
BRIEF DEFINITIVE REPORT

Single-cell lineage mapping of a diverse
virus-specific naive CD4 T cell repertoire
Achia Khatun1,2, Moujtaba Y. Kasmani1,2, Ryan Zander2, David M. Schauder1,2, Jeremy P. Snook6, Jian Shen1,2, Xiaopeng Wu2,
Robert Burns2, Yi-Guang Chen1,4,5, Chien-Wei Lin3, Matthew A. Williams6, and Weiguo Cui1,2

Tracking how individual naive T cells from a natural TCR repertoire clonally expand, differentiate, and make lineage choices in
response to an infection has not previously been possible. Here, using single-cell sequencing technology to identify clones by
their unique TCR sequences, we were able to trace the clonal expansion, differentiation trajectory, and lineage commitment
of individual virus-specific CD4 T cells during an acute lymphocytic choriomeningitis virus (LCMV) infection. Notably, we
found previously unappreciated clonal diversity and cellular heterogeneity among virus-specific helper T cells. Interestingly,
although most naive CD4 T cells gave rise to multiple lineages at the clonal level, ∼28% of naive cells exhibited a preferred
lineage choice toward either Th1 or TFH cells. Mechanistically, we found that TCR structure, in particular the CDR3motif of the
TCR α chain, skewed lineage decisions toward the TFH cell fate.

Introduction
In response to an acute infection, pathogen-specific CD4 T cells
differentiate into type 1 helper T cell (Th1) and T follicular helper
cell (TFH) subsets to orchestrate cellular and humoral defense,
respectively (Marshall et al., 2011; Pepper and Jenkins, 2011;
Pepper et al., 2011). A long-lasting debate (Cho et al., 2017;
Lönnberg et al., 2017; Tubo et al., 2013) has been centered on
whether one pathogen-specific naive T cell can give rise to both
Th1 and TFH cells or develop into only one lineage. Moreover,
whether T cell receptor (TCR) structure, which defines a T cell
clone, can itself influence this differentiation process remains
unclear. Using T cell adoptive transfer, previous studies have
elegantly demonstrated that one naive T cell can indeed differ-
entiate into both Th1 and TFH cells following clonal expansion
(Cho et al., 2017; Tubo et al., 2013). However, due to the technical
limitations, only a small number of naive CD4 T cell clones were
examined in these studies, making it difficult to exclude the
possibility that rare T cell clones may have a preferred lineage
choice to make. Furthermore, some of these studies used TCR
transgenic T cells (Cho et al., 2017; Lönnberg et al., 2017; Tubo
et al., 2013) which inevitably negates the contribution of the TCR
itself to T cell lineage commitment. In addition, when consid-
ering the differentiation trajectory of a single T cell clone over
time, it remains controversial whether memory precursor
T cells arise first and then further develop into terminal Th1 and

TFH effector cells, or whether memory precursor and effector
T cells bifurcate at an early stage of activation and go down
distinct developmental paths thereafter (Badovinac et al., 2005;
Buchholz et al., 2016; Corbin and Harty, 2004; Gett et al., 2003;
Sallusto et al., 2004).

Results and discussion
In an attempt to answer these fundamental questions, we used
single-cell TCR sequencing (scTCR-seq) to identify T cell clones at
the peak of expansion during acute lymphocytic choriomeningitis
virus (LCMV) infection by their unique paired TCR α and β chain
sequences (Fig. 1 A). T cells with identical TCR α and β chains are
almost certainly clones that derive from a single naive T cell an-
cestor, as the chances of two unrelated T cells sharing the same
TCR are ∼1 in 1015 to 1 in 1020 (Davis and Bjorkman, 1988; Lieber,
1991). Simultaneously, we performed single-cell RNA sequencing
(scRNA-seq) to determine the phenotype of every T cell, which
was uniquely linked to each cell’s TCR clonotype by a barcoded cell
identifier (Fig. 1 A). This technology enabled us to study the lin-
eage choice and differentiation trajectory of thousands of cells at
the clonal level from a naturally arising CD4 T cell repertoire.

To increase the specificity of our analysis, we restricted our
sequencing to GP66-77-specific CD4 T cells at day 10 post-infection

.............................................................................................................................................................................
1Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI; 2Blood Research Institute, Versiti Wisconsin, Milwaukee, WI; 3Institute for
Health and Equity, Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI; 4Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI; 5Max
McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI; 6Division of Microbiology and Immunology, Department of Pathology,
University of Utah School of Medicine, Salt Lake City, UT.

Correspondence to Weiguo Cui: weiguo.cui@bcw.edu.

© 2020 Khatun et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the
publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0
International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

Rockefeller University Press https://doi.org/10.1084/jem.20200650 1 of 13

J. Exp. Med. 2020 Vol. 218 No. 3 e20200650

https://orcid.org/0000-0003-0525-4774
https://orcid.org/0000-0002-5753-5335
https://orcid.org/0000-0002-7431-8535
https://orcid.org/0000-0001-7100-8294
https://orcid.org/0000-0002-1396-9254
https://orcid.org/0000-0001-8398-2318
https://orcid.org/0000-0002-9449-0818
https://orcid.org/0000-0001-5334-3486
https://orcid.org/0000-0001-9616-8841
https://orcid.org/0000-0003-4023-7339
https://orcid.org/0000-0002-4721-4482
https://orcid.org/0000-0003-1562-9218
mailto:weiguo.cui@bcw.edu
http://www.rupress.org/terms/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1084/jem.20200650
http://crossmark.crossref.org/dialog/?doi=10.1084/jem.20200650&domain=pdf


Figure 1. Broad clonal diversity of naive antigen-specific CD4 T cells revealed by scTCR-seq during acute LCMV infection. (A) General outline for this
study to trace CD4 T cell clonal fate at the single-cell level during acute LCMV infection. GP66-77-specific CD4 T cells were sorted from five C57BL/6 mice on day
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(p.i.) with LCMV Armstrong, which induces an acute infection
(Fig. S1 A). A total of 18,000 CD4 T cells from five mice with
productive TCR α and β chains were found. However, to limit
any possible FACS sorting errors, only clones with at least two
cells with identical paired TCR α and β chains were included in
this study. By this criterion, we recovered 10,492 cells giving rise
to 686 clones in five mice, with a range of 100–160 clones per
mouse. Taken together, these results suggest that our single-cell
sequencing approach likely recovered themajority of the GP66-77-
specific CD4 T cell clonal repertoire, as these values are in a
similar range as previously published work (Jenkins and Moon,
2012; Kotturi et al., 2008). In addition, we found that as few as 7-
10 dominant clones accounted for ∼40–50% of expanded GP66-77-
specific T cells per mouse (Fig. 1 B), suggesting that these could
be the naive T cells recruited early during the initial priming
phase (Vezys et al., 2006).

In agreement with traditional bulk TCR sequencing studies
(Izraelson et al., 2018; Qu et al., 2016), we found that the five
mice shared very similar V gene usage with TRAV14D-3DV8*02
or TRAV14-3*01 and TRBV31*01 or TRBV13-3*01 genes predom-
inantly used for TCR α and β chains, respectively (Fig. S1, B and
C). Likewise, we also identified similar V-J gene combinations
for both chains among themice, although amore diverse pattern
was seen in TCR α chains compared with TCR β chains (Fig. 1 C;
Turner et al., 2006). When each chain was separately used to
define a clone, we identified 38 TCR α and 11 TCR β clones shared
among at least two mice (Fig. S1, D and E; Bousso et al., 1998;
Madi et al., 2014), with multiple overlapping events for both
individual chains among the same group of mice. To our sur-
prise, when we instead defined clones by paired TCR α and β
CDR3 nucleotide sequences, we detected only four instances of
clonal overlap among five mice, which had a total of 686 clones
(0.6% overlap rate; Fig. 1 D). This demonstrates an immense TCR
diversity even in genetically identical hosts, which has not been
previously appreciated (Izraelson et al., 2018; Madi et al., 2017;
Shifrut et al., 2013; Tong et al., 2016).

Dimensionality reduction analysis performed on single-cell
gene expression data using the top 20 principal components
revealed seven distinct clusters by t-distributed stochastic
neighbor embedding (t-SNE) visualization (Figs. 2 A and S2 A)
after regressing out cell cycle gene expression (Fig. S2 B). Only
cells belonging to clones with two or more cells, as mentioned
above, were included in this analysis. Each mouse showed a
similar distribution of cells among the seven clusters (Fig. 2 B).
Based on the expression of known lineage specific markers
(Fig. 2, C and D; and Fig. S2 C) and module scores for published
memory, Th1, and germinal center (GC) TFH/TFH CD4 T cell gene
sets (Fig. 2 E; Ciucci et al., 2019), cells in these clusters were
largely divided into Th1, TFH, T central memory precursor
(Tcmp), and regulatory T (T reg) cells, showing consistency with

previous research (Choi et al., 2011; Ciucci et al., 2019; Lee et al.,
2011; Lönnberg et al., 2017; Marshall et al., 2011; Pepper et al.,
2011; Tubo et al., 2013). Among these clusters, clusters 1 and 3,
which comprised 35% of the GP66-77-specific CD4 T cell pool,
showed higher expression of Th1-specific markers Cxcr6, Tbx21
(encodes T-box expressed on T cells), Ifng, Gzmb, and Id2 com-
pared with other clusters (Fig. 2, C and D; and Fig. S2 C). In
addition, clusters 2, 4, and 5 showed higher expression of TFH-
specific genes Cxcr5, Bcl6, Il21, Il4, Icos, and Pdcd1 (encodes PD-1;
Fig. 2, C and D; and Fig. S2 C) and together comprised ∼42% of
cells. Cluster 0, which accounted for ∼23% of cells, had higher
expression of Tcmp-associated genes Ccr7, Il7r, Lef1, Id3, and
Slamf6 (Fig. 2, C and D; and Fig. S2 C; Blander et al., 2003; Ciucci
et al., 2019; Colpitts et al., 2009; Marshall et al., 2011; Pepper and
Jenkins, 2011; Pepper et al., 2011; Utzschneider et al., 2016).
Lastly, cluster 6, which constituted only 0.4% of the cells,
showed higher expression of T reg–specific genes, namely Foxp3,
Il2ra, Gzmb, Il10, Cd81, and Cd74 (Fig. 2, C and D; and Fig. S2 C) as
reported in previous studies (Marshall et al., 2011; Moon et al.,
2011). Intriguingly, additional heterogeneity was revealed within
both the Th1 and TFH compartments (Fig. 2, C–E), as has been
shown in a recent study as well (Ciucci et al., 2019). Both clusters
1 and 3 showed significantly higher Th1 gene set module scores
compared with other clusters (Fig. 2 E, middle). Th1-like cluster
1, here onward designated as the Ly6cHi-Th1 cell subset, showed
higher expression of Selplg (encodes PSGL1) and Ly6c2 and also
displayed high expression of chemokine receptors Cx3cr1, S1pr1,
and S1pr5, which are associated with terminal differentiation
(Fig. S2 D; Garris et al., 2014; Marshall et al., 2011). Cluster 3
exhibited lower expression of Ly6c2 and higher expression of
CTL markers Lag3, Pdcd1, Havcr2 (encodes Tim3), and Slamf1 (Fig.
S2 D), suggesting its possible similarity with a previously de-
scribed CD4 CTL subset (Donnarumma et al., 2016; Jellison et al.,
2005). We thus designated this cluster as the Lag3Hi-Th1 cell
subset. On the other hand, clusters 2, 4, and 5 showed signifi-
cantly higher GC TFH gene set module scores compared with
other clusters (Fig. 2 E, right). Within the three TFH-like clusters,
cluster 2 showed higher expression of Selplg (encodes PSGL1) and
other TFH-specific genes (Fig. 2, C and D; and Fig. S2, C and E) but
comparatively lower expression than the other two TFH subsets
(clusters 4 and 5). This was further validated by a GC TFH gene
set module score (Fig. 2 E, right), which was significantly higher
in cluster 2 compared with non-TFH clusters (0, 1, 3, and 6) but
lower compared with the other two TFH subsets (clusters 4 and
5). Thus, this cluster was designated as the precursor TFH subset
(Pre-TFH), which may potentially down-regulate PSGL1 expres-
sion to initiate TFH differentiation while being in a transitioning
state (Crotty, 2014). Despite having some transcriptomic simi-
larities with Tcmp cells, the Pre-TFH cluster differs from Tcmp
cells in that it has higher expression of Pdcd1 and lower

10 following acute LCMV infection to perform the study. All the results in this study are based on the observations made in these five infected mice from three
independent experiments. (B) Bar graphs showing frequency of the top 50 clones (two or more cells/clone) in each mouse. (C) Chord diagram showing TCR α
and β V-J gene usage in five mice. Colors for V and J genes are consistent among the diagrams. (D) Upset plot showing clonal overlap based on TCR α and β
chain among five mice. Clones are defined by paired TCR α and β chain CDR3 nucleotide sequences. Each color indicates one individual mouse; dots below each
bar denotes which mouse or mice the clones were found in. Gray bars with more than one dot represent clones found in more than one mouse.
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expression of II7r (Fig. 2 C). Along with typical TFH markers
(Fig. 2, C and D), cluster 4 showed higher expression of genes like
Ran and Cdk4, which are associated with cell cycle progression
andmetabolic fitness (Fig. S2, E–G). Certain transcription factors
like Batf and Bhlhe40 were highly expressed in this cluster
compared with the other two TFH clusters (Fig. S2 E). More
interestingly, cluster 4 also expressed higher levels of Th1
genes such as Tbx21 and Ifng (Fig. S2 E), suggesting its possible
association in providing help to IgG2a- and IgG2c-producing
B cells during a type I immune response (Crotty, 2014; Iwata
et al., 2017; Weinstein et al., 2018; Zhang et al., 2019). We thus
designated this subset as TFH1. Lastly, we found that cluster 5,
designated here as GC TFH2, displayed higher expression of
canonical GC TFH cell markers Cxcr5, Bcl6, Il21, Il4, Icos, Ascl2,

Tox2, Sh2d1a, and Pdcd1 (Fig. 2, C and D; and Fig. S2, C and E;
Cannons et al., 2010; Xu et al., 2019). This suggests cluster 5
may specialize in providing critical help signals to promote
the differentiation of IgG1-producing B cells (Ozaki et al.,
2002; Reinhardt et al., 2009).

To better understand the differentiation state of, and lineage
relationships among, these CD4 T cell clusters (with the excep-
tion of T reg cells), we employed the R packageMonocle 2, which
uses unsupervised machine learning algorithms to predict dif-
ferentiation trajectories (Qiu et al., 2017). Notably, Monocle 2
predicted a differentiation trajectory with two major branch
points (Fig. 2 F). This included an overlapping differentiation
state observed for clusters 1 and 3 (Ly6cHi-Th1 and Lag3Hi-Th1
subsets, respectively) emerging from one branch point, but two

Figure 2. Cellular heterogeneity and lineage relationship among naive polyclonal CD4 T cells responding to acute LCMV infection. (A) t-SNE plot
showing clusters identified by variable gene expression from polyclonal LCMV-specific CD4 T cells in five mice at day 10 p.i. from three independent ex-
periments. Each dot is an individual CD4 T cell. t-SNE plot was calculated using top 20 principal components. (B) Bar plot showing percentage of cells in each
cluster across five mice. (C) Heatmap showing Z scores for the average expression of CD4 T cell subset–specific genes in each cluster. (D) Violin plots showing
expression of cell type–specific genes Ccr7, Cxcr6, Cxcr5, Id2, Pdcd1, Tbx21, Il21, and Foxp3 across all clusters. (E) Violin plots showing module scores for memory,
Th1, and GC TFH CD4 T cell gene sets across all clusters in five mice; P value was calculated using the Wilcoxon test with Holm-Sidak correction. (F) Single-cell
trajectory plot made by Monocle 2 showing lineage relationships among major CD4 T cell subsets during acute LCMV infection (cluster 6 T reg cells excluded).
(G) Tree trajectory plot made by Monocle 2 showing transcriptional progression of different CD4 T cells cellular subsets at day 10 p.i.
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distinct fates for clusters 4 and 5 (TFH1 and GC TFH2 subsets,
respectively) emerging from another point. The cells from
cluster 0 (Tcmp) converged on both of these branches, while
cells from cluster 2 (Pre-TFH) converged more toward TFH

branches, respectively. This finding may suggest that Pre-TFH

cells hold the potential to further differentiate into either one of
these two TFH subsets as previously reported (Crotty, 2014).
Notably, cells from cluster 0 (Tcmp) were enriched in Monocle
state 2 compared with any other cluster (Table S1 and Fig. S2 H).
Based on this fact and the potential of Tcmp cells to give rise to
both Th1 and TFH subsets, as reported before (Pepper et al., 2011),
Monocle state 2 was set as the root for pseudo-temporal ordering
of differentiation progression (Fig. S2 I). We then performed
Monocle tree trajectory analysis. This tree trajectory analysis
found cells from clusters 1 (Ly6cHi-Th1), 3 (Lag3Hi-Th1), 4 (TFH1),
and 5 (GC TFH2) to be highly concentrated at the tips of the
branches with distinct lineage commitment (∼90%, ∼80%,
∼75%, and ∼65%, respectively), indicating a terminally differ-
entiated state with reduced memory potential (Fig. 2, F and G).
Conversely, cells from cluster 0 (Tcmp) displayed multiple lin-
eage choices (either Th1 or TFH subsets) with some cells con-
centrated at the root of the tree trajectory, suggesting enhanced
memory potential (Fig. 2, F and G), as previously shown (Pepper
and Jenkins, 2011; Pepper et al., 2011). Cluster 2 (Pre-TFH) cells
instead had a preferred lineage bias toward TFH subsets. Inter-
estingly, tree trajectory predicted early lineage specification
within the Tcmp and Pre-TFH clusters, although they appeared
more homogenous in the prior t-SNE analysis (Fig. 2, A and G).
Taken together, single-cell transcriptomics revealed a higher
degree of transcriptional heterogeneity than previously appre-
ciated and supported a bifurcated differentiation trajectory from
Tcmp to either Th1 or TFH effector cells at the population level
(Lönnberg et al., 2017; Marshall et al., 2011; Pepper and Jenkins,
2011; Pepper et al., 2011; Sallusto et al., 2004; Tubo et al., 2013).

Merging single-cell clonal and transcriptomic datasets to-
gether empowered us to track cellular lineage commitment
and differentiation trajectory of 673 individual clones from the
GP66-77-specific CD4 T cell repertoire (Table S2). We excluded
the T reg cell cluster from this analysis, as only 14 clones had
membership in both the T reg cell cluster and another cluster
(one or two T reg cells per clone) and there were only 13 clones
found exclusively in the T reg cell cluster (Table S2). By exam-
ining some of the dominant clones (≥10 cells/clone; Table S2),
we first identified two obvious patterns: one naive cell giving
rise to multiple lineages (Fig. 3 A) and one naive cell preferen-
tially giving rise to one lineage, either Th1 or TFH (Fig. 3 B).
Interestingly, a number of clones, ranging between 5 and 30,
showed cellular enrichment in terminally differentiated cell
subsets, in particular the Ly6c2Hi-Th1 and Lag3Hi-Th1 subsets,
suggesting a possible clonal burst associated with lineage spec-
ification (Table S3). Intriguingly, although 27 clones exclusively
contained Tcmp cells (Table S3), Monocle analysis revealed their
differentiation progression toward a distinct lineage choice. For
this reason and to understand the dynamic lineage relationship
among CD4 T cell clones, we decided to use differentiation states
predicted by Monocle (Fig. S2 H) to more precisely identify the
lineage choices (Th1, TFH, or Tcmp) of the 673 clones (Table S2).

This demonstrated differentiation progression of clones toward
the Th1 and TFH lineages. We then used a linage plasticity index
(LPI) that quantitively scored the diversified lineage choice for
each lineage by evaluating all clones with constituent cells in
that particular lineage (Zhang et al., 2018; see Materials and
methods). In this analysis, the Tcmp lineage showed signifi-
cantly higher plasticity than both the Th1 and TFH lineages (Fig. 3
C). This suggests that cells in the Tcmp cluster possess a high
propensity to develop into other cellular lineages (Pepper and
Jenkins, 2011; Pepper et al., 2011), whereas terminally differen-
tiated Th1 and TFH cells gradually lose their lineage flexibility
and memory-forming potential, further supporting the findings
shown in Monocle tree trajectory analysis (Fig. 2 G). To validate
this at the clonal level, we checked the cellular distribution for
each of the 673 clones (two or more cells/clone) in our data
among the three different lineages, as determined by Monocle
states (Table S2; see Materials and methods for details). Con-
sistent with our LPI score analysis, a large proportion (∼44%) of
CD4 T cell clones across the five mice had cells shared among the
Tcmp and Th1 and/or TFH lineages, based on lineage classifica-
tion of clones by Monocle states (Fig. 3 D, Fig. S2 H, and Table
S2). Surprisingly, 56% of the clones had cells that were shared
between the Th1 and TFH lineages or were exclusive to one lin-
eage (Th1 or TFH), and thus did not include Tcmp cells at all. This
may suggest the ability of a large number of CD4 T cell clones to
bypass the Tcmp stage of differentiation at the clonal level fol-
lowing priming during acute LCMV infection (Fig. 3 D). To rule
out the possibility that small clones may preferentially be re-
stricted to a single cell fate and larger clones may preferentially
have multiple fates, cellular fates across all clones with at least
four cells per clone (total of 352 clones) were analyzed among
the five mice (Table S4). A single-fate clone was defined more
rigidly as having at least 65% of its cells belonging to a specific
cellular fate (either the Th1, TFH, or Tcmp Monocle state), with
all clones not meeting this criterion designated multifate clones.
A relatively even distribution of single versus multiple cellular
fates was observed across all clones, regardless of their size
(Fig. 3 E). A similar pattern was seen even when the 65%
threshold classifying clones as single fate or multifate was
changed to 55% or 75% (Fig. S2, J and K). This further suggested
that some naive cells made early cell fate decisions following
their clonal proliferation and bypassed the Tcmp stage to become
terminally differentiated effector cells, as suggested before
(Fig. 3 D). To validate the 65% threshold used to classify 352
clones (four or more cells each) as single fate or multifate, Th1
and TFH gene set module scores were calculated for each clone
(Table S4). Using logistic regression, a significant correlationwas
observed between high Th1 or TFH clonal module score and Th1
(Fig. 3 F, left) or TFH (Fig. 3 F, right) clonal fate, respectively.
Because the sets of Th1 and TFH module scores have different
means and ranges, direct comparisons are not valid. Instead, we
calculated the percentile rank of each cell compared with all other
cells for Th1 and TFH module scores separately (Table S4). Clonal
percentile module scores were calculated by averaging those of all
cells within that clone. Categorization of each clone’s fate bias
using percentile module scores had a high degree of agreement
with our previous assignment based on the 65% threshold.
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Figure 3. Both single and multiple cellular fates are apparent at the single CD4 T cell clonal level. (A) t-SNE plot showing T cells with multiple cellular
fates. A few representative clones out of total 673 clones (two or more cells/clone) in five mice from three independent experiments are shown. Each dot
represents one T cell. (B) Similar to A but showing CD4 T cell clones biased to a single cell fate, either Th1 (left) or TFH (right). (C) Box plot showing LPI for 673
clones (two or more cells/clone, excluding T reg cells) from five mice across three different cellular lineages (Th1, Tcmp, and TFH) defined by Monocle state IDs.
(D) Heatmap showing distribution and frequency of 673 clones (two or more cells/clone, excluding T reg cells) among indicated CD4 T cell lineages (Th1, Tcmp,
and TFH) defined by Monocle state IDs in five mice. (E) Bar graph showing distribution of single cell fate (Th1, TFH, or Tcmp biased) and multifate clones by clone
size (four or more cells/clone; n = 352 clones) in five mice. A 65% threshold was used to define single cell fate clones (seeMaterials andmethods). Colors denote
clonal fate bias. (F) Logistic regression analysis comparing Th1 (left) or TFH (right) single cell fate–biased clones versus subset–specific (Th1, left; TFH, right)
module scores calculated at the clonal level. P values were calculated using Wald test.
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The unexpected finding that some CD4 T cell clones prefer-
entially developed into one particular lineage (either Th1 or TFH)
led us to consider the possible contribution of TCR structure to
cell fate decisions, as the TCR is the major contact point for
recognizing peptide MHC complexes (Garcia and Adams, 2005;
Rudolph and Wilson, 2002; Turner et al., 2006). Although CDR3
length has been shown to play an important role in some cell fate
decisions (Lin and Welsh, 1998; Miconnet et al., 2011; Sourdive
et al., 1998), we did not find any significant association between
lineage commitment and CDR3 length of either the TCR α or β
chain (data not shown). Next, we examined possible con-
tributions of V-J gene usage to cell fate commitment. No dis-
tinguishable features were identified in the TCR β chain, with
TRBV13-3 and TRBV13-2 being used by both Th1 and TFH cells
and pairing very similarly with a set of J genes (TRBJ1-2 to TRBJ1-
5, TRBJ2-7, and TRBJ2-5; Fig. 4 A, left and right, respectively), as
previously identified by bulk TCR sequencing in LCMV-specific
CD4 T cells (Kim et al., 2013). Conversely, three major TCR α V-J
gene combinations (TRAV14D-3-DV8–TRAJ21, TRAV14N-3–
TRAJ15*01, and TRAV3-1*01–TRAJ9*02) were preferentially used
by Th1 cells (Fig. 4 A, left). In a similar way, five TCR α V-J gene
combinations (TRAV14-3–TRAJ32, TRAV14D-3-DV8–TRAJ37,
TRAV14D-3-DV8–TRAJ26, TRAV14-3*01–TRAJ26*01, and TRAV14-
3*01–TRAJ12*01) were preferentially used by TFH cells (Fig. 4 A,
right), suggesting a possible role of the TCR α chain structure in
lineage commitment.

Given this apparent bias in TCR α chain gene usage, we fo-
cused our analysis on CDR3 amino acid motifs of the TCR α chain
in lineage-specific clones to investigate how this could influence
cellular fate within one clone. All clones with four or more cells
from three randomly chosenmice (total of 239 clones) were used
as a training set, and all clones with four or more cells from the
other two mice (total of 122 clones) were used as a test set. Using
sensitivity analysis tests across all clones, different thresholds
(55%, 65%, and 75%) were used to define single-fate clones as
before (either Th1 or TFH; seeMaterials andmethods for details).
Based on this test, the 55% and 65% thresholds were found to
provide similar results when defining lineage-specific (Th1 or
TFH) motifs. Analysis was continued by selecting 65% as the
threshold to define single-fate clones (either Th1 or TFH) and was
validated by Th1 and GC TFH gene set module scores at the clonal
level, as mentioned before (Fig. 3 F). Next, from all Th1 and TFH

subset-specific clones (44 and 76 clones, respectively) in training
mice, 11 Th1-specific and 16 TFH-specific motifs were identified
via position weight matrices (PWMs; Fig. S3 A; Bailey et al.,
2009). 2 out of 11 motifs (Motifs 6 and 7) showed significant
Th1 bias in trainingmice (Fig. 4 B; Fig. S3, B and C; and Table S5).
Similarly, 5 out of 16 TFH-specific motifs (Motifs 1, 2, 5, 10, and
16) showed significant TFH bias in trainingmice (Fig. 4 B; Fig. S3,
D–H; and Table S5). We then tried to use these validated TCR α
CDR3 motifs to predict cell fate bias by scanning across clones in
test mice (total of 122 clones with four or more cells/clone). The
threshold score was set at the cellular level for each motif in
training mice and kept consistent in test mice during the
analysis. We found that neither of the Th1-specific motifs (Mo-
tifs 6 and 7) could predict Th1 clonal bias in test mice (Fig. 4 C
and Table S5). While looking at TFH-specific motifs, Motif 2 was

not found to be significant, Motif 10 showed significant pref-
erence toward Th1 rather than TFH bias in test mice, and analysis
for Motif 16 in test mice was out of scope as the threshold score
could not be reached (Fig. S3, F–H; and Table S5). However,
Motifs 1 and 5 were able to predict a significant TFH bias in test
mice, with a total of 10 clones and 11 clones derived from training
and test mice, respectively (Fig. 4 D and Table S5). Together,
these results suggest that some TCR structures, an inherent
property of naive T cells, may skew CD4 T cell fate decisions
toward the TFH lineage.

Using recently developed scRNA- and scTCR-seq technologies
and bioinformatic analyses, we uncovered unprecedented clonal
diversity and cellular heterogeneity of nontransgenic LCMV
GP66 tetramer-specific naive CD4 T cells in an acute viral in-
fection model. Although we could not entirely rule out the
possibility of contamination with antigen nonspecific or virtual
memory CD4 T cells (Marusina et al., 2017) during FACS sorting,
we minimized contamination by restricting our analyses to CD4
T cell clones with at least two cells. Based on our analysis, al-
though most CD4 T cell clones can differentiate into multiple
lineages as previously described (Lönnberg et al., 2017; Tubo
et al., 2013), we found that some clones may adopt a preferred
lineage choice. More intriguingly, we found that TCR structure
may skew this decision toward the TFH lineage. Theoretically, a
few lineage-specific motifs identified in this study could exhibit
altered affinity and/or dwell time for their cognate GP66-77-I-Ab

peptide MHC complex, which may in turn affect TCR signaling
and cell fate decisions (Tubo et al., 2013). Detailed delineation of
these possibilities will be needed in future studies using TCR
retrogenic mice (Holst et al., 2006; Kong et al., 2019). However,
TCR structure is only one of many factors impacting CD4 T cell
fate determination, which is also heavily influenced by well-
established external factors during infection (Choi et al., 2011;
Pepper et al., 2011). In addition, our study further reveals that
many T cell clones do not necessarily follow a bifurcated dif-
ferentiation trajectory from memory precursor cells to effector
cells (either Th1 or TFH), but rather bypass memory cell fate at an
early stage and progress to terminal differentiation. Collectively,
our new findings from this work could provide insight and
frameworks for vaccine designs that can generate more tailored
cellular or humoral immunity against infection and cancers.

Materials and methods
Mice and LCMV Armstrong infection
Five C57BL/6 mice, 6–8 wk old, were obtained through the Na-
tional Cancer Institute grantees program (Frederick, MD). Mice
were bred and maintained in a closed breeding facility, and
mouse handling conformed to the requirements of the Institu-
tional Animal Care and Use Committee guidelines of the Medical
College of Wisconsin. The mice were infected with 2 × 105 PFUs
of LCMV Armstrong strain by intraperitoneal injection to es-
tablish acute infection in three independent experiments.

GP66 tetramer staining
CD4 T cells from the infected mice was isolated using the
EasySep mouse CD4 T cell isolation kit (STEMCELL; Cat#19852).
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Figure 4. Role of TCR α CDR3 motifs in predicting CD4 T cell fates following acute LCMV infection. (A) Chord diagram showing TCR α and β chain V-J
gene combinations in Th1 (clusters 1 and 3; left) and TFH (clusters 2, 4, and 5; right) subset–biased clones defined by Monocle state IDs and 65% cellular
threshold in five mice from three independent experiments. (B) Dominant and significant TCR α CDR3 motifs in Th1- (left) and TFH-biased clones (right; four or
more cells/clone), each represented as a PWM and defined by using a 65% threshold to define single cell fate–biased clones in three training mice. (C)Monocle
tree trajectory plots showing cellular fates of polyclonal CD4 T cell clones (four or more cells/clone) in two test mice, bearing Th1 subset–specific TCR α CDR3
motifs, Motif 6 (left), and Motif 7 (right) in acute LCMV infection at day 10 p.i. (D) Similar to C but showing TFH subset–specific TCR α CDR3motifs, Motif 1 (left)
and Motif 5 (right) in two test mice. Each red dot indicates a cell and n indicates the number of clones found positive for that respective motif. For C and D, P
values indicate the significance of each motif to define clonal bias toward the Th1 or TFH fate. P values were calculated using Fisher’s exact test.
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After that, enriched CD4 T cells were stained using either
LCMV-specific GP66-77 PE tetramer or human CLIP103-117 PE tet-
ramer (negative control; stock conc 1.3 mg/ml; from National
Institutes of Health) along with CD4 APC (Biolegend; Cat#100411)
and CD44 Pacific Blue (Biolegend; Cat#103019) in FACS buffer.
The staining was performed in the dark for 1 h at room temper-
ature, followed by three washes with FACS buffer.

scTCR-seq
scTCR-seq was adapted from the 10× Genomics Single Cell V(D)J
Reagent kit, which was available for humans and has been op-
timized for mice in our system. As per the protocol, an aliquot of
the amplified cDNA (used for scRNA-seq) was used for TCR α
and β gene enrichment separately by doing three rounds of
semi-nested PCR amplification.

A list of primers used for PCR-based cDNA amplification with
TCR-specific primers is given in Table 1.

In the first round of PCR, an aliquot of amplified barcoded
cDNA (used for scRNA-seq as well) was used for further TCR α
and β gene enrichment using a common forward primer and
gene-specific reverse primers. In the next two rounds of en-
richment, similar to nested PCR, purified PCR products from a
previous round of PCRwere used as a template, using primers in
a similar way as round 1 PCR. The final purified samples for both
TCR α and β chains were quantified using the Kapa Library
Quantification Kit. The final pooled libraries from all mice were
sequenced using the MiSeq Reagent Kit v3 (600-cycle; MS-102-
3003; Illumina) with the following cycle distributions: 300 cy-
cles for read 1, 300 cycles for read 2, and 8 cycles for the i7 index
read. The raw sequencing data were downloaded using the Py-
thon Run Downloader (Illumina) and then demultiplexed and
converted to files containing information about V(D)J clono-
types, consensus sequences, and contigs using the Cellranger
count and Cellranger VDJ functions (version 2.1). In total, 19,224
cells with V(D)J gene information for either the TCR α chain, β
chain, or both chains were recovered from five mice. Further
analysis was performed in R (version 3.6). For some cells, mul-
tiple α and β chain sequences were recovered from the 10× Cell
Ranger VDJ pipeline. For these cells, only those chains that were
annotated as full-length and functional were retained for
analysis. In cases where a cell contained multiple full-length
functional sequences for a given chain, the sequence sup-
ported by the most unique molecular identifiers (UMIs) was
retained for analysis. To avoid any contamination from sorting,

only clones having at least two cells from a single mouse were
considered for further analysis.

scRNA-seq
LCMV-specific (GP66-77 tetramer+) activated CD4 T cells were
harvested from the spleens of five LCMV Armstrong–infected
mice on day 10 after infection and were FACS sorted using a
BD-FACS-Melody Sorter (BD Biosciences). Sorted cells were
loaded onto the 10× Chromium Controller with a target cell
number of 5,000–10,000 per mouse. scRNA-seq libraries were
prepared using the Chromium Single Cell 59 v2 and v3 Reagent
Kit (10× Genomics) according to the manufacturer’s protocol.
Five libraries were then quantified using the Kapa Library
Quantification Kit and then were loaded onto an Illumina
NextSeq 500 sequencer with the NextSeq 500/550 High Output
Kit v2 (150 cycles; FC-404-2002; Illumina) with the following
conditions: 26 cycles for read 1, 98 cycles for read 2, and 8 cycles
for the i7 index read. Raw sequencing datawere downloaded using
the Python Run Downloader (Illumina) and then demultiplexed
and converted to gene-barcode matrices using the Cellranger
(version 2.1) mkfastq and count functions, respectively (10× Ge-
nomics). A total of ∼18,000 cells were recovered from five mice.
The downstream analysis was performed in R (version 3.6.0)
using the package Seurat (version 2.3.3; Satija et al., 2015) and
Monocle 2 (Qiu et al., 2017). The number of genes detected per cell,
number of UMIs, and percentage of mitochondrial genes were
plotted and outliers were removed (number of genes >3,000,
number of UMIs over ∼20,000, or percentage of mitochondrial
genes >5%) to filter out doublets and dead cells. Cell cycle score
was calculated for all cells and regressed out.

Combined analysis of scRNA-seq and scTCR-seq data
Using R (version 3.6), both scRNA-seq data (Seurat expression
data) and scTCR-seq (TCR sequence) data were combined based
on shared 10× cell barcodes. Only those cells with productive
TCR sequences (both α and β chain) were retained for analysis.
Further analysis of cellular heterogeneity at the single-cell level
and clonal level were performed with cells belonging to clones
with at least two cells. Canonical correlation analysis of Seurat
was performed and cells were then clustered based on highly
variable gene expression, using shared nearest neighbor clus-
tering with an input of the top 20 principal components and
visualized using t-SNE. All cells and genes remaining in the final
Seurat analysis, except cells from the T reg cluster, were passed

Table 1. Primers used for PCR-based cDNA amplification with TCR-specific primers

Primer name Sequence (59–39)

Common forward primer AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC

Reverse primers

TCR α outer primer TGAAGATATCTTGGCAGGTGA

TCR α inner primer with R2 adduct GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTCCTGAGACCGAGGATCT

TCR β outer primer GCGGAAGTGGTTTCGAGGAT

TCR β inner primer with R2 adduct GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGACCTTGGGTGGAGTCACA

Common reverse primer with 10× SCS sample ID CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
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into the Monocle 2 analysis using log-normalized UMI counts as
gene expression values. TheMonocle 2 trajectory plot was calculated
based on the top 150 statistically significant, differentially expressed
genes within each cluster with an average log fold change (logFC) of
at least 0.25. The effects of the sample identity and the number of
genes expressed per cell were also regressed from the data before
calculating the trajectory. The cells were ordered in pseudotime by
assigning the root state to theMonocle state 2, which had the highest
proportion of Tcmp cells (Seurat cluster 0) due to its highermemory
potential (Pepper and Jenkins, 2011; Pepper et al., 2011).

Gene set enrichment analysis (GSEA)
A preranked analysis module in GSEA (Subramanian et al.,
2005) was used and the gene sets were found in MSigDB
(Liberzon et al., 2011). For single cluster enrichment analysis,
differentially expressed genes were identified first (logFC >0.1)
and the average logFC expression of each gene was calculated.
Then, this average gene expression data for each cluster was
used as an input for GSEA analysis. After this, a gene set var-
iation analysis score (Hänzelmann et al., 2013) was calculated
using log normalized expression data for each cluster and
chosen gene sets, as identified by GSEA analysis. Seurat clus-
ters were scored by GSEA gene sets using the Addmodulescore
function. Gene sets for Th1, GC TFH, and memory CD4 T cells
were obtained from published data (Ciucci et al., 2019).

LPI score analysis
To understand cellular plasticity in a clone-specific manner, LPI
was used. Clones with cells evenly distributed among different
cellular lineages will have a higher plasticity potential compared
with clones having cells with restricted cellular lineages or
having an uneven distribution of cells among different lineages.
To perform this analysis, cellular lineages were identified using
Monocle states (Th1, Tcmp, or TFH). This was done because some
cells belonging to the Tcmp cluster on the t-SNE plot have al-
ready made their cellular fate decision in terms of their tran-
scriptional progression, which allows them to be segregated into
their final lineages by Monocle analysis. Following this, LPI
scores were calculated at the lineage level (V) to define the
plasticity of each cellular lineage. The input of LPI for each
lineage was the cellular lineage distribution of all clones with
constituent cells in that lineage:

Vlin �
XX

x�1
pxLin Zx.

The lineage-level LPI score, V, for a particular lineage, Lin,
with X total clones was calculated by multiplying the LPI Z score
of each clone x by the ratio of the number of cells with clonotype
x in lineage Lin to the total number of cells in lineage Lin (pxLin;
Zhang et al., 2018). LPI score is fundamentally defined by
Shannon entropy, so higher values indicate higher plasticity to
differentiate into multiple cellular lineages at the lineage level.

Cellular distribution at the clonal level for three lineages
The cellular distribution of all clones (two or more cells/clone;
n = 673 clones; Table S2) among the three different lineages
defined byMonocle states (Th1, Tcmp, and TFH; described above)

was shown using the pheatmap R package (Fig. 3 D). This al-
lowed for visualization of cellular distributions of each clone
among the lineages, thus demonstrating the differentiation
preference of each clone (i.e., single fate or multifate).

Single versus multiple cellular fate determination at the
clonal level
To show the clone size distribution (Fig. 3 E and Fig. S2, J and K)
in relationship to their defined single fate (Th1/TFH/Tcmp)
versus multiple cellular fates, a total of 352 clones with four or
more cells (Table S4) from five mice were used. The data frame
used for this analysis is a subset of the data frame used for Fig. 3,
A–D, by filtering clones with four or more cells. After that,
single-fated clones (Th1, TFH, or Tcmp) were defined based on
sensitivity analysis using different thresholds: ≥55%, 65%, or
75% of constituent cells being present in a single cellular fate.
Multifated clones were defined as those which did not meet the
criterion to be considered a single-fate clone. This was validated
by performing a logistic regression analysis in R comparing
clone fate versus subset-specific module scores (Th1 or TFH) at
the clonal level, including all 352 clones from all five mice
(Fig. 3 F and Table S4). The range of distribution of Th1 and TFH
gene set module scores are different. This makes direct com-
parison of these scores for the same clone infeasible. To enable
this comparison, we instead calculated the percentile ranks of
Th1 and TFH gene set module scores for each cell. Each of these
scores were then calculated at the clonal level, averaging the
scores of all cells belonging to that particular clone (Table S4).

TCR CDR3 amino acid (AA) motif analysis
For the motif analysis, only TCR α chain CDR3 motifs from de-
fined single-fate (either Th1 or TFH) clones (four or more cells/
clone) as mentioned above were considered. For this analysis,
three out of five mice (M2, M4, and M5) with a total of 230
clones and 6,405 cells were used as a training set to define Th1 or
TFH subset–specific motifs. Only the motifs that were found to be
significant in training mice were used to predict the biased
cellular fates of clones in test mice. The remaining two mice (M1
and M3) were used as the test mice (122 clones with 3,295 cells).
Mice were randomly assigned to be training or test mice.

First, a FASTA file containing barcodes for all cells at the
clonal level and each clone’s TCR α chain CDR3 AA sequence was
created, separately, for both training and test mice, using the
“Biostrings” R package. Only functional TCR sequences were
included for this analysis. Next, the glam2 function of Multiple
EM for Motif Elicitation was used to find dominant CDR3 AA
motifs as position weight matrices (PWMs) out of all motifs
(Bailey et al., 2009). Only Th1 and TFH cell subset–specific clones
(four or more cells/clone) were used. These were defined as
single-fate clones using different thresholds (55%, 65%, and
75%), as mentioned above. The analysis was performed indi-
vidually with each of these cellular thresholds, and top-scored
motifs for each of the cell subsets were further used to make a
PWM using the same function. Following this, the glam2scan
function was used to scan all these PWMs individually, across all
cellular TCR sequences (including all clones in training mouse
with 230 clones having four or more cells) using the FASTA file
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for TCR α chain, mentioned before. In longer TCR chain se-
quences with multiple motif matches, the best score was used
for downstream analysis. These scores were then added to all
clonal cells (clones with four ormore cells) in aMonocle 2 object,
and then a best match threshold score was determined by ex-
amining a score distribution and setting thresholding under the
upper mode for each motif. Finally, the cellular fates of clones in
the Monocle 2 object having higher threshold scores for that
motif were plotted using the complex tree trajectory function in
Monocle 2. This analysis also provided a table detailing the
number of cells from a clone in each Monocle state, with a true or
false positive match for that motif, which was used for statistical
analysis (Fisher’s exact test) to understand the ability of the motif
to predict cellular fate (either Th1 or TFH) of a clone. A Th1 or TFH
subset–specific motif was considered to be significant if that
particular motif was found in at least two out of the three training
mice. Only significant motifs were used to scan across all clones in
testing mice (total of 122 clones with four or more cells) in the
sameway asmentioned before. The threshold score for eachmotif
was kept at the same level as in training mice. Single-fate clones
(either Th1 or TFH biased) were further validated using the per-
centile rank of their Th1 and TFH gene set module scores at the
clonal level. Percentile ranks were used instead of raw module
scores because each module score has different ranges, thus
making direct comparisons between raw module scores invalid.

The 55% and 65% thresholds for defining single-fate clones
produced similar significant motifs in the training mice. How-
ever, when the threshold was raised to 75%, the analysis was
limited by the small number of single-fate clones in training
mice as shown in Fig. S2 K. Due to this limitation, the motif
analysis was performed using the 65% threshold to define single-
fate clones followed by validation using subset-specific gene set
module scores. A total of 44 Th1-fated and 76 TFH-fated clones in
training mice were included in this study. All clones found to be
significant for either Th1- or TFH-specific motifs in training or
test mice were validated by the percentile rank of their Th1 and
TFH gene set module scores at the clone level (Table S4) com-
pared with all other clones (Table S5).

Data availability
The scRNA-seq and scTCR-seq data have been deposited in the GEO
database (accession no. GSE158896). All other R code and analyses
are available from the corresponding author upon request.

Statistical analysis
P values for violin plots showing gene set–specific module scores
across clusters were calculated by the Wilcoxon test with Holm-
Sidak correction. For logistic regression analysis, P values were
calculated using the Wald test. P values for TCR CDR3 AA motif
analysis were calculated using Fisher’s exact test.

Online supplemental material
Fig. S1 shows FACS sorting strategy, variable gene usage, and
clonal overlap based on single TCR chains for five mice. Fig. S2
demonstrates intercluster heterogeneity based on differential
gene expression among CD4 T cell clusters, along with the size
distribution of cell fate–biased clones. Fig. S3 shows Th1 and TFH

subset–specific TCR α CDR3 motif analysis in training and test
mice. Table S1 shows cellular distributions across different
clusters based on their Monocle states. Table S2 lists cellular
distributions and percentages of all clones across different
clusters. Table S3 shows cellular distributions and percentages
of cluster-specific clones. Table S4 shows cellular distributions
and percentages of clones with least four cells across five mice
along with their respective subset-specific module scores and
percentile module scores. Table S5 lists cellular distributions
based onMonocle states for Th1 and TFH motif–specific clones in
training and test mice.

Acknowledgments
We cordially pay our gratitude to Dr. Jack Gorski for his con-
tributions to this paper.

This work is supported by National Institutes of Health
grants AI125741 (W. Cui), DK127526 (M.Y. Kasmani), AI153537
(R. Zander), DK108557 (D.M. Schauder), DK107541 (Y.-G. Chen),
DK121747 (Y.-G. Chen), and AI137248 (M.A. Williams); by an
American Cancer Society Research Scholar Grant (W. Cui); and by
an Advancing a Healthier Wisconsin Endowment Grant (W. Cui).
R. Zander is supported by the Cancer Research Institute Irvington
Fellowship. D.M. Schauder and M.Y. Kasmani are members of the
Medical Scientist Training Program at the Medical College of
Wisconsin,which is partially supported by a training grant from the
National Institute of General Medical Sciences (T32-GM080202).
This research was completed in part with computational resources
and technical support provided by the Research Computing Center
at the Medical College of Wisconsin.

Author contributions: A. Khatun designed and performed
experiments and wrote the manuscript. M.Y. Kasmani contrib-
uted to experimental design, performed bioinformatic analysis,
and edited the manuscript. R. Zander contributed to experi-
mental design and performed experiments. D.M. Schauder
contributed to experimental design. J.P. Snook performed ex-
periments. J. Shen contributed to experimental design. X. Wu
performed experiments. R. Burns contributed to bioinformatic
analysis. Y.-G. Chen contributed to experimental design. C.-W.
Lin contributed to experimental design and statistical analysis.
M.A. Williams contributed to experimental design. W. Cui hel-
ped design experiments, revised and edited the manuscript, and
supervised the study.

Disclosures: The authors declare no competing interests exist.

Submitted: 8 April 2020
Revised: 24 August 2020
Accepted: 22 October 2020

References
Badovinac, V.P., K.A. Messingham, A. Jabbari, J.S. Haring, and J.T. Harty.

2005. Accelerated CD8+ T-cell memory and prime-boost response after
dendritic-cell vaccination. Nat. Med. 11:748–756. https://doi.org/10
.1038/nm1257

Bailey, T.L., M. Boden, F.A. Buske, M. Frith, C.E. Grant, L. Clementi, J. Ren,
W.W. Li, andW.S. Noble. 2009. MEME SUITE: tools for motif discovery

Khatun et al. Journal of Experimental Medicine 11 of 13

Clonal fate mapping of CD4 T cells https://doi.org/10.1084/jem.20200650

https://doi.org/10.1038/nm1257
https://doi.org/10.1038/nm1257
https://doi.org/10.1084/jem.20200650


and searching. Nucleic Acids Res. 37(Web Server):W202–W208. https://
doi.org/10.1093/nar/gkp335

Blander, J.M., D.B. Sant’Angelo, D. Metz, S.W. Kim, R.A. Flavell, K. Bottomly,
and C.A. Janeway Jr. 2003. A pool of central memory-like CD4 T cells
contains effector memory precursors. J. Immunol. 170:2940–2948.
https://doi.org/10.4049/jimmunol.170.6.2940

Bousso, P., A. Casrouge, J.D. Altman, M. Haury, J. Kanellopoulos, J.-P. Abas-
tado, and P. Kourilsky. 1998. Individual variations in the murine T cell
response to a specific peptide reflect variability in naive repertoires.
Immunity. 9:169–178. https://doi.org/10.1016/S1074-7613(00)80599-3

Buchholz, V.R., T.N. Schumacher, and D.H. Busch. 2016. T Cell Fate at the
Single-Cell Level. Annu. Rev. Immunol. 34:65–92. https://doi.org/10
.1146/annurev-immunol-032414-112014

Cannons, J.L., H. Qi, K.T. Lu, M. Dutta, J. Gomez-Rodriguez, J. Cheng, E.K.
Wakeland, R.N. Germain, and P.L.J.I. Schwartzberg. 2010. Optimal
germinal center responses require a multistage T cell:B cell adhesion
process involving integrins, SLAM-associated protein, and CD84. Im-
munity. 32:253–265. https://doi.org/10.1016/j.immuni.2010.01.010

Cho, Y.L., M. Flossdorf, L. Kretschmer, T. Höfer, D.H. Busch, and V.R.
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Figure S1. Sorting strategy, variable gene usage, and clonal overlap based on single TCR chains among fivemice. Related to Fig. 1. (A)Upper panel: flow
cytometry data showing percentage of GP66 tetramer+ activated CD4 T cells (CD4+ CD44+ GP66+) and GP66 tetramer+ naive CD4 T cells (CD4+ CD44− GP66+)
at day 10 after acute LCMV infection. Only GP66-77 tetramer+ activated CD4 T cells were sorted from fivemice in three independent experiments to perform this
study. Lower panel: similar to upper panel but showing percentage of activated CD4 T cells (CD4+ CD44+ GP66+) and naive CD4 T cells (CD4+ CD44− GP66+)
using human CLIP103-117 tetramer as a negative control. (B and C) Bar plots showing TCR α and β chain variable gene usage among CD4 T cells at day 10 after
acute LCMV infection. (D and E) Upset plot showing clonal overlap based on unpaired TCR α and β chains. Each color indicates one individual mouse. Dots
below each bar denote which mouse or mice the clones were found in. Gray bars with more than one dot represent clones found in more than one mouse. All
the experiments were done three times using five mice in total.
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Figure S2. Intercluster heterogeneity and clone size distribution among different CD4 T cell subsets. Related to Figs. 2 and 3. (A) t-SNE plot as shown in
Fig. 2 but colored by sample origin of each cell. (B) Violin plots showing cell cycle gene module scores for each cluster. (C) Dot plot showing differential
expression of cell subset–specific (Tcmp, right; Th1 and GC TFH, middle; and T reg, left) genes across all clusters in five mice. (D and E) Similar to C but showing
top differentially expressed genes among Th1 (D) and TFH (E) clusters. (F and G) Violin plots showing module scores for oxidative phosphorylation (F) and cell
cycle (G) gene sets among three TFH subsets; P values calculated byWilcoxon test with Holm-Sidak correction. GO, gene ontology. (H) Differentiation states for
Seurat clusters 0–5 predicted by Monocle single-cell trajectory plot. (I) Similar to H but colored by pseudotime after setting state 2 as the root state, based on
comparatively higher number of Tcmp cells at this state. (J and K) Distribution of single cell fate (Th1, TFH, or Tcmp biased) and multifate clones by clone size
(four or more cells/clone; n = 352 clones) in five mice using 55% (J) and 75% (K) single cell fate thresholds (see Materials and methods). The data represent
experiments done in five mice three independent times.
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Figure S3. Th1- or TFH-specific TCR α chain motif analysis in training and test mice. Related to Fig. 3. (A) Diagram explaining motif analysis pipeline (see
Materials and methods for details). sp, specific. (B and C) Monocle tree trajectory plots showing cellular fates of polyclonal CD4 T cell clones (four or more
cells/clone) in three training mice, bearing Th1 subset–specific TCR α CDR3motifs, Motif 6, and Motif 7, having scores greater than the threshold score (right) in
acute LCMV infection at day 10 p.i. Each red dot indicates a cell and n indicates the number of clones belonging to at least two out of three trainingmice. (D and
E) As in B and C but using TFH-biased motifs, Motif 1 (D) andMotif 5 (E). (F–H)Monocle tree trajectory plot showing validation and testing of TFH-biased motifs,
Motif 2, Motif 10, and Motif 16 across polyclonal CD4 T cell clones (four or more cells/clone) in three training mice and two test mice, respectively, as explained
in B–E. Motif 16 was not tested in test mice as the threshold score for this motif could not be reached in test mice. P values indicate the significance of each
motif to define clonal bias toward Th1 or TFH fate. P values were calculated using Fisher’s exact test. TRA, TCR α chain.
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Five tables are provided online as Excel files. Table S1 shows cellular distributions across different clusters based on their Monocle
states. Table S2 lists cellular distributions and percentages of all clones across different clusters. Table S3 shows cellular
distributions and percentages of cluster-specific clones. Table S4 shows cellular distributions and percentages of clones with least
four cells across five mice along with their respective subset-specific module scores and percentile module scores. Table S5 lists
cellular distributions based on Monocle states for Th1 and TFH motif–specific clones in training and test mice.
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