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Abstract: Chronic kidney disease (CKD) is a major public health problem worldwide and affects
both elderly and young subjects. Its main consequences include the loss of renal function, leading to
end-stage renal disease, an increased risk of cardiovascular disease, a significant increase in morbidity
and mortality, and a decrease in health-related quality of life. This review arose in significant part from
work in the authors’ laboratory, complemented by literature data, and was based on a translational
approach: we studied the role of many CKD risk factors, such as hypertension, obesity, and oxidative
stress/inflammation. The aim was to identify new molecular mechanisms of kidney damage to
prevent it through successful behavior modifications. For this purpose, in our studies, both human
and animal models were used. In the animal models, we analyzed the mechanisms of renal damage
induced by hypertension (spontaneously hypertensive rats) and obesity (cafeteria diet-fed rats),
showing that redox disequilibrium in plasma and tissue is extremely important in renal alteration
in terms of both oxidative damage (lipid peroxidation, altered expression antioxidant enzymes)
and apoptotic pathway (intrinsic/extrinsic) activation. In hemodialysis patients, we explored the
correlation between the global oxidative balance and both inflammatory markers and cardiovascular
risk, showing a strong correlation between the oxidative index and the blood levels of C-reactive
protein and previous cardiovascular events. This multilevel approach allowed us to individually
and synergistically analyze some aspects of the complex pathogenic mechanisms of CKD in order to
clarify the role of the new amplified risk factors for CKD and to prepare an effective personalized
prevention plan by acting on both modifiable and nonmodifiable risk factors.
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1. Introduction

Oxidative stress, a disturbance in the complex pro-/antioxidant balance, is widely recognized as a
critical component of the pathogenesis and progression of chronic kidney disease (CKD) [1,2]. Due to
its high metabolism, the kidney is extremely vulnerable to oxidative damage, and several experiments
have shown that oxidative stress can cause/accelerate both disease progression and complications [1,3].
Despite several experimental and clinical studies having explored the intricate mechanisms between
CKD and oxidative imbalance, the pathophysiological mechanisms of organ damage have not been
clarified. This review aims to outline the current understanding on molecular mechanisms of oxidative
kidney damage and to highlight the potential targets for therapeutic intervention.
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2. Oxidative Stress and Antioxidant Defense Mechanisms

Oxidative stress occurs when there is an imbalance between the production of free radical species
and the antioxidant ability to neutralize their harmful effects [4]. Free radicals can be defined as highly
reactive molecular species (atoms or molecules) that contain one or more unpaired electrons in their
external shell or outer orbit and that are capable of independent existence [5]. In cells, these radicals
can act as oxidants or reductants by losing or accepting a single electron, and they are continuously
produced by the organism’s normal use of oxygen [6]. Free radicals include reactive radical and
nonradical derivatives of oxygen (ROS) and nitrogen (RNS) that are collectively called reactive oxygen
nitrogen species (RONS) [7]. The generation of RONS is a physiological process and, at moderate or
low levels, RONS are important molecules involved in a number of cellular signaling pathways, in the
extraction of energy from organic molecules, in immune defense, in mitogenic response, and in redox
regulation [8]. An excess production or a decreased scavenging of RONS has been implicated in aging
and age-related diseases [9]. Both endogenous and exogenous sources of RONS have been described.
The endogenous sources of RONS include different subcellular organelles, such as mitochondria,
peroxisomes, and endoplasmic reticulum, where oxygen consumption is high [10]. NADPH oxidase
(nicotinamide adenine dinucleotide phosphate oxidase) is a prevalent source of the superoxide radical
(•O2−), which is formed by the addition of one electron leak from the electron transport system
during cellular respiration to the molecular oxygen. Most of the superoxide dismutates into hydrogen
peroxide (H2O2) through superoxide dismutase (SOD) [8]. H2O2 is a neutral molecule because it has
no unpaired electrons, but it is able to form the most reactive and dangerous radical, the hydroxyl
radical (•OH), through a Fenton or Haber–Weiss reaction. Hydroxyl radicals mainly react with
phospholipids in cell membranes and proteins. In activated neutrophils, in the presence of chloride and
myeloperoxidase, H2O2 can be converted into hypochlorous acid that can react with DNA and produce
pyrimidine oxidation products and add chloride to DNA bases [11]. Another important determinant
in the cellular redox equilibrium is nitric oxide (NO). In mammals, NO can be generated by three
main isoforms of nitric oxide synthase (NOS): endothelial NOS, which is related to vasodilation and
vascular regulation; neuronal NOS, which is linked to cellular signaling; and inducible NOS, which
is activated in response to various endotoxin or cytokine signals [12]. All isoforms of NOS utilize
arginine as the substrate and molecular oxygen and reduced nicotinamide–adenine–dinucleotide
phosphate (NADPH) as cosubstrates. The reaction of NO with the superoxide radical (•O2−), forms
the potent oxidant peroxynitrite (ONOO−). This compound can cause oxidative damage, nitration,
and the S-nitrosylation of biomolecules, including proteins, lipids, and DNA [13]. Nitrosative stress
through ONOO− has been implicated in DNA single-strand breakage, followed by poly-ADP-ribose
polymerase (PARP) activation [14]. Exogenous sources of RONS are numerous and include air and
water pollution, pesticides, tobacco, alcohol, heavy metals (Fe, Cu, Co, and Cr) or transition metals (Cd,
Hg, Pb, and As), drugs (cyclosporine, tacrolimus, gentamycin, and bleomycin), industrial solvents,
cooking (smoked meat, waste oil, and fat), and radiation. Inside the body, all of these substances
are metabolized into free radicals [10]. Endogenous or exogenous RONS are capable of damaging
biologically relevant molecules with consequent cell damage and homeostatic disruption [15]. Among
them, lipids, carbohydrates, nucleic acids, and proteins are the major targets, and their oxidative
modification can also be used as markers of oxidative stress [16].

Free radicals can damage cells through several mechanisms:

(1) Lipid peroxidation and loss of membrane fluidity: double bonds in polyunsaturated membrane
lipids are vulnerable to attacks by oxygen-free radicals;

(2) Protein cross-linking: free radicals promote sulfhydryl-mediated protein crosslinking, resulting
in increased degradation or loss of activity;

(3) DNA fragmentation;
(4) Oxidative damage to carbohydrates impairs the functions of some cellular receptors, including

those associated with hormonal and neurotransmitter responses.
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The overproduction of oxygen-derived free radicals has been implicated in the pathogenesis of
over 200 clinical conditions (Figure 1). Tissue injury and its healing are characterized by a sequence
of various events influenced by the cause of the injury and other factors, such as the intensity of the
damaging agent, the type of tissue, and the condition of the whole organism. The healing process
is mediated by a variety of messengers released by the immune system; for example, phagocytes
produce cytotoxic agents, which not only prevent the spread of infection but also remove host cellular
particles that are damaged [17]. The most important cellular defense mechanism is represented by
antioxidant systems. The cells contain important antioxidant defense mechanisms that protect against
free radical toxicity and include both endogenous and exogenous molecules. Endogenous antioxidants
(naturally generated in situ) include enzymatic and nonenzymatic molecules. The primary enzymatic
scavengers are superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px).
SOD catalyzes the dismutation of superoxide into hydrogen peroxide, which is decomposed into
water and oxygen through CAT. In addition, GSH-Px converts peroxides and hydroxyl radicals
into nontoxic forms through the oxidation of reduced glutathione (GSH) into glutathione disulfide,
which is further reduced to GSH through glutathione reductase [18]. Nonenzymatic antioxidants
are molecules such as glutathione, L-arginine, CoQ10, melatonin, albumin, and uric acid (85% of
antioxidant capacity in plasma), which interact with RONS and terminate the free radical chain
reactions [19]. Exogenous no-enzymatic antioxidants, which are supplied through foods, include
ascorbic acid (vitamin C), which scavenges hydroxyl and superoxide radicals; α-tocopherol (vitamin
E), which protects against the lipid peroxidation of cell membranes; phenolic antioxidants (resveratrol,
phenolic acids, and flavonoids); lecithin oil; selenium; zinc; and drugs such as acetylcysteine [20].

Antioxidants 2019, 8, x FOR PEER REVIEW 3 of 11 

of various events influenced by the cause of the injury and other factors, such as the intensity of the 
damaging agent, the type of tissue, and the condition of the whole organism. The healing process is 
mediated by a variety of messengers released by the immune system; for example, phagocytes 
produce cytotoxic agents, which not only prevent the spread of infection but also remove host 
cellular particles that are damaged [17]. The most important cellular defense mechanism is 
represented by antioxidant systems. The cells contain important antioxidant defense mechanisms 
that protect against free radical toxicity and include both endogenous and exogenous molecules. 
Endogenous antioxidants (naturally generated in situ) include enzymatic and nonenzymatic 
molecules. The primary enzymatic scavengers are superoxide dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GSH-Px). SOD catalyzes the dismutation of superoxide into hydrogen 
peroxide, which is decomposed into water and oxygen through CAT. In addition, GSH-Px converts 
peroxides and hydroxyl radicals into nontoxic forms through the oxidation of reduced glutathione 
(GSH) into glutathione disulfide, which is further reduced to GSH through glutathione reductase 
[18]. Nonenzymatic antioxidants are molecules such as glutathione, L-arginine, CoQ10, melatonin, 
albumin, and uric acid (85% of antioxidant capacity in plasma), which interact with RONS and 
terminate the free radical chain reactions [19]. Exogenous no-enzymatic antioxidants, which are 
supplied through foods, include ascorbic acid (vitamin C), which scavenges hydroxyl and 
superoxide radicals; α-tocopherol (vitamin E), which protects against the lipid peroxidation of cell 
membranes; phenolic antioxidants (resveratrol, phenolic acids, and flavonoids); lecithin oil; 
selenium; zinc; and drugs such as acetylcysteine [20]. 

 

 
 

Figure 1. The imbalance between free radicals and antioxidant systems induces cell injury with 
consequent organ/system pathogenesis. 

3. Pathophysiology of Chronic Kidney Disease 

CKD is recognized as a global health problem with a high rate of morbidity and mortality and 
elevated healthcare costs [21]. CKD affects 10–16% of the adult population around the world [22], 
with a mortality rate of 109.7 per 1000 patients/year [23]. A recent meta-analysis of observational 
studies reported that CKD has a high global prevalence (between 11% and 13%), with a higher 
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3. Pathophysiology of Chronic Kidney Disease

CKD is recognized as a global health problem with a high rate of morbidity and mortality and
elevated healthcare costs [21]. CKD affects 10–16% of the adult population around the world [22],
with a mortality rate of 109.7 per 1000 patients/year [23]. A recent meta-analysis of observational studies
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reported that CKD has a high global prevalence (between 11% and 13%), with a higher percentage
in developed areas such as Europe, the USA, Canada, and Australia, where the elderly population
is greater than in developing areas [24]. Although many young patients are affected by CKD due to
congenital disorders (glomerulonephritis and type I diabetes), the risk of CKD increases with age,
and elderly patients are overrepresented in the dialysis population [25]. The main clinical manifestation
of CKD is the loss of the glomerular filtration rate (GFR), which allows for the staging of CKD, with
progressively decreasing (estimated) GFRs. According to the National Kidney Foundation, the Kidney
Disease Outcomes Quality Initiative, and the Kidney Disease-Improving Global Outcomes convention,
CKD is subdivided into five different stages: the first two stages have normal (GFR≥ 90 mL/min/1.73 m2)
or mild reduced kidney function (GFR between 60 and 89 mL/min/1.73 m2), while stages 3–5 have
a severe reduction of kidney function (GFR 15–29 mL/min/1.73 m2), which leads to end-stage renal
disease (ESRD).

The initiating causes of CKD are highly variable, since epidemiological studies have revealed
that with CKD, unmodifiable and modifiable risk factors among patients can be defined (Figure 2).
The first include age, gender, ethnicity, genetic components, and low birth weight; the second comprise
drug toxicity, inflammation, obesity, oxidative stress, hyperuricemia, hypertension, dyslipidemia,
autoimmune diseases, and urinary tract infections [26–28]. The pathophysiology of CKD involves
two mechanisms: the initial mechanism of the specific underlying etiology (as immune complex
glomerulonephritis or the exposure to toxins in some renal tubules (and interstitial disease)) and a
series of progressive mechanisms involving the hyperfiltration and hypertrophy of the remaining
viable nephrons. In addition, inflammation causes epithelial–mesenchymal transitions in renal tubular
cells that move away from the basal membrane and form new interstitial fibroblasts that lead to tissue
fibrosis. Interstitial fibrosis seems to drive further nephron injury through the promotion of renal
ischemia [29]. Remaining viable nephrons lose the ability to perform autoregulation, resulting in
systemic hypertension, which will ultimately be more damaging to the glomerulus and worsen CKD
progression. There are many nonhemodynamic factors that play a role in CKD progression, such
as angiotensin II, aldosterone, endothelin, acidosis, and oxidative stress. Angiotensin II contributes
to the inflammation process by activating cytokines, adhesion molecules, transcription factors, and
monocytes. Angiotensin II also increases the synthesis of the extracellular matrix, the hydraulic pressure
of the glomerulus, and podocyte cell damage [30]. Aldosterone amplifies glomerular injury through
the proliferation of mesangial cells, apoptosis, hypertrophy, and podocyte cell damage. Moreover,
aldosterone causes structural and functional damage to blood vessels by acting as an angiotensin II
mediator [30]. Endothelin is a potent vasoconstrictor whose levels increase during CKD, and it causes
higher pressure in efferent blood vessels than in afferent blood vessels, thus resulting in increased
glomerular hydraulic pressure [21]. Metabolic acidosis, which is due to a compromised capacity
of the kidney to excrete ammonium or reabsorb bicarbonate, is a common complication of CKD,
particularly in patients with a GFR below 20%. The increased ammonia production activates the
alternative complement pathway, while the acidosis status stimulates the formation of both endothelin
and aldosterone, which promote renal fibrosis [21].
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4. Oxidative Stress and Chronic Kidney Disease

Over the last few years, several experimental studies have proven that oxidative imbalance is a
common feature in renal diseases, representing a key process in the development and complications of
CKD [3,31,32]. Oxidative stress could be both a potential cause and a consequence of renal function
alteration, since the primary effect of proper redox regulation is to keep the balance of electrolytes
and physiological buffer systems [33]. In addition, kidneys excrete toxins and waste metabolites
that, if accumulated, could alter the redox homeostasis [34,35]. Among the putative mechanisms
that contribute to the pathogenesis of CKD, oxidative stress has been recognized as accelerating
disease progression through cardiovascular complications, inflammation, fibrosis, and apoptosis,
as well as through glomerular filtration barrier damage [21,36]. For example, the glomerulosclerosis
process, which is associated with an increase in oxidative stress, is induced by both increased
transforming growth factor β (TGFβ) expression and reduced nitric oxide production/activity, causing
tubulointerstitial fibrosis and inducing tubular destruction [37–39].

In particular, cardiovascular diseases are an important complication for CKD patients and represent
the main causes of morbidity and mortality in these sick subjects [40,41]. Renal dysfunction represents
an independent risk factor for cardiovascular disease in each CKD stage, as this population presents
higher rates of diabetic, dyslipidemic, and hypertensive subjects [42–44].

In our laboratory, we focused on human studies regarding an evaluation of the overall
redox/inflammatory state in a significant hemodialysis population, including subjects both with
and without previous cardiovascular events [45]. Several authors have reported a profound imbalance
between oxidants and antioxidants in CKD, though studies on plasmatic oxidative balance have
shown conflicting results [36,46–48]. Moreover, it is unclear at which stage of renal deficiency the
redox imbalance becomes more intense and if dialytic treatment increases redox imbalance [35,49,50].
Our results showed that the oxidative disequilibrium in hemodialysis patients was represented by
an enhancement of the plasmatic antioxidant barrier effectiveness, which was significantly higher
compared to the healthy controls. Although all hemodialysis patients possessed good plasmatic redox
status, we detected a strong correlation between the oxidative index and C-reactive protein blood
levels. This result was not surprising, since CKD is characterized by chronic inflammation [51] and
oxidative stress is one of the key factors in triggering the inflammatory process [52,53]. In addition,
this constant inflammatory status in hemodialysis patients is related to several comorbidities, mainly
cardiovascular events [52]. The most interesting finding that emerged from our study is that, in our
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cohort, patients with previous cardiovascular diseases had higher values of both oxidative stress and
antioxidant barriers with respect to subjects without cardiovascular events [45]. Our results suggest
that the preservation of a redox balance can be considered a target for the prevention of cardiovascular
complications during CKD progression.

In animal models, our research focused on the correlation between oxidative imbalance and
kidney damage by using experimental models of hypertension and obesity (Figure 3). Recent evidence
has shown that oxidative stress is a crucial molecular mechanism involved in the pathogenesis of
renal damage and that apoptosis occurs in critical organs (the heart, brain, and kidneys) during
both hypertension and obesity [54,55]. The aim was to explore new molecular mechanisms of
kidney damage to prevent it through successful behavior modifications. In both human and animal
models, essential hypertension represents an important risk factor for renal dysfunction [56], though
the correlation between elevated blood pressure and kidney damage has not been clarified [57,58].
Complex biochemical, hormonal, and hemodynamic mechanisms are involved in hypertensive organ
damage [59], and a crucial role appears to be exerted by oxidative stress [60,61]. The pathophysiological
role of oxidative imbalance has been reported in genetic and experimental models of hypertension
and is linked to decreased NO bioavailability in the vasculature and kidneys [62]. In our study [54],
we utilized a valid model of essential hypertension, the spontaneously hypertensive rat (SHR), at an
age of 20 weeks, when hypertension is stably developed, vascular remodeling has started, but kidney
function is preserved. In this experimental pathological model, we showed a significant alteration in
both plasmatic pro-oxidant/antioxidant status and tissue oxidative damage. In particular, we detected
a significant rise in lipid peroxidation levels in all SHR tissues, which was particularly relevant in
the kidneys, and altered expression of the antioxidant enzymes superoxide dismutase 1 (SOD1) and
glutathione S-tranferase P1 (GSTP1). In addition, in these hypertensive animals with preserved renal
function, we found a strong activation of both intrinsic (liver and skeletal muscle) and extrinsic (kidney)
apoptotic pathways [54]. These results suggest that, as well as having a direct effect on blood pressure,
redox disequilibrium is extremely significant in hypertensive tissue alteration in terms of both oxidative
damage and apoptotic pathway activation. Several studies have highlighted the solid correlation
between obesity and chronic diseases, including cardiovascular disease [63,64], cancers [65–67],
and renal diseases [68–70]. Obesity is a potent risk factor for kidney disease, as obese subjects have
a greater chance of developing diseases such as diabetes and hypertension [68]. Several studies
have also shown that being overweight or obese may directly cause renal dysfunction and kidney
damage through a direct role in the endocrine activity of adipose tissue [71–74]. Indeed, many
adipokines that are produced by higher visceral adipose tissue have been involved in the development
of insulin resistance, inflammation, and oxidative stress [65,68,75,76]. In our experiments, we used an
obesity model: cafeteria (CAF) diet-fed rats. In rodents, the CAF diet mimics diet-induced obesity
in humans, inducing severe obesity, insulin resistance, and high plasma triglyceride levels [77–79].
To analyze obesity-induced organ damage, we hypothesized that the link between obesity and renal
impairment could be represented by oxidative stress. The relationship between obesity and systemic
oxidative stress has been described [80], and our results corroborated this assumption: the CAF diet
induced a perturbation of the plasmatic oxidative equilibrium, with important antioxidant capacity
depletion [55]. It is well known that increased oxidative stress in metabolic disorders (diabetes, obesity,
and dyslipidemia) implies nonenzymatic antioxidant depletion [58], and this is the first detectable
event of a redox disturbance (as has been highlighted by our research group in humans as well) [81,82].
In obesity models, the enzymatic antioxidant defenses turn out to be altered, but the scenario is very
complex and dissimilar in different organs and tissues [83–85]. In renal tissues in our obesity model,
we found no changes in the expression of SOD1, the most important preventive antioxidant, while
there was a considerable and significant decrease in the GSTP1 monomer (the form with antioxidant
and proliferative activity). These results support the recent genomic evidence that has highlighted the
CAF diet-induced alterations in the white adipose gene transcriptome, which includes the important
suppression of glutathione-related genes and pathways involved in mitigating oxidative stress [86].
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In addition, in our model, we revealed the coexistence of oxidative imbalance and apoptosis activation,
and this represents a potential mechanism of organ damage. The results from our group and others
have suggested that the intricate link between obesity and kidney damage could be truly represented
by a systemic oxidative imbalance, which is also underlined by the nephroprotective activity of
substances with antioxidant activity [55,87]. In particular, we have shown that treatment with a
bergamot polyphenolic fraction enhances the plasmatic ability to neutralize oxidative insults, mainly
in the case of a redox disturbance due to the CAF diet [55].
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5. Conclusions

CKD is a global health burden with a high economic cost to health systems, and its prevalence is
expected to increase significantly in the coming years. It is necessary to carry out intervention strategies
that are deliverable at scale to delay the onset/progression of CKD, and it is thus essential to have a
deep understanding of all pathogenetic mechanisms. In obtaining this goal, basic and applied research
and the interaction between them should be of equal importance The resulting synergy can help us
to realize an effective personalized prevention plan by acting on both modifiable and nonmodifiable
CKD risk factors.
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