MNS recruitment may be one of
the potential neural mechanisms in this process. AO is associ-
ated with the activation of the MNS and motor cortex, which
may promote motor relearning in stroke individuals. More
rigorous studies with functional neuroimaging or electrophys-
iological techniques should be performed to further explain
the different functional neural networks underlying AO or
MVF and to explore the relationship between MN activities
and clinical recovery in patients who have had strokes.

Abbreviations

AO:  Action observation

MVE: Mirror visual feedback

MNS: Mirror neuron system

fMRI:  Functional magnetic resonance imaging
EEG: Electroencephalography

CIMT: Constraint-induced movement training
VR:  Virtual reality

IFG:  Inferior frontal gyrus

PMv: Ventral premotor cortex

IPL:  Inferior parietal lobule

IPS:  Intraparietal sulcus

MT:  Mirror therapy

MEG: Magnetoencephalography

PET: Positron emission tomography
NIRS: Near-infrared spectrometry
ERD: Event-related desynchronization
DCM: Dynamic casual modelling
PMC: Premotor cortex

SMC: Sensorimotor cortex

MI: Motor imagery

STG:  Superior temporal gyrus
SMA: Supplementary motor area
SMG: Supramarginal gyrus

PCC: Posterior cingulate cortex
MFG: Middle frontal gyrus.
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