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Abstract: Background: On diagnosing Alzheimer’s disease (AD), most existing imaging-based
schemes have relied on analyzing the hippocampus and its peripheral structures. Recent studies have
confirmed that volumetric variations are one of the primary indicators in differentiating symptomatic
AD from healthy aging. In this study, we focused on deriving discriminative shape-based parameters
that could effectively identify early AD from volumetric computerized tomography (VCT) delineation,
which was previously almost intangible. Methods: Participants were 63 volunteers of Thai nationality,
whose ages were between 40 and 90 years old. Thirty subjects (age 68.51 ± 5.5) were diagnosed with
early AD, by using Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) criteria and the
National Institute of Neurological and Communicative Disorders and the Stroke and the Alzheimer’s
disease and Related Disorders Association (NINCDS-ADRDA) criteria, while the remaining 33 were
in the healthy control group (age 67.93 ± 5.5). The structural imaging study was conducted by using
VCT. Three uninformed readers were asked to draw left and right hippocampal outlines on a coronal
section. The resultant shapes were aligned and then analyzed with statistical shape analysis to
obtain the first few dominant variational parameters, residing in hyperplanes. A supervised machine
learning, i.e., support vector machine (SVM) was then employed to elucidate the proposed scheme.
Results: Provided trivial delineations, relatively as low as 5 to 7 implicit model parameters could be
extracted and used as discriminants. Clinical verification showed that the model could differentiate
early AD from aging, with high sensitivity, specificity, accuracy and F-measure of 0.970, 0.968, 0.983
and 0.983, respectively, with no apparent effect of left-right asymmetry. Thanks to a less laborious
task required, yet high discriminating capability, the proposed scheme is expected to be applicable in
a typical clinical setting, equipped with only a moderate-specs VCT.

Keywords: early Alzheimer’s disease; volumetric computerized tomography; shape analysis;
support vector machine

1. Introduction

Alzheimer’s disease (AD) comprises of several risk factors [1–3], including not only aging process
but also a genetic predisposition that causes changes in specific nerve cells and accumulation of
neuritic plaques and neurofibrillary tangles [4,5]. It is often necessary for a physician to conclusively
identify the presence of AD, especially in its early stage. The clinical diagnosis of AD must therefore
be considered based upon both history and symptom progression to be differentiable from other
secondary dementias [6–10].
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Structural neuroimaging in dementia such as Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI) of the brain is generally adopted in differential diagnosis by determining the anatomical
plane and location of atrophy. As for AD diagnosis, recent studies [11–13] have shown that structural
imaging could play a key part in evaluating medial temporal atrophy, width of choroidal fissure,
width of temporal horn and height of hippocampal formation. Typically, MRI is preferred to CT,
because it has the advantage of being able not only to assess regional atrophy but also to show detailed
changes such as white matter lesions and microbleeds. Unfortunately, state of the art MRI is not
available in most hospitals in developing countries. Alternatively, there are others using volumetric CT
(VCT) in assessments of cerebral atrophy, regional volumetric measurements, and parenchymal density
measurements [14–16]. Although there exist hippocampal ratings based on Scheltens’ scale, this visual
analog assessment is rather subjective and can be made accurately only by an expert neurologist.
Moreover, differentiating a normal from early stage AD by Schelten’s scale reading calls for prominent
and thoroughly definitive boundaries available only in MRI. Preliminary screening by using a more
cost effective CT, before referring to MRI study, is therefore a viable yet challenging alternative.

Thus far, the structural-based schemes share similar hindrances. Firstly, definite line has to be
drawn empirically on a set of selected measurements to separate symptomatic attributes from the
asymptomatic ones. This inevitably causes large inter-reader variabilities and dependencies on various
other factors, e.g., ethics and other clinical exposures. Moreover, predefined structural criteria become
less definitive as the disease is yet in early development, making assessments based on imaging
interpretation even more dubitable.

Existing morphological analyses typically rely on imposing some statistical distributions over
Euclidean-based measurements, e.g., length, area, or volume, etc. This sample space was then
divided into that of normal and symptomatic, along a discrimination line between respective modal
curves. Unlike those schemes, in which metric assumptions were made a priori, Statistical Shape
Analysis (SSA) computationally deduces mutual variations of geometrical properties within the sample
space. The most discriminative separations are then implicitly made along axes containing the largest
variations. More specifically, SSA first calculates a co-variances matrix of all corresponding control
points describing the shape. This matrix is then decomposed by using Eigen bases into a set of
spanning vectors, called principal components (PC), arranged by their importance [17,18]. With the
SSA, a Mahalanobis distance between respective PCs is used to measure the difference between any
shape pair. Accordingly, their cluster separations can be intuitively determined, without having to
compare some measurements arbitrarily. Due to this preferable characteristic, the SSA has been widely
employed in various studies, including medical imaging [19,20].

Image analysis of the hippocampus has currently been a topic of interest in diagnosis of AD [21–23].
Provided a set of hippocampal shapes, those techniques created a generalized model of a hippocampus,
which can be used to distinguish normal from pathological AD hippocampi. More specifically,
Mrzilkova et al. [21] manually analyzed MR images and confirmed that hippocampal volume decrease
is a primary determinant of AD diagnosis, but found no clinical use of pons and cerebellum volume
nor left-right asymmetry. Wang et al. [22], computed hippocampal surface deformation also from
MRI but applied SVD to determine different patterns between normal and AD groups. Likewise,
Scher et al. [23] compared volumetric MRI of the normal and AD groups, but based on normalized
medial axes locally describing the shape. These techniques had reached the similar conclusion that
MRI could be employed to derive structural attributes, differentiating AD subjects from healthy aging.
They, however, required presumptions regarding the attributes (e.g., volume and local deformation) on
which the discrimination is made. Some of these techniques also required tedious manual delineation
of entire 3D hippocampi so that sufficiently dense data could be sampled. Furthermore, none of those
findings were able to confirm mild symptomatic hippocampi during their early AD stage.

To address those limitations, the aim of this study is to employ VCT for assessing hippocampal
structures and then to determine compact yet definitive early AD discriminants, with high sensitivity,
accuracy, and precision. Given a set of manually drawn contours on a single coronal slide, we shall
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later show in the experiments that a relatively small number of parameters could be derived and
effectively employed for this purpose. Since the morphological analysis was performed on a single
slide, without requiring any tissue intensities, the VCT acquisition was thus preferred to MRI as it
induced less tiredness and anxiety for aging subjects. Moreover, apart from hippocampal outline and
some fiducial markers, subsequent computations were automatic and required no additional empirical
knowledge from neurologist readers. The remainder of the paper is organized as follows. Section 2
explains related materials and the proposed method, including data, analytical procedure and its
statistical assessments. Sections 3 and 4 report experimental results in vivo, compared to conventional
metric analysis and their discussions, respectively. Section 5 states the concluding remarks of the
current study.

2. Methods

2.1. Subjects

From January to March 2015, the participants were recruited from an outpatient clinic at our
University Hospital. Cranial VCT scans were acquired from 30 subjects with early AD and from
33 healthy, age-matched subjects in control group. The patients were diagnosed with AD by
using DSM-IV criteria and the National Institute of Neurological and Communicative Disorders
and the Stroke and the Alzheimer’s disease and Related Disorders Association (NINCDS-ADRDA)
criteria in probable level [24,25]. Questionnaires were used to collect the information of age, sex,
highest of educational degree, occupation and family history of dementia. Clinical data such as blood
pressure, neurological examination record and Mini-mental State Examination in Thai language (TMSE)
score were obtained from all subjects (taken into account their differing educational backgrounds).
Those subjects with histories of head injury, brain hypoxia, alcoholism, underlying diseases or other
involving factors that may affect the size of hippocampus, for instance epilepsy or limbic system
disorders were excluded. Written informed consent had been taken from all subjects prior to the study.
The study protocol was approved by the ethics committee of Suranaree University of Technology
(EC-57-23), conforming to the ethical principles of the Declaration of Helsinki.

2.2. Imaging Protocol

The imaging examination was performed by using a two–row spiral CT unit (Dual HiSpeed,
GE Medical Systems, Chicago, IL, USA). An unenhanced CT images of the head was first acquired
in sequence with slice thicknesses of 7 mm in supratentorial space and of 4 mm within the posterior
cranial fossa. Contrast enhancing agent was later administered and then another set of CT scans
was acquired with a slice thickness in axial direction of 0.625 mm and reconstructed with 2.5 mm
resolutions in axial, coronal and sagittal views. The regions of interest (ROI) were fixated around
hippocampal outlines (Figure 1).
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2.3. SSA Software

The software used in the subsequent analyses was developed in-house specifically for the
purpose of this study. It supports Picture Archiving and Communication System (PACS) standard by
using the DCMTK™ (NEMA 2016, OFFIS 2011) library and written in C++ language. This software
(SSA 1.0, Suranaree University of Technology, NR, Thailand) consisted of two modules, i.e., the expert
training and the automatic morphological analysis. The purpose of the first module was to aid
the reader to browse and load a set of enhanced CT picture from a selected study stored in the
Digital Imaging and Communication in Medicine (DICOM) format on a PC panel. This module also
enabled interactive manipulation of imaging data, including slice selection, window/level and scale
adjustments, and panning so that a hippocampal area of interest best fitted to the viewing frame.
The radiological reader then utilized the built-in drawing tools to delineate both sides of hippocampi,
manually based on prescribed topology (Figure 2).
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Figure 2. Annotated sketch (left) (A = Hippocampal formation height, B = Hippocampal and stem
distance, C = Choroid fissure width, D = Temporal horn width) of topological prescription and the
corresponding shape overlaid on an image (right). For clarity, the fiducial markers (stars) are placed
on the left contour, while the regularized control points (circles) are shown on the right one.

The second module analyzed the hippocampal shapes from the training set and constructed
a statistically deformable model describing their plausible anatomical variations. Specifically,
since these shapes were drawn free hand and as such were difficult to correlate their control
points, they were firstly fitted with a cubic spline and regularized with respect to the prescribed
fiducial markers, by using spline arc-length re-parameterization [26]. Subsequently, each regularized
hippocampus was expressed as a vector of concatenated coordinates (x, y) of N control points, as given
in Equation (1), where i is the shape index.

xi = [xi1, yi1, xi2, yi2, . . . , xik, yik, . . . , xiN , yiN ,]T , (1)

Once their correspondence was established, the shapes were aligned by Procrustes analysis [27]
to remove geometrical biases due to size, locations and orientation. These normalized co-registered
dataset were then analyzed with Principal Component Analysis (PCA) to produce a Karhunen-Loeve
expansion of bases describing plausible dominant variations found in the training set, with respect to
their mean shape and control points covariance, as given by Equation (2), where x is a shape vector
whose index was i = 1 . . . N, x is the mean shape, PS and bS are the 2N Eigen bases 2N dimensions
and shape parameters vector of 2N elements, respectively.

xi = x + Psbs, (2)



Brain Sci. 2017, 7, 155 5 of 14

The model expressing a hippocampal instance by these linear combinations of the bases, PS,
is hereon referred to as Statistical Shape (SS). It would be shown later in the experiments that
due to favorable properties of the PCA, any incremental contribution due to an additional basis
decreased as a more number of modes were included. In other word, majority (2–3 times the range
of multi-dimensional standard deviations) of statistical distribution could be sufficiently captured by
the first few modes of variations. Accordingly, a hippocampal instance may be synthesized faithfully
(i.e., conforming to the hippocampal anatomy) by as few (M) truncated model parameters, as given by
Equation (3), where Pm

s is the mth bases vector in the shape bases and bm
s is the corresponding shape

parameter, respectively. The number of modes M was computed such that accumulated variance up to
the value M comprised required variation (e.g., within ±3σ) found in the training set.

xi = x + ∑M
m=1 Pm

s bm
s , (3)

2.4. Supervised Model Clustering

Truncated SS model parameters extracted per each pair of hippocampi with associated labels
of both AD and non-AD groups were fed into a Support Vector Machine [28] (SVM) for supervised
classification. A given sample x was classified based on their corresponding PCA model parameters
b by using the discrimination functions, given in Equation (4), where sgn is the sign function, K is
a linear kernel function of s, whose slope and interception point were computed during the training
process and the magnitude αi and bias values b were empirical SVM parameters [29], set by default.

f (x) = sgn

[
∑

i
αiyiK

(
xi·xj

)
+ b

]
(4)

K(s) = γs + β

2.5. Benchmarking with Conventional Metric Analysis

It is clinically established that one of the major determinants for diagnosing AD in general is
hippocampal formation area. By visual inspection, an expert reader needs to consciously correlate this
area with other peripherals. For screening purposes, however, some readers prefer simplifying this
measurement to formation height (Figure 2). These procedures have raised some concerns, namely,
subjective bias due to overall head size and variability of reference axes. To elucidate this statement
and thus highlight the merits of this study, the proposed morphological clustering was benchmarked
against that based on relative formation area, whose value was computed using Trapezoidal integral.

2.6. Validation and Performance Analysis

Fisher exact tests and Student t-tests were used to compare between demographics and clinical
characteristics. The hippocampal shape classification was evaluated by using statistical measures [30].
Specifically, the precision (producer’s accuracy) is defined as the ratio between the samples correctly
predicted as having AD (true positive, TP) and those predicted as such (true and false positives,
TP+FP). The recall (user’s accuracy or sensitivity) is defined as the ratio between the samples correctly
predicted as having AD and those in fact were diagnosed with AD (true positive and false negative,
TP+FN). The accuracy is the proportion of the correct results among the total number of instances
examined and was defined as the ratio between the samples correctly predicted as and as not having
AD (true positive and negative, TP+TN). F-measure is defined as the harmonic mean of precision
and recall.

3. Results

Sixty-three participants were divided into two groups, whose details of baseline characteristics
were given in Table 1.
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Table 1. Characteristic Data.

Subject N = 33 Control N = 30 p

Age (40–90 Year) 68.51 ± 5.5 67.93 ± 5 0.076
Female 25 (75.8%) 15 (50%) 0.065

Highest level of education Less than Level 6 (90.9%) Less than Level 6 (60%) 0.034
Occupation Retired (75.8%) Retired (50%) 0.066

Family history of dementia None None -
Average blood pressure (mmHg) 135.1/75.5 ± 14.2/7.3 139.2/81.4 ± 14.4/8 0.064

TMSE* score (point) 18.3 ± 1.6 27.5 ± 1.6 0.027

p-Values are assessed using Student t-test or Fisher exact tests. * TMSE: Mini-mental State Examination in
Thai language.

3.1. Hippocampal Morphology Variability

The readings of hippocampal morphology from two out of three readers were shown (Figure 3).
It is clear that there existed significant intra- and inter-observer variabilities. Particularly, a mild AD
case would have been diagnosed differently by reader A and B if they had done based primarily on,
for instance, hippocampal formation area (top row). On the other hand, depending on an empirically
defined threshold, readers A and B might as well or might not agree on the other case (bottom row)
with less noticeable discrepancies. These ambiguities thus often call for neurological experts to confirm
the result.
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The initial Degree of Freedom (DoF) of a hippocampal contour per each side was 40, i.e., 2 for
(x, y) coordinates multiplied by 20 control points. A total of 63 samples were assessed independently
by three readers, each repeated their tracing 2–3 times, hence a total of 382 delineated instances were
produced. These instances were analyzed with PCA and their principal modes of variations were
extracted. Out of the 40 DoFs, only 9 modes (i.e., model parameters) were able to capture 95% of total



Brain Sci. 2017, 7, 155 7 of 14

variations. The variational patterns found in the first two significant model parameters are depicted in
Figure 4, showing the respective variations within ±2 standard deviations.
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To determine whether the Statistical Shape (SS) model parameters were capable of separating
control from AD subject groups, their scattered plots were evaluated. For clarity, only the first two
dominant modes of all 382 instances were shown (Figure 5). Each point corresponds to a shape
instance drawn by one reader on one subject. A reader might repeat his/her delineations for any
subject a couple times, depending on his/her confidence. Both groups were clustered with some
noticeable outliers and overlapping. This is due to that only 2 out of 10 modes were considered,
leaving out 8 discriminant factors, which would have been comprising 95% of total variations.
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The former issue could trivially be elevated by including even more number of modes into
classification, whose results will be reported in the next section. The ambiguity due to inter and intra
observer variabilities was resolved by averaging readings in the model space. The resultant scattered
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plot therefore consists of only 63 consensus points, corresponding to 30 and 33 controls and subjects
(Figure 6). With inter and intra observer variabilities being reduced, the cluster separation become
more apparent, leaving merely a few overlaps near the boundary.
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3.2. Multi-Dimensional SVM Classification

To assess the model performance, an SVM with linear kernel were adopted to perform clustering
based on first three model parameters, resulting in a 3D hyperplane separating both groups.
All 63 samples annotated as controls and subjects were used as the training set. By using the SVM
linear classifiers, the respective numerical assessment results are listed in Table 2. It is evident that,
with only three model parameters, the misclassification errors were only a few samples per either side,
i.e., 95.24 and 98.41 percent, respectively. In addition, there was no need to use higher order kernel
(e.g., polynomial or RBF, etc.) as a linear support vector already satisfactorily divided both classes.

Table 2. Support Vector Machine (SVM) Numerical Assessments.

Attributes Left % Right %

Correctly Classified Instances 60 95.2381 62 98.4127
Incorrectly Classified Instance 3 4.7619 1 1.5873

Kappa Statistics 0.9047 0.9682
Mean Absolute Error 0.0476 0.0159

Root Mean Squared Error 0.2182 0.1260
Relative Absolute Error 9.5395% 3.1798%

Root Relative Squared Error 43.6690% 25.2123%

3.3. Optimal Number of Model Parameters

We have analyzed the training set and found that 95% of total morphological variations can be
captured by ten model parameters. In statistical perspectives, this means that based on these data,

(1) Both seen and unseen samples can be described by a linear combination of only 10 bases
(compactness and generalization abilities of the model).

(2) Any linear combination generated by randomized (with a Gaussian distribution) model
parameters can synthesize a sample that is closely resemble to those previously seen
(specificity) [31].

Care should therefore be observed when applying these model parameters for AD classification.
On one hand, as highlighted in the previous sub-section, taking into account only a few parameters
could result in indecisive areas. On the other hand, Occam Razor’s principal [32] stated that if there
are more than one explanations (in our case, the number of model parameters) for an occurrence
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(AD condition), the simplest one prevails. Relying on relatively small sample size, an over complicate
model could adversely cause over fitting. An experiment was hence carried out to find the optimal
model for detecting mild case in early AD. To this end, the first N model parameters were fed in
to an SVM in turn. In each scenario, the corresponding TP, TN, FP, FN for healthy controls (C) and
AD subjects (S) were computed (Table 3).

Table 3. Numbers of correctly (TP–C, TP–S, TN–C and TN–S) and incorrectly (FP–C, FP–S, FN–C and
FN–S) classified hippocampal samples w.r.t. number of model parameters (modes) taken into account.

Left Correctly Classified (Samples) Incorrectly Classified (Samples)

Modes TP–C TP–S TN–C TN–S FP–C FP–S FN–C FN–S

1 29 30 29 30 3 1 1 3
2 28 31 28 31 2 2 2 2
3 29 31 29 31 2 1 1 2
4 29 30 29 30 3 1 1 3
5 29 31 29 31 2 1 1 2
6 29 32 29 32 1 1 1 1
7 29 33 29 33 0 1 1 0
8 29 33 29 33 0 1 1 0
9 29 33 29 33 0 1 1 0

10 29 33 29 33 0 1 1 0

Right Correctly Classified (Samples) Incorrectly Classified (Samples)

Modes TP-C TP-S TN-C TN-S FP-C FP-S FN-C FN-S

1 30 32 30 32 1 0 0 1
2 29 32 29 32 1 1 1 1
3 30 32 30 32 1 0 0 1
4 30 32 30 32 1 0 0 1
5 30 33 30 33 0 0 0 0
6 30 33 30 33 0 0 0 0
7 30 33 30 33 0 0 0 0
8 30 33 30 33 0 0 0 0
9 30 33 30 33 0 0 0 0

10 30 32 30 32 1 0 0 1

It can be noticed that the number of incorrectly classified samples decreased, as more number of modes were
considered. For the left side, accuracy was not improved after 7 modes, while for the right one, the classification was
consistently accurate for the 5–9 modes, after which a sign of over fitting started to appear. In addition, to evaluate
the model performance, various aspects of the SVM classification, i.e., sensitivity, specificity, precision, accuracy,
and F-measure were computed for each side of hippocampus (Table 4).

Table 4. Sensitivity, specificity, precision, accuracy and F-measure for the controls (C) and subjects (S)
groups. The results w.r.t. the number of modes (M) of both left (L) and right (R) sides are shown.

L Sensitivity Specificity Precision Accuracy F-Measure

M C S C S C S C S C S

1 0.967 0.909 0.906 0.968 0.906 0.968 0.935 0.938 0.935 0.938
2 0.933 0.939 0.933 0.939 0.933 0.939 0.933 0.939 0.933 0.939
3 0.967 0.939 0.935 0.969 0.935 0.969 0.951 0.954 0.951 0.954
4 0.967 0.909 0.906 0.968 0.906 0.968 0.935 0.938 0.935 0.938
5 0.967 0.939 0.935 0.969 0.935 0.969 0.951 0.954 0.951 0.954
6 0.967 0.970 0.967 0.970 0.967 0.970 0.967 0.970 0.967 0.970
7 0.967 1 1 0.971 1 0.971 0.983 0.985 0.983 0.985
8 0.967 1 1 0.971 1 0.971 0.983 0.985 0.983 0.985
9 0.967 1 1 0.971 1 0.971 0.983 0.985 0.983 0.985
10 0.967 1 1 0.971 1 0.971 0.983 0.985 0.983 0.985
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Table 4. Cont.

R Sensitivity Specificity Precision Accuracy F-Measure

M C S C S C S C S C S

1 1 0.970 0.968 1 0.968 1 0.984 0.985 0.984 0.985
2 0.967 0.970 0.967 0.970 0.967 0.970 0.967 0.970 0.967 0.970
3 1 0.970 0.968 1 0.968 1 0.984 0.985 0.984 0.985
4 1 0.970 0.968 1 0.968 1 0.984 0.985 0.984 0.985
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1
10 1 0.970 0.968 1 0.968 1 0.984 0.985 0.984 0.985

From Table 4, the model sensitivity increased as the number of modes increased. For the left hippocampus,
the sensitivity converged at the 3rd and 7th mode for control and subject groups, respectively. Likewise, for the
right hippocampus the value converged at the 3rd and 5th modes. The model specificity, precision, accuracy and
F-measure of the left hand side also increased with the number of models and converged at the 7th mode for both
controls and subjects. For the right hand side, the similar trend can be observed with convergence occurred starting
from the 3rd and not later than the 5th mode for both groups.

4. Discussion

Although the VCT images were contrast-enhanced, hippocampal morphology and their
boundaries remained subject to visual interpretation by the readers. Bi-laterality and hemispheric
asymmetry are widely recognized as the indispensable evolutionally conserved attributes of the
brain [33]. In particular, the hemispheric asymmetry of the healthy human hippocampus is well
established [34,35]. These factors could especially affect and undermine the assessment of brain
structures. In this study, an attempt had thus been made to specifically exclude asymmetric subjects by
examining their history, following the selection protocol [24,25]. However, insignificant hippocampal
L–R asymmetry was noticeable in Figure 4. Indeed, since both shape and SVM models were built
for each side of hippocampi separately, slight differences in both SS distributions (Figures 5 and 6)
and the SVM classification (with three percent difference in accuracies, for instance) (Table 2) were
apparent. This implies that there may be few cases, especially in most early AD stage, where each side
was diagnosed (by SVM) differently. Unless other historical or clinical data suggest otherwise, it may
then be necessary to refer such cases to MRI studies.

Three radiologist readers were given simple instruction to place as few control points and adjust
them as required to define hippocampal boundaries. The process was slightly more complicate than
measuring, for instance, formation height but less tedious than meticulously tracing them by hand.
Since the hippocampal contour were manually defined, and thus different readers may disagree
on boundary definitions, as illustrated by two examples (Figure 3). Typically, one would average
these shapes per subject to produce a unique consensus. However, it is worth pointing out here that
geometrical average on the image space, i.e., Cartesian coordinates, does not necessarily preserve
their anatomical realizations. At a given coordinate on the curve, for instance, one reader may
identify as hippocampal formation while the other labelled it as choroid fissure. Geometrical mean
of these different structures could inevitably result in illegal curve intersection. Prior to obtaining
the consensus, the SS was therefore firstly created. To obtain a valid shape consensus, this study
then projected the same shape as seen by different readers onto the computed Karhunen-Loeve bases
and instead performed averaging on this model space. The averaged model parameters were then
back-projected onto the Cartesian coordinates, producing anatomically plausible shape hypothesis
for subsequent analyses. In order to further reduce intra-observer variabilities, each reader was also
asked to repeat their tracing a few times per subject, the resultant curves were similarly averaged.
Note however that, since only two modes variables were considered, including additional modes was
anticipated to yield better degree of separation in higher dimensional space. Since both sides were
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analyzed by separate PCAs and hence spanned with different set of bases, their variation directions
may differ. Nonetheless, it can be noticed that the principal directions could capture the change
of formation height and choroid fissure width on both sides. This statistical morphology inference
concurs with the conventional neurological conjecture of AD manifestation.

On a single slice VCT, AD was generally diagnosed based on hippocampal formation height
or area. This approach could have however caused subjective biases due to overall head size and
variability of reference axes. To satisfy this argument and thus highlight necessity of involving the
proposed statistical shape and SVM analyses, formation areas (averaged per subject) were calculated
and their distributions were illustrated by histograms in Figure 7. It is evident that, out of 63 samples,
there were 10 (left) and 6 (right) ambiguities found within the overlapping areas. This suggests that
only the formation area alone was insufficient to accurately differentiate normal from mild AD.
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Among many machine-learning schemes, SVM has been widely applied in medical imaging
for several purposes, ranging from segmentation to Computer Aided Diagnoses (CAD). The main
advantage of this supervised learning algorithm are that it does not need to hold the Gaussian
distribution assumption in the input data and it performs better when only a small number of training
samples are available. There are two types of SVMs, i.e., linear and non-linear ones, whose separation
of data points is decided by respective type of boundaries. The former is suitable for those datasets that
can be easily separated by a hyper-plane whereas the latter is normally used to classify more complex
datasets. The concept behind this SVM classifier is to transform this dataset into higher dimensional
spaces where they can now be separated using a predefined kernel.

The findings reported in Table 4 imply optimal number of model parameters being dependent on
the diagnostic purposes. Specifically, for preliminary screening and confirmation, where a chance of
an AD patient being wrongly diagnosed as normal or vice versa should be minimal, the sensitivity
and specificity take priority and as such the optimal number of modes included would be seven
(the maximum of both sides). Likewise, if precision and accuracy are more important, the number of
modes should be that when these values started to converge.

The F-Measure, defined as a harmonic mean between sensitivity and specificity, and could thus
be a general compromise. In our experiments on 63 participants, since these convergences occurred
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almost at the same level of model complexity, it is thus safe to assume that for an early AD diagnosing
purpose, the all-round optimal number is seven. Increasing the model complexity to 95% coverage
did not improve its performance. On the contrary, as it reached 10 parameters the overfitting started
to surface, in which case the SVM tried to perform clustering based on small perturbations at higher
dimensions, mostly due to noise. This effect was manifested in the dropping of all statistical measures,
as the 10th mode was included. It is, therefore, worth stressing here that, the optimal number of
model parameters are not only dependent on faithful model realization, but also on the sample size
and on clustering purpose. As a general guideline, one may determine a unified value by averaging
these performance indices, and empirically choosing the one that resulted in overall high indices, as
illustrated in Figure 8.
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5. Conclusions

Preliminary screening of normal from early-stage AD by using VCT imaging systems that are
available in developing countries is extremely important, since the number of those with Alzheimer's
disease is likely to increase over the coming decades. Reliable computational schemes that can assist
local physicians to decide whether to refer a case to further detailed MRI study is therefore warranted.
It has been shown that early diagnosis of AD can be made by artificial machine learning based on
morphological characteristic of hippocampi. Unlike existing structural imaging schemes, the proposed
SSA did not require laborious full 3D surface delineation nor any prior knowledge of empirical
measures to distinguish AD from normal shapes. In the proposed scheme, SSA served as a means of
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extracting only dominant variational parameters found in the sampled space, while SVM was adopted
to determine discrimination criteria on these parameters to separate two groups. Its main advantage
is that a less involving manual task was required, enabling the proposed scheme to be effectively
applicable in actual clinical settings for early AD screening of a healthy aging population.
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