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Abstract

Background: The genomes of many epithelial tumors exhibit extensive chromosomal
rearrangements. All classes of genome rearrangements can be identified using end sequencing
profiling, which relies on paired-end sequencing of cloned tumor genomes.

Results: In the present study brain, breast, ovary, and prostate tumors, along with three breast
cancer cell lines, were surveyed using end sequencing profiling, yielding the largest available
collection of sequence-ready tumor genome breakpoints and providing evidence that some
rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization confirmed
translocations and complex tumor genome structures that include co-amplification and packaging
of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor
genomes suggests recurrent rearrangements. Some are likely to be novel structural
polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion
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transcript in breast tumors and a constitutional fusion transcript resulting from a segmental
duplication were identified. Analysis of end sequences for single nucleotide polymorphisms
revealed candidate somatic mutations and an elevated rate of novel single nucleotide

polymorphisms in an ovarian tumor.

Conclusion: These results suggest that the genomes of many epithelial tumors may be far more
dynamic and complex than was previously appreciated and that genomic fusions, including fusion
transcripts and proteins, may be common, possibly yielding tumor-specific biomarkers and

therapeutic targets.

Background

Cancer is driven by selection for certain somatic mutations,
including both point mutations and large-scale rearrange-
ments of the genome; thus, the genomes of most human solid
tumors are substantially diverged from the host genome.
Many copy number aberrations have been shown to be recur-
rent across multiple cancer samples. These recurrent copy
number aberrations frequently contain oncogenes and tumor
suppressor genes, and are associated with tumor progression,
clinical course, or response to therapy [1]. Moreover, itis now
possible to alter the clinical course of breast cancer by the
therapeutic targeting of amplified ERBB2 oncoprotein [2].

Structural rearrangements, particularly translocations, are
frequently observed in solid and hematopoietic tumors. In
hematopoietic malignancies the importance of translocations
is well established, but their biologic and clinical significance
in solid tumors remains largely enigmatic because of techni-
cal difficulties and complex karyotypes that defy interpreta-
tion. Recently, a bioinformatics approach identified recurrent
translocations in about 50% of prostate tumors [3]. This dis-
covery of recurrent translocations in prostate tumors is
important because it demonstrates their presence in a com-
mon solid tumor and may make possible development of
tumor-specific biomarkers and drug targets. Therapeutics
such as imatinib (Gleevec, produced by Novartis Pharmaceu-
ticals, East Hanover, NJ, USA), which are are directed toward
tumor-specific molecules, may be more efficacious with fewer
off-target effects than therapies aimed at molecules whose
structures and/or expression are not tumor specific.

End sequencing profiling (ESP) is a technique that maps and
clones all types of rearrangements while generating reagents
for functional studies [4-7]. To perform ESP using bacterial
artificial chromosomes (BACs), a BAC library is constructed
from tumor DNA, BACs are end sequenced, and the end
sequences aligned to the reference human genome sequence
(Figure 1). Previous ESP analysis of the breast cancer cell line
MCF7 revealed numerous rearrangements and evidence of
co-amplification and co-localization of multiple noncontigu-
ous loci [6,7]. Similarly complex tumor genome structures
were recently identified in cell lines derived from breast, met-
astatic small cell lung, lung and neuroendocrine tumor using
BAC end sequencing [8].

We performed ESP on the following: one sample each of pri-
mary tumors of brain, breast, and ovary; one metastatic pros-
tate tumor; and two breast cancer cell lines, namely BT474
and SKBR3. Hundreds of rearrangements were identified in
each sample, some of which may encode fusion genes. Fluo-
rescence in situ hybridization (FISH) confirmed the presence
of translocations predicted by ESP in BT474 and SKBR3 cells.
Sequencing of 41 BAC clones from cell lines and primary
tumors validated a total 90 rearrangement breakpoints. Map-
ping these breakpoints in multiple breakpoint spanning
clones provided evidence of numerous genomic rearrange-
ments that share similar but not identical breakpoints, a phe-
nomenon analogous to the inter-patient variability of
breakpoint locations in many fusion genes identified in hae-
matopoietic cancers. Comparison of rearrangements shared
across multiple tumors and/or cell lines suggests recurrent
rearrangements, some of which confirm or suggest new germ-
line structural variants, whereas others may be recurrent
somatic variants. Analysis of single nucleotide polymor-
phisms (SNPs) in BAC end sequences revealed putative
somatic mutations and suggests a higher mutation rate in the
ovarian tumor.

ESP complements other strategies for tumor genome analysis
including array comparative genomic hybridization (aCGH)
and exon resequencing by providing structural information
that is otherwise not available. New sequencing technologies
[9] promise to decrease radically the cost of ESP and thus
make it widely applicable for analysis of hundreds to thou-
sands of tumor specimens at unprecedented resolution. The
present study previews the discoveries of such future large-
scale studies, examines some of the challenges these studies
will face, and provides reagents (genomic clones) for further
functional studies, particularly for cell lines that have proved
useful as models for cancer research [10,11].

Results

Tumor BAC libraries

BAC libraries were constructed from frozen samples from two
breast tumors and single tumors from the brain, ovary, and
prostate, demonstrating that there is no tumor-specific bias
for BAC library construction. Approximately 50 mg to 200 mg
of fresh frozen tumor specimen was used in the construction
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of each library. All tumors were dissected to minimize con-
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Schematic of ESP. End sequencing and mapping of tumor genome fragments to the human genome provides information about structural rearrangements
in tumors. A bacterial artificial chromosome (BAC) end sequence (BES) pair is a valid pair if distance between ends mapped on the normal human genome
sequence and the orientation of these ends and are consistent with those for a BAC clone insert; otherwise, the BES pair is invalid. bp, base pairs; ESP, end
sequencing profiling.

Table |

Clinical characteristics of the brain, breast, ovary and prostate tumor samples, and three breast cancer cell lines used for BAC library
construction

Library name

AA9 B421 CHORI-514 MCF7 PM-1 CHORI-510 CHORI-518 CHORI-520
Clinical sample AA9 B421 S104 MCF-7 25-48 860-7 BT-474 SK-BR-3
designation
Organ site Brain Breast Breast Breast cancer Prostate Ovarian Ductal Breast cancer
adenocarcinoma  metastasis carcinoma carcinoma adenocarcinoma
(metastasis - (metastasis -
pleural effusion) pleural effusion)
Therapies applied Radiotherapy =~ Chemotherapy No radiation N/A Hormone No therapy N/A N/A
4 months before  therapy or ablation, before surgery
surgery (CMF) chemotherapy palliative
before surgery radiotherapy
Patient status Deceased Deceased, no No recurrence N/A Deceased Tumorrecurred  N/A N/A
recurrence for 10 years within |3
months
Total amount of tumor 100 150 (20 mg 100 N/A 50 200 N/A N/A
material used for library effective)
construction (mg)
Average clone size (+ 129.1 £383  136.4+£29.2 166.1 +53.2 148.0 + 30 N/D 149.3 £ 28.8 179 £23 154 £ 25

standard deviation; kb)

Shown are the clinical characteristics of the recurrent glioblastoma AA9, primary breast tumors B421 and S104, ovarian tumor 860, prostate
metastasis 25-48, and the breast cancer cell lines MCF7, BT474, and SKBR3 used for bacterial artificial chromosome (BAC) library construction.
Average clone size was determined by pulsed field-gel electrophoresis of Not|-digested DNA from 30 to 100 clones. The presence of a large blood
clot in the B421 sample reduced the effective amount of tumor tissue to an estimated 20 mg (out of about 150 mg received from the tumor bank).
CMF, cyclophosphamide, methotrexate and fluorouracil; kb, kilobases; N/A, number is not applicable for cell lines that can be grown in any amount
and whose clinical history is not available; N/D, number not determined.

Genome Biology 2008, 9:R59



http://genomebiology.com/2008/9/3/R59

tamination with normal tissue. BAC libraries from the breast
cancer cell lines BT474 and SKBR3 were also constructed.
Breast cancer cell lines were included in this study because
their genomes and transcriptomes are similar to those identi-
fied in primary breast [10,11] and are invaluable for func-
tional studies. BT474 and SKBR3 were chosen because their
aCGH profiles are similar to the profile of previously studied
MCF7 cell line [6,7]. All three cell lines have very high ampli-
fications at the ZNF217 locus on 20g13 and very high amplifi-
cations at chromosome 17. Table 1 lists the clinical
characteristics of the tumors and properties of the BAC
libraries.

BAC end sequencing and mapping

End sequences of 4,198 BAC clones from the brain tumor
library, 5,013 clones from the metastatic prostate library,
5,570 clones from ovary tumor library, 9,401 and 7,623 clones
each from primary breast libraries, 9,580 clones from the
BT474, and 9,267 clones from the SKBR3 breast cancer cell
lines were generated. The end sequences (59.7 megabases
[Mb] in total) were mapped to the reference human genome
sequence, and the results are summarized in Table 2. We ana-
lyzed end sequences that mapped uniquely to the reference
sequence, excluding those in repetitive regions, segmental
duplications, or duplication-rich centromeric and subtelom-
eric regions. The density of mapped end sequences in ESP
closely matched copy number profiles generated using tiling
path BAC arrays [6]. Outside these regions, the distribution of
mapped end sequences along the genome did not exhibit
other significant gaps or high density, arguing against any
unusual cloning bias or mapping artifacts. For comparison
and further analysis, we included 29.7 Mb of sequence from
19,831 end sequenced clones from MCF7 and 701 end
sequenced clones from a normal human library (K0241) pre-
viously reported [7].

Table 2

Genome Biology 2008,  Volume 9, Issue 3, Article R59

Each clone with uniquely mapped ends gives a BAC end
sequence (BES) pair. A BES pair is a valid pair if distance
between ends mapped on the normal human genome
sequence and the orientation of these ends and are consistent
with those for a BAC clone insert; otherwise, the BES pair is
invalid (Figure 1). An invalid pair indicates a BAC clone that
may span a genomic rearrangement. These are relatively rare,
comprising 2.1% to 4.3% of the mapped BES pairs (Table 2
and Additional data file 1 [Table S1]). The largest fractions of
invalid pairs are observed in the three breast cancer cell lines,
with the greatest (4.3%) observed in MCF7. The majority of
these invalid pairs map to amplicons known to co-localize
with other loci. DNA within these structures is highly rear-
ranged [4-7]. Among the primary tumors, the greatest frac-
tion of invalid pairs is in the prostate metastasis library (Table

1).

For each library, we formed BES clusters grouping invalid
pairs with close locations and identical orientations that are
consistent with the same genome rearrangement [4]. Each
BES cluster provided evidence that the inferred rearrange-
ments are not experimental artifacts. We identified numerous
BES clusters in each tumor (Table 2). The fraction of end-
sequenced clones that lie in clusters is much lower for clinical
tumor samples than cell lines, possibly because of the lower
sequence coverage, normal tissue admixture, or greater
genomic heterogeneity in the primary tumors. Moreover, the
coverage of the genome by valid pairs was significantly lower
than either predicted by Lander-Waterman statistics or
obtained by modeling using matched in silico BAC libraries
(see Additional data file 1 and Additional data file 2 [Figures
S1 and S2]). This apparent reduction in coverage is probably
a result of differing amounts of aneuploidy and genomic het-
erogeneity in the samples.

Results of end sequencing and mapping of each library

MCF7 BT474 SKBR3 Breast  Breast.2 Ovary Prostate  Brain  Normal

Library name MCF7_1 CHORI-518  CHORI-520  B42l CHORI5I4 CHORI510 PMI IGBR K024l
Mapped clones (n) 12,143 8,044 7,363 6,972 5,678 3,946 3,499 3,238 609
Unique mapped clones (n) 11,492 7,547 6,950 6,540 5,381 3,714 3,296 3,051 568
Valid pairs (n) 11,001 7,361 6,763 6,376 5268 3,627 3,200 2,984 560
Contigs (n) 6,323 4,135 4,171 4,365 3,450 2,877 2,747 2,573 548
Contig coverage 0.324 0.327 0.274 0233 0243 0.155 0.104 0.103 0.019
Invalid pairs (n) 491 186 187 164 13 87 96 67 8
Fraction invalid 0.043 0.025 0.027 0.025  0.021 0.023 0.029 0.022 0.014
P value 4.10 x 04 0.056 0.032 0.051 0.133 0.080 0.020 0.3 NA
Number clusters (n) 36 26 24 2 7 2 2 0 0
Invalid pairs in clusters (n) 164 6l 64 4 24 4 4 0 0

The fraction of invalid pairs is calculated relative to the number of uniquely mapped pairs. The P value is the probability that the fraction of invalid
pairs is the same as observed in the normal library, using a sample proportion test with pooled variance.
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Sequencing rearrangement breakpoints

We performed low coverage sequencing of 37 BAC clones cor-
responding to invalid BES pairs and combined these data
with ten previously sequenced MCF7 BACs [7]. For each BAC,
96 3-kilobase (kb) subclones were end-sequenced, and sub-
clones spanning the breakpoints identified. These subclones
were then sequenced to pinpoint the breakpoints more pre-
cisely. This procedure identified 90 rearrangement break-
points in 41 BACs with some BACs containing multiple
breakpoints (Table 3 and Additional data file 3 [Table S2]).
Breakpoints in six clones could not be identified due to repet-
itive elements and/or genome assembly problems (see Addi-
tional data file 1). The sequencing of these 41 clones
confirmed the genomic locations of the BES determined by
ESP and identified translocation breakpoints in primary
tumors of the breast, brain, ovary, and a metastatic prostate
tumor. In the breast cancer cell line MCF7, all clones with
multiple breakpoints mapped to a highly rearranged ampli-
con of co-localized DNA from chromosomes 1, 3, 17, and 20,
consistent with an earlier report [7] demonstrating that up to
11 breakpoints can be present in a single 150-kb clone.

Of the 90 breakpoints identified in these 41 BACs, 63 were
sequenced, and the remaining 27 were localized to 3-kb sub-
clones. Because gross genomic rearrangements result from
aberrant double strand break (DSB) repair, we analyzed the
rearrangement breakpoints for signatures of the two major
DBS repair mechanisms: nonallelic homologous recombina-
tion and nonhomologous end joining (NHEJ). We analyzed
the repeat content and structure of the 63 breakpoint junc-
tions, 53 of which were nonredundant (see Additional data
file 3 [Table S3]). These 53 nonredundant junctions encom-
pass 31 translocations, 12 deletions, and 10 inversions. Two
junctions (representing two translocations) contain Alu ele-
ments spanning the breakpoints and are consistent with DSB
repair by Alu-mediated nonallelic homologous recombina-
tion. All of the remaining junctions (51/53 [96%)]) are consist-
ent with NHEJ repair and either span microhomology
regions ranging in size from 1 to 33 base pairs (45/51) or lack
any homology (6/51) between the two regions involved in a
particular rearrangement. We find insertions at the junction
site ranging from 1 to 31 base pairs in 7 out of 51 NHEJ events.
Twenty of the 106 breakpoint sites deduced from the nonre-
dundant junction analyses are located within regions of
known structural variation.

Of the 90 breakpoints, 72 are predicted to alter gene struc-
ture, resulting in either gene fusions or fusions of gene frag-
ments to intergenic regions. This high proportion reflects a
nonrandom selection of clones for sequencing, with priority
given to clones that are likely to encode fusion genes [12]. Of
the remaining 18 breakpoints, three indicate deletions of
multiple genes. For example, a breakpoint on chromosome 17
indicates a deletion of five genes (EFCAB3, METTL2A, TLK2,
MRC2, and RNF190). An additional seven breakpoints are
located within genes and may result in intragenic rearrange-
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ments (for example, the DEPDC6 gene on chromosome 8).
The remaining eight breakpoints are either rearrangements
involving intergenic regions or microrearrangements within
introns.

Breakpoint heterogeneity

BAC clones in amplicons such as those on chromosomes 1, 3,
17, and 20 in MCF7 are highly over-represented and conse-
quently form large BES clusters of invalid pairs. Sequencing
of a few of these clones [7] revealed that they often span mul-
tiple breakpoints. We assessed whether all clones in a BES
cluster share the same complex internal organization by
assaying the presence of sequenced breakpoints by PCR. In
total, we examined 23 breakpoints in 41 clones from seven
BES clusters. The majority (69/96) of the PCR assays indi-
cated that breakpoints are shared between clones in the same
BES cluster. Surprisingly five of seven BES clusters are heter-
ogeneous in breakpoint composition, meaning that clones
with nearby mapped ends do not necessarily span the same
breakpoints (see Additional data file 3 [Table S4]). For exam-
ple, MCF7 clone 69F1 with one sequenced breakpoint is a
member of a cluster with 11 clones, but only 8 of 11 clones con-
tain the 69F1 breakpoint (Figure 2a,b). Another clone, 37E22,
was previously shown to contain four breakpoints [7]. Of the
three clones in the BES cluster with 37E22, two clones con-
tain all four breakpoints, whereas one contained only one of
the breakpoints (Figure 2c). In all cases PCR validated the
end locations of all negative clones, confirming the presence
of alternative breakpoints in these clones. Although the
mapped end sequences of the clones in these heterogeneous
clusters confirmed that they fuse similar genomic loci, we
hypothesize that similar rearrangements occurred in multiple
copies of these loci, because of either earlier duplications in
MCF7 or genomic heterogeneity in different cells in the MCF7
population. Although such variability in breakpoint location,
or breakpoint wandering, is observed in fusion genes shared
across multiple patients (for example, the BCR-ABL gene in
leukemia [13]) and there are numerous reports of genomic
heterogeneity in cell lines [14,15], this is the first time that it
has been observed on a microgenomic scale within a single
sample.

Rearrangement validation

We validated a subset of breakpoints detected in the BT474
and SKBR3 breast cancer cell lines using dual-color FISH.
Normal BAC clones were selected that flank the predicted
breakpoints in the reference human genome, and FISH was
performed to metaphase spreads from the cell lines. Four
BT474 and two SKBR3 breakpoints were confirmed using
dual-color FISH (Figure 3). In addition DNA fingerprinting
was employed [16-20] on a subset of clones from the MCF7,
brain, and breast (B421) BAC libraries. Excellent correlation
between BES mapping and fingerprint mapping was
observed; fingerprint analysis confirmed the absence of the
rearrangements in 250 out of 261 (96%) BAC clones predicted
not to span rearrangement breakpoints and confirmed the
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Table 3

Summary of BAC sequencing

Sample Clones with Total number of Intragenic Gene:intergenic Gene:gene fusions  Intergenic:
identified or identified/sequenced rearrangements fusions intergenic
sequenced breakpoints fusions
breakpoints

MCF7 12 36/35 3 10 19 4

BT474 6 15/6 3 2 10 0

SKBR3 8 24/8 7 4 12 |

Breast (2B421) 3 3/3 0 0 3 0

Breast (CH514) 0 - - - - -

Ovary 4 4/4 0 0 4 0

Prostate 5 5/5 0 4 | 0

Brain 3 3/3 0 3 0 0

Breakpoints are indicated as sequenced if the nucleotide sequence was obtained, or identified if the breakpoint was localized to 3-kilobase subclones.

BAC, bacterial artifical chromosome.

presence of breakpoints in 154 out of 226 (68%) clones pre-
dicted to span genomic breakpoints by ESP [21].

Identification and analysis of recurrent breakpoints
We clustered BES pairs from all ESP datasets together and
identified 62 recurrent clusters that contain BES pairs from
multiple samples whose mapped ends are close. Recurrent
clusters may be caused by recurrent somatic mutations,
structural polymorphisms [22], mapping problems, or
assembly errors in the reference genome. Most recurrent
clusters (60/62) fall into two classes: mapping to pericentro-
meric/subtelomeric regions (9) or micro-rearrangements
(56), defined here as rearrangements with breakpoints less
than 2 Mb apart. Five clusters fall into both classes. For the
micro-rearrangements, 21 out of 56 (38%) overlap known
structural variants [23] (see Additional data file 3 [Table S5]),
which is nearly a threefold enrichment over the 15% of
nonrecurrent clusters corresponding to known structural var-
iants. The remaining 35 clusters may detect novel structural
variants or cancer-specific rearrangements. For example, a
pericentric inversion on chromosome 11 was identified in two
breast tumors and all three breast cell lines (see Additional
data file 1 [Table S6]). Other examples include an 820 kb
deletion in 17923.3 in MCF7 and BT474 that contains the
TRIM37, GDPD1, YPEL2, DHX40, and CLTC genes, and a4
Mb deletion of gene-rich region in 10q11.22-10911.23 in
BT474 and a primary breast tumor (CHORI514; see Addi-
tional data file 1 [Table S6] and Additional data file 2 [Figure
S3)D).

The largest number of BES clusters is found in the ESP data-
sets from the breast cancer cell lines BT474, MCF7, and
SKBR3. ESP identifies known amplicons, deletions, and
translocations present in these cell lines [24-26]. We
searched for genomic loci that contain a rearrangement
breakpoint in at least two of these three cell lines. To mini-
mize the possibility of experimental errors, we first restricted
consideration to rearrangement breakpoints identified by a

BES cluster in each cell line. We identified six examples of
such recurrent rearrangement loci. Four loci shared between
MCF7 and BT474 map to the 20g13.2-20g13.3 amplicon and
have ends clustered within 2 Mb (Figure 4a,b). It might be
significant that the breakpoints in MCF7 occur in and/or
truncate BCASI1, possibly explaining its total lack of
expression in MCF7 cells despite being amplified [27]. In con-
trast, BCASL is highly amplified and expressed in BT474 cells
[27], and the breakpoints map immediately distal to BCAS1
(Figure 4a). In addition, the regular spacing of breakpoints in
this locus is suggestive of breakage/fusion/bridge (B/F/B)
cycles [7]. Two additional loci are common to BT474 and
SKBR3. One locus includes breakpoints that cluster within
about 500 kb of the ERBB2 gene, which is amplified and over-
expressed in these cell lines [26]. In SKBR3, these breaks co-
localize the ERRB2 locus with an amplified region from chro-
mosome 8 (Figure 4c). In the last example, breakpoints in
BT474 and SKBR3 are predicted to disrupt the ubiquitin pro-
tein ligase gene ITCH at 20ql1.2. When considering rear-
rangement breakpoints defined by all invalid pairs, rather
than only BES clusters, we identified 88 recurrent rearrange-
ment loci across the three breast cancer cell lines (Additional
data file 3 [Table S7]).

Identification of fusion transcripts

Comparison of breakpoints revealed by ESP and putative
fusion transcripts identified in public expressed sequence tag
(EST) databases provides evidence for expressed gene
fusions. In one case, ESP identified two BAC clones spanning
an apparent 1921.1;16g22.2 translocation in MCF7 and a pri-
mary breast tumor (MCF7_1-30J11 and 2B421 023-008,
respectively). Both clones were sequenced and found to span
identical breakpoints (see Additional data file 3 [Table S8]).
An EST clone DR0O00174 was identified in Genbank that co-
localizes with the sequenced breakpoint in BAC clones. This
EST fuses a part of exon 6 with an adjoining intron of the
HYDIN gene to an anonymous gene represented by a cluster
of spliced EST sequences. RT-PCR provided clear evidence

Genome Biology 2008, 9:R59



http://genomebiology.com/2008/9/3/R59

Genome Biology 2008,  Volume 9, Issue 3, Article R59

17

(a)

MCF7_69F1

(b)

o ©
N =
G O
- o
< ©

91 L21
39B19
86 B4
62 P11
43 K5
86 C2
168 M9
35A16
69 F1
dH20

X = negative PCR

(c)

MCF7_37E2

37E22

34J23

21C19

30J14

Figure 2

PCR validation of breakpoints in MCF7. (a) MCF7 clone 69F| was sequenced and contained a small piece of chromosome | (purple rectangle) to
chromosome 17 (yellow rectangle). Arrows on each rectangle indicate whether the fragment is oriented as in the reference genome (pointing to right) or
inverted (pointing to left). PCR primers were designed to amplify the breakpoint and these primers were used to assay the other clones in the BES cluster
with 69F|. Each of the other clones in the cluster are indicated as lines below 69F |, with the end-points of the lines indicating the locations of the mapped
ends relative to the ends of 69F|. The heterogeneous PCR results might result from heterogeneity of the MCF7 cells, or the existence of multiple versions
of this breakpoint in MCF7 genome. (b) PCR results for the clones presented in panel a. The expected size of the PCR fragment is 600 base pairs. (c) PCR
validation of breakpoints in sequenced clone 37E22 from MCF7 and three additional clones in bacterial artificial chromosome end sequence (BES) cluster
all fusing nearby locations from chromosomes |, 3, and 20. Two other clones have the same complex internal organization as 37E22 with four
rearrangement breakpoints. However, clone 34)23 contains only one of these breakpoints, suggesting that the rearrangement history of this clone is

different from that of the others in the cluster.

that the fusion transcript is expressed in 16 out of 21 breast
cancer cell lines (Figure 5a and Additional data file 1), normal
cultured human breast epithelial cells, and a wide range of
normal human tissues. Recently, a 360-kb segmental dupli-
cation containing the HYDIN locus was identified on chromo-
some 1g21.1 [28]. This duplication event created the HYDIN
fusion gene and explains the observed apparent
1921.1;16g22.2 translocation. To our knowledge this is the
first example of a segmental duplication resulting in an
expressed fusion gene.

In a second example, a putative fusion transcript (GenBank
accession CN272097) and the breakpoint in MCF7 clone 1-
97B19 identify a complex rearrangement fusing the SLC12A2

gene and EST AK090949 on chromosome 5. RT-PCR pro-
vided evidence for expression of the fused transcript in 5 out
of 21 breast cancer cell lines and in higher passage, but not
lower passage, human mammary epithelial cells (Figure 5b).
In addition, RT-PCR provided clear evidence of alternative
splicing of this transcript. Interestingly, we do not detect
expression of this fusion transcript in MCF7, possibly because
of differences between the location of this breakpoint in
MCF7 and the EST. If this fusion is the result of a somatic
mutation in breast tumors and not a structural polymor-
phism, then it will represent the first recurrent fusion tran-
script reported in breast cancer. Additional studies aimed at
analysis of the presence of this transcript in clinical speci-
mens are underway. Thus, paired-end sequencing
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Figure 3

Use of dual-color FISH to validate a BT474 genomic breakpoint. End
sequences from clone CHORI518_014-E04 were mapped to
chromosomes | and 4. Clones RPI1-692N22 and RP11-1095F2 were
selected from the human RPCI| | library because their sequences map to
just outside of tumor bacterial artificial chromosome (BAC) end sequence
(BES) locations. These BACs were labeled with fluorescein and Texas red,
respectively. Top: two chromosomes containing a merged yellow signal
indicating juxtaposition of both probes are indicated with white arrows
(and labeled A and B). Bottom: each labeled chromosome is shown with
corresponding inverted-DAPI banded chromosome, and red and green
image layers. Black arrows identify the region where the red and green
probes are juxtaposed to one another. FISH, fluorescence in situ
hybridization.

approaches are useful for the elucidation of genome and tran-
scriptome remodeling in phylogenetics and cancer.

SNP analysis

The availability of about 89 Mb of sequence from 97,680
mapped BESs made it possible to identify SNPs and candi-
date somatic mutations. Approximately 62.5% (61,013) of the
mapped BESs contained at least one mismatch in the align-
ment between the BES and the reference genome. From these
mismatches, we identified 115,444 candidate SNPs defined as
a single base mismatch flanked on both sides by at least one
matched base. Many of these mismatches are likely sequenc-
ing errors to be expected when examining raw end sequences.
Thus, we applied the following filtering criteria to discard low
confidence SNPs: the phred score [29] of the SNP, the mean
phred score of the five bases centered on the SNP, and the
mean phred score of the entire BES containing the SNP all
must exceed 30. Approximately 58% of the candidate SNPs
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were removed by this filtering step, leaving 48,243 SNPs. Of
these, 40,659 (84%) are known variants recorded in dbSNP;
the probability of this event if our SNP candidates were ran-
domly distributed on the genome, as would be the case if they
were largely caused by sequencing errors, is vanishingly
small. Thus, our stringent filtering criteria enriched for true
SNPs instead of sequencing errors. A total of 7,584 (about
16%) of the valid SNPs are novel (see Additional data file 1
[Table S9]), and 77 of them are recorded in more than one
BES (see Additional data file 3 [Table S10]). All of the cancer
samples exhibit significantly (P < 10-23) higher rates of novel
SNPs than the normal sample; moreover, the ovarian tumor
has a significantly (P < 10-39) higher rate of SNPs than the
other cancer samples (Figure 6). Although some of these nov-
els SNPs are likely to be sequencing errors or rare genetic var-
iants, these cases do not explain the observed biases across
samples.

The transition:transversion ratio of these novel candidate
SNPs is 1.8, which is lower than the value 1.95 reported for
BAC end sequencing of mouse strains [30], comparable to the
value 1.85 in coding exons of breast tumors [31], but signifi-
cantly lower than the value 7.4 in coding exons of colorectal
tumors [31]. Moreover, the mutational spectrum of these
novel SNPs (see Additional data file 1 [Table S11]) varies
across the tumor types, and many of these variations are
significant (P < 0.00001 by y?2 test). An excess of C:G — T:A
transitions over T:A — C:G transitions is observed in all sam-
ples except one of the breast tumors, similar to recent reports
from exon resequencing studies in tumors [31,32]. However,
the asymmetry in the frequency of these two types of transi-
tions is generally less than reported in these studies. Interest-
ingly, the strongest asymmetry is found in our brain sample;
this is in agreement with Greenman and coworkers [32], who
found the greatest asymmetry in gliomas. Examination of the
frequency of variation at dinucleotides (see Additional data
file 3 [Table S12]) reveals an excess of C:G — G:C transver-
sions occurring at TpC/GpA dinucleotides, consistent with
the report by Greenman and coworkers [32]. The explanation
for this bias is not known but is hypothesized to represent a
cancer-specific mutational mechanism or environmental
exposure.

Thirty-five of the 7,584 novel SNPs were identified in coding
regions (see Additional data file 3 [Table S13]). Of these, 24
are nonsynonymous changes that occur in a diverse group of
genes, including IRAK1 (possibly mutated in breast tumor
B421) and RPS6KBL1 (possibly mutated in BT474), which were
previously identified as somatic mutations in breast cancer
[33]. Analysis of gene annotations recorded in Gene Ontology
with the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) tool [34], which corrects for
differences in the sizes of annotated gene families, identified
six genes classified as 'transition metal ion binding' (P =
0.07), including the zinc-binding proteins encoded by
ZNF217, ZNF160, ZNF354C, ZDHHC4, and ANKMYL1. Inter-
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Figure 4

Recurrent rearrangement loci in the three breast cancer cell lines. (a,b) Four loci on 20q13.2-13.3 shared by MCF7 and BT474 and (c) a locus near to the
ERBB2 amplicon shared by BT474 and SKBR3. Colored boxes indicate the breakpoint regions for different bacterial artificial chromosome (BAC) clones
from MCF7 (blue), BT474 (red), and SKBR3 (green) as a custom track on the University of California, San Francisco (UCSC) genome browser. A
breakpoint region is defined as the possible locations of a breakpoint that are consistent with all the BAC end sequence (BES) in the cluster; thus, shorter
boxes indicate more precise breakpoint localization. Arrows give the strand of the mapped BES and thus point away from the fused region.

estingly, the SNP in ZDHHC4 occurs in the zinc finger
domain, as defined in UniProt. Examination of SNPs in
amplified regions in MCF7, BT474, and SKBR3 did not sug-
gest any correlation between SNP rate and amplification;
some amplicons harbor a high number of sequence variants,
whereas others have relatively few (see Additional data file 3
[Table S14]).

We resequenced 17 candidate SNPs found in the breast cancer
cell lines (see Additional data file 3 [Table S15]) and con-
firmed 11 out of 17 (64.7%), a success rate very similar to the
68% reported in large-scale resequencing of exons [31]. Of the

six remaining cases, four were sequencing failures, whereas
two contained double signals in the ABI electrophoregrams at
the SNP site, with the reference peak being the dominant one.
Thus, it is possible that these SNPs are heterogeneous in the
cell lines. Therefore, only 2 out of 17 candidate SNPs (11.8%)
were contradicted by resequencing. Because 2 of the 11 vali-
dated SNPs, plus two that were not validated, were also found
in a more recent update of dbSNP (128), we checked all 7,584
novel SNPs against dbSNP Build 128. We found that 1,698
(22%) were present, providing further evidence that our SNP
filtering criteria are enriching for true sequence variants
rather than sequencing artifacts.
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Figure 5

RT-PCR assays of fusion transcripts on a panel of breast cancer cell lines and normal tissues. HMEC-P| stands for normal human mammary epithelial cells
(passage ), and HMEC-P4 stands for HMEC passage 4 (higher passage). (a) RT-PCR reveals expression of DR00074 (HYDIN gene fusion) in 16 out of 21
tested breast cancer cell lines, normal cultured human breast epithelial cells, and a wide range of normal human tissues. (b) RT-PCR validation of
CN272097 a cDNA produced by a complex rearrangement on chromosome 5 fusing the SLC/2A2 gene and expressed sequence tag (EST) AK090949. The
results provide evidence for expression of the fused transcript in 5 out of 21 breast cancer cell lines and in higher passage but not lower passage human
mammary epithelial cells (HMECs). Note that MDAMB435 was recently demonstrated to be derivative of the M14 melanoma cell line and not from breast
[62], and the absence of the SLC12A2 fusion is this cell line is consistent with its absence in other nonbreast tissues.

Discussion

The importance ascribed to different types of genome aberra-
tions in cancer is frequently directly coupled to the technol-
ogy available to measure them; classic cytogenetics
demonstrated the functional significance of translocations in
tumors with simple karyotypes, whereas loss of heterozygos-

ity, CGH, and array-CGH studies have led to an explosion of
interest in recurrent copy-number aberrations. More
recently, targeted [32,35] and whole genome exon resequenc-
ing [31] has demonstrated the importance of coding muta-
tions. The Cancer Genome Atlas project [36] promises to
increase drastically the number of known coding somatic
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Figure 6

Results of SNP identification in BAC end sequences. (a) The number of high quality isolated single nucleotide polymorphisms (SNPs) in uniquely mapped
bacterial artificial chromosome (BAC) end sequences expressed per kilobase (blue). Each tumor sample has a significantly higher rate of SNPs compared
with the normal library, whereas the ovarian library exhibits a rate significantly higher than the other tumor samples. Also shown is the fraction of SNPs
not found in dbSNP 124 (red). The ovarian library shows a significantly higher rate of these novel SNPs. (b) Mutational spectrum of SNPs for each of the
samples. For C:G — T:A transitions and C:G — G:C transversions, the fraction at CpG dinucleotides is indicated in red and yellow, respectively.
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mutations. However, it is likely that structural rearrange-
ments in tumor genomes are as important to tumor biology
and the development of biomarkers and therapeutics as are
coding point mutations [37,38]. We have demonstrated that
ESP provides direct access to the structural complexity of
tumor genomes by identifying and cloning all classes of
structural rearrangements, including fusion genes and their
transcripts. ESP also proved to be a powerful tool for analysis
of structural polymorphism present in the normal human
genome [39,40]. Moreover, identification of the HYDIN gene
fusion by ESP reveals that duplicon-mediated genome
rearrangements can result in expression of structurally novel
genes. Using this approach, it is also possible to survey the
spectrum of mutations and/or SNPs present in a tumor
genome in an unbiased manner.

Many of the recurrent breakpoints that we identified arise
from micro-rearrangements of less than 2 Mb (Figure 4).
Although some of these rearrangements are likely to be novel
structural polymorphisms, micro-rearrangements have also
been observed in evolution [41,42] and in some tumors [43].
Because micro-rearrangements are largely invisible to
cytogenetic techniques, the collection of the breakpoints
reported in this paper provides an excellent resource for
future studies of the mechanisms, prevalence, and conse-
quences of these micro-rearrangements in tumorigenesis.

Sequencing BAC clones identified by ESP was performed to
localize and validate about 90 breakpoints in this and in a
previous study [7]. To our knowledge, this is currently the
largest collection of sequenced rearrangement breakpoints in
cancer. Importantly, this collection can be easily extended as
needed, because ESP also created the largest collection to
date of hundreds of sequence-ready breakpoint-spanning
BAC clones. Most breakpoint-spanning BAC clones, includ-
ing all BAC clones sequenced from primary tumors, contain
single breakpoints. However, in the three cell lines, 17 clones
containing multiple breakpoints were identified and con-
firmed by PCR. These observations were supported by DNA
fingerprinting (Marra M, personal communication) [21]. The
observed differences between the primary tumors and cell
lines may be due to genomic heterogeneity (and consequently
lower sequence coverage) of tumor samples, differences in
tumor type and/or stage, or intrinsic differences in genomic
organization between cell lines and primary tumors. It will be
informative to perform ESP on primary breast tumors with
copy-number profiles very similar to those of the cell lines
studied here [10,11] and to establish the degree of the struc-
tural similarity of the samples with similar copy-number and
expression profiles.

Our analyses of breakpoint junction sequences revealed that
the overwhelming majority of identified rearrangements
(96%) are consistent with aberrant NHEJ repair. This obser-
vation is consistent with the previously reported predominant
role of nonhomologous recombination in generation of path-
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ologic translocations [44] and in frequent rearrangements at
chromosomal ends [45]. Although there are reports of associ-
ations between locations of cancer breakpoints and evolu-
tionary breakpoints [46], ESP data did not reveal a significant
association in our samples (data not shown).

We used sequenced breakpoints to refine the mapping of
amplicon structures in MCF7 using PCR in seven independ-
ent BES clusters. This process identified breakpoint heteroge-
neity in five clusters (Figure 2 and Additional data file 2
[Figure S3]). One explanation for this phenomenon is varia-
bility in the location of breakpoints in multiple fusions of the
same loci, analogous to the variability of breakpoints in fusion
genes in hematopoietic malignancies. Alternatively, the het-
erogeneity might reflect early events present in a minority of
cells in the population. To our knowledge, this is the first
example of structural heterogeneity observed on a molecular
level in tumor genomes.

Analysis of SNPs in BAC end sequences identified elevated
rates of SNPs in each tumor sample compared with the nor-
mal sample, with the ovarian tumor exhibiting a rate
significantly above the other samples. Although the ability to
distinguish somatic mutations from sequencing errors or
germline mutations is limited in the present study, there is no
reason to suspect that these confounding factors vary enough
between samples to explain the observed differences. The
mutational spectra of SNPs in these samples share some fea-
tures with those from exon resequencing studies [31,32], but
there are also many differences. These differences might be
due to different mutational biases in coding regions, but fur-
ther study is needed to support this hypothesis. Given that the
BES arise from a genome-wide survey, itis not surprising that
we identify few candidate mutations in coding regions. How-
ever, it is intriguing that even the relatively small numbers of
putative mutations are enriched for zinc finger genes, includ-
ing the known breast cancer oncogene ZNF217 [27,47,48].

Using ESP it is possible to reconstruct tumor genome struc-
ture and evolution [4-7]. ESP data from the three breast can-
cer cell lines identify clones that fuse noncontiguous
amplified loci, possibly suggesting functional coupling of co-
amplified genes. The discovery of recurrent breakpoints and
regularly spaced breakpoints in the cell-line data could be a
molecular signature of breakage/fusion/bridge (B/F/B)
cycles [7]. In some cases, ESP data suggest a specific temporal
progression in which amplification follows translocations or
deletions. For example, a cluster of 19 clones span a 17;20
translocation in MCF7. This coverage is highly unlikely
(P < 10-20) for a nonamplified locus, and PCR mapping con-
firmed identical breakpoints in these clones. The most parsi-
monious explanation is that the translocation preceded the
amplification. In a second example, a cluster of six BT474
clones spans a deletion. Once again the simplest explanation
is that the deletion preceded amplification of the surrounding
locus, because a cluster of size six clones is highly unlikely
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(P = 10-5) in a nonamplified locus. Interestingly, this deletion
may truncate the THRAL gene, as reported by Futreal and
coworkers [25], and fuse it to the SCAP1 gene. Amplification
of a breakpoint might occur because the fused genomic region
encodes a fusion gene that confers a selective growth advan-
tage. Alternatively, amplification might be a random byprod-
uct of genomic instability near the rearrangement breakpoint.
Regardless, the breakpoint information is valuable for deter-
mining the temporal evolution of tumor genome
organization.

The identification of TMPRSS2 translocations in about 50%
of prostate tumors [3] underscores the significance of struc-
tural rearrangements in solid tumors. Although our prostate
sample does not contain the TMPRSS2 translocation (Rubin
M, personal communication), ESP mapping and breakpoint
sequencing provide numerous examples of possible gene
fusions, including the previously published BCAS4/3 fusion
in MCF7. Moreover, integration of public EST data with ESP
data demonstrates that this approach can identify fusion
transcripts en masse. We identified a fusion transcript that
results from an evolutionarily recent rearrangement of the
normal genome and obtained evidence for the first recurrent
fusion transcript in breast cancer. In this study the clonal cov-
erage of tumor genomes ranged from only 0.15-fold to 0.7-
fold redundancy. It is probable that many additional gene
fusions will be identified upon deeper paired end analysis of
both normal and tumor genomes and transcriptomes.

The extension of ESP to multiple tumor types demonstrates
that its application is not restricted to specific tumor types
and that ESP functions well even with small tumor speci-
mens. This is important because advances in diagnostics have
resulted in a reduction in the average volume of many surgi-
cally excised tumors. For example, the average size of breast
tumors excised before 1985 was 25 mm, whereas after 1985 it
decreased to 21 mm [49], a 1.6-fold decrease in the volume of
excised breast tumors. Moreover, tumor heterogeneity and
normal cell admixture necessitates dissection further reduc-
ing subsequent yields of tumor cell DNA. Finally, clinically
annotated tumor specimens are an extremely valuable
resource and should be used as sparingly as possible.
Therefore, it is significant that we were able to construct a
tumor BAC library from less than 20 mg of a frozen and par-
tially necrotic tumor (B421).

DNA yields from the tumors suggest that libraries comprised
of 200,000 to 400,000 clones are possible, meaning that the
genomes of these tumors can be immortalized and made
widely available. This study demonstrates the utility of ESP
for whole genome screening of SNPs/mutations. The immor-
talization of the tumor genome in aclone library is important,
because some studies report underestimation of the mutation
load because of heterogeneity in tumors [50], and overcom-
ing this problem will require either development of the novel
software or implementation of the novel sequencing technol-
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ogies, allowing analysis of single DNA molecules [51].
Because clone libraries can be duplicated and their DNA
pooled, it becomes feasible to perform large exon resequenc-
ing projects on small tumors, such as those of the breast and
prostate. In addition, because BAC clones contain DNA from
a single tumor cell, identification of rare SNPs/mutations in
heterogeneous tumors is theoretically possible in a manner
analogous to the identification of breakpoint heterogeneity in
tumor amplicons reported here. Finally, the ability to rapidly
identify sequence variants in DNA pools and to then recover
the physical clone means that studies aimed at determining
the biologic relevance of the variants are possible using estab-
lished in vivo and in vitro systems.

ESP is less impeded by tumor heterogeneity or contamination
by normal cells than is aCGH, because each end sequenced
clone originates from a single DNA molecule from a single
cell. Deep sequencing of many clones allows one to overcome
normal tissue admixture and enables direct measurements of
heterogeneity and detection of rare events. Eventually it will
be possible to apply techniques from metagenomics [52] to
study the heterogeneous pool of cells that are present in early
stage tumors, with the goal of identifying the earliest inform-
ative biomarkers and therapeutic targets. At present, the rel-
atively high cost of ESP limits its application to a small
number of tumors, but advances in massively parallel
sequencing technologies capable of paired-end sequencing
(for review [9]) will permit large-scale ESP studies at a frac-
tion of the current cost. However, much of the cost savings
realized by the current crop of next generation sequencing
technologies result from skipping the immortalization of the
tumor genome as a clone library. Such cloning enables further
sequencing of breakpoints and evaluation of their functional
significance via in vitro and in vivo assays [7]. Combining
ESP with such assays will enable tumor progression studies
aimed at identification of events linked to initiation, progres-
sion, and metastasis. Thus, although the selection of a partic-
ular implementation of ESP will be driven by the cost/benefit
analysis for the specific goals of the project, paired end
sequencing approaches promise to revolutionize our under-
standing of the complex organization of the genomes of solid
tumors.

Materials and methods

BAC library construction

Breast cancer cell lines were obtained from University of Cal-
ifornia, San Francisco (UCSF) cell culture facility. Clinical
tumor specimens were obtained from the Bay Area Breast
Oncology Program (breast tumors), rapid autopsy program at
the University of Michigan [53], and the University of Texas
MD Anderson Cancer Center SPORE in ovarian cancer
(ovarian).

Library preparation was carried out as described previously
[7] (see detailed protocol on the internet [54]). Briefly, fresh
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frozen tissue (0.1 to 0.15 g) was slowly thawed on ice, ground,
and re-suspended in 0.6 ml of 1x phosphate-buffered saline
(pH 7.0). The suspension was pre-warmed to 42°C in water
bath and mixed with an equal amount of a warm 1.5% solu-
tion of low melting-point agarose. The partial restriction was
carried out for 1 hour on ice, followed with incubation for 10
minutes at 37°C and stopped by addition of 0.1 volume of 0.5
mol/lI EDTA. Additional processing associated with isolation
of high molecular weight DNA, construction of BAC libraries,
and end sequencing of BAC clones was carried out as previ-
ously reported [7].

ESP data analysis

We employed a two-step procedure that involved first map-
ping the BES data onto the human genome sequence
(National Center for Biotechnology Information [NCBI] build
35, May 2004), and then filtering the mapping results. The
mapping step is accomplished using BLAST-like alignment
tool (BLAT) [55]. A location is assigned if at least 50 bp of a
BES aligned to the reference genome sequence with at least
97% identity. If the BES hit multiple locations in the genome,
then the position of the longest hit with highest identity was
chosen and the BES was designated as being ‘ambiguously
mapped' and excluded from further analysis. Finally, BES
mapping to known segmental duplications, as defined by the
SegmentalDups track of the UCSC Genome Browser, were
removed. Only clones corresponding to unique BES pairs
were retained. BES mappings are available as a custom track
for the UCSC Genome Browser on the internet [56].

BES pairs with BES mapping to the same chromosome and
having opposite convergent orientations (for instance, a pair
of the form [(chrom1, locl, strandl), (chrom2, loc2, strand2)]
with chroml = chrom2, locl < loc2, strandl = '+', and strand2
= '-") were identified. The distribution of distances between
mapped ends (loc2 to locl) was used to define the length dis-
tribution of the BAC libraries. BES pairs with ends on the
same chromosome and having convergent orientations on
opposite strands and distances in the 99.5% quantile of this
distribution were classified as valid. Other BES pairs were
classified as invalid and thus candidate rearrangements in the
tumor. Note that the distance criterion was very permissive
and might misclassify clones harboring small indels as valid.
Overlapping valid pairs were combined into ‘contigs’,
whereas invalid pairs were clustered into sets according to
whether their locations were close enough to be explained by
a single rearrangement event [4-7]. Invalid pairs (or clusters)
were classified as potential indels, inversions, or transloca-
tions, according to the location and orientation of their ends
(see Additional data file 1 [Table S1]).

Custom software was used to visualize the mapping results, as
described by Volik and cowokers [6]. A plot of BES density
generated a copy number profile for the entire tumor genome,
because the overall number of BESs per given genomic inter-
val is roughly proportional to copy number.
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Known structural variants

Locations of previously reported structural variants were
downloaded from the Database of Genomic Variants [23,57].
Clusters of invalid BES pairs were labeled as ‘explained’ by the
known structural variant if the locations of the variant over-
lapped the locations of an end sequence pair in the cluster,
and the type of variant was consistent with the orientations of
the mapped end sequences in the clusters. That is, pairs with
convergent orientation are consistent with insertions and
deletions (copy number variants), whereas pairs with the
same orientation are consistent with inversions. We did not
require precise overlap between the breakpoints of the invalid
BES pairs and the breakpoints of the structural variants
because both types of breakpoints were only approximately
known. Note that multiple structural variants might ‘explain’
a cluster because the structural variants in the database were
merged from different experimental sources and have some
redundancy [58].

BAC sequencing

BAC DNA was purified from 250 ml overnight culture using
the Qiagen columns (Qiagen, Hilden, Germany). Approxi-
mately 2 ug of BAC DNA was mechanically sheared using the
HydroShear (Genomic Solutions Inc., Ann Arbor, MI, USA),
end-repaired with the Klenow enzyme and T4 DNA polymer-
ase, size selected for 3 + 0.5 kb fragments on agarose gels, and
cloned into a pUC19 vector. Individually picked subclones
were grown on 96-well plates overnight in LB plus 200 pg/ml
ampicilin and 10% glycerol. Plasmid DNA was prepared from
the arrayed cells using the TempliPhi kit (GE/Amersham,
Chalfont St. Giles, UK), in accordance with the manufac-
turer's protocol. Three-kilobase subclones were end
sequenced using BigDye terminators (Applied Biosystems,
Foster City, CA, USA) and capillary sequencers. The quality of
the sequence reads were determined by Phred score [29], and
only sequences greater than Q20 were included in the analy-
sis.

Analysis of rearrangements breakpoint junctions
Breakpoint junction sequences were alighed to the Human
Genome Assembly (NCBI build 35, May 2004) using BLAT
[55], and the alignments were analyzed for the precise posi-
tion of the breakpoint and presence of microhomologies.
Breakpoint sequences were also analyzed for their repeat con-
tent using the RepeatMasker program and for their overlap
with known copy number polymorphic regions using the
Structural Variation track of the Genome Browser. The mech-
anism of each rearrangement was deduced from the align-
ment of the breakpoint junction sequence to the native
sequences of the two regions participating in the rearrange-
ment, and the number of total DSBs calculated as previously
described [45].

SNP analysis
Out of the approximately 70,000 clones sequenced for this
and previous studies, we selected the 97,860 BESs that
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mapped to unique loci on the hgl7 reference genome with a
minimum BLAT identity score of 97%. The mean phred score
[29] of these BESs is 51. A total of 61,013 of the selected BESs
contained at least one mismatch. Runs of multiple contiguous
mismatches and indels were not considered when defining a
SNP. We identified 115,444 candidate SNPs, which we
defined as a single base mismatch flanked on both sides by at
least one matched base. A total of 67,201 (58.21%) of these
candidate SNPs were attributed to possible sequencing
errors, because the phred score of the SNP, or the mean phred
score of the five bases centered on the SNP, or the mean phred
score of the entire BES was below 30. Candidate SNPs were
not considered tumor specific if their location and nucleotide
change matched a known SNP in dbSNP build 124. Coding
SNPs were identified as those than lie in exons annotated
from the Known Genes track of the UCSC Genome Browser.
The observed rates of SNPs of each type of nucleotide substi-
tution were compared across different samples using the x2
test. Enrichment of Gene Ontology terms for the genes con-
taining candidate SNPs was computed with the DAVID tool
[34], which computes P values for enrichment correcting for
the size of the gene sets in each term. We used the LiftOver
tool from the UCSC Genome Browser [59] to identify the loca-
tions of each novel SNP in the latest build (build 36) of the
human reference genome and examined whether these SNPs
were present in dbSNP build 128 using the snp128 table. The
validation of candidate SNPs/mutations was performed by
direct genomic sequencing of the DNA amplified from the cell
line used for ESP.

RT-PCR

RT-PCR experiments were carried out as described by Zardo
and coworkers [60]. Primer sequences and conditions are
presented below. We employed a nested PCR strategy to
increase specificity and sensitivity of our assay. All PCR reac-
tions were carried out in 25 ul reaction volumes using follow-
ing program: initial denaturation of DNA, 4 minutes at 94°C;
30 to 35 cycles of 15 seconds at 94°C; 30 seconds at 60°C; and
45 seconds at 72°C. We have used about 100 ng of cDNA for
the first reaction with outer primers, and 1 pul of the resulting
PCR reaction for the second round using inner primers. The
following primers were used. For DRO0074 we used
AGGAAAAGGCCTTGAAGCTC and
TGCTGTATTTGACAGGACAAGTG (outer primers), and
GAGGACATGCTCCTACCTGTG and TGCTGTATTTGACAG-
GACAAGTG (inner primers). For CN272097 we used
CCAACGTGAGCTTCCAGAAC and ACAGAAACGCCTCT-
TCTCATTTAG (outer primers), and TATTATGATAC-
CCACACCAACACC and CTCCTGTTCGTGTCAGCAATAC
(inner primers). The specificity of PCR reactions were vali-
dated by sequencing at UCSF Genome Analysis Core.

Spectral karyotyping and FISH analysis

Cells lines were shipped to Dr. Padilla-Nash. When cell lines
reached 70% confluence, cells were treated with colcemid
(Roche, Indianapolis, IN, USA) for 1 hour to arrest the cells in
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mitosis. Metaphase chromosome suspensions were prepared
first by treating cells with a hypotonic solution (0.075 mol/I
KCI); next, the cells were fixed using methanol:acetic acid
(3:1, vol/vol) and dropped onto slides in a humidity control-
led chamber. The slides were aged at 37°C for approximately
1 week. Chromosome preparations were hybridized with
either FISH probes or spectral karyotyping (SKY) probes for
72 hours. The protocols for preparation of FISH/SKY probes,
slide pre-treatment, slide denaturation, detection, and imag-
ing have been described previously and are available on the
internet [61]. Ten to fifteen metaphase spreads were analyzed
per sample and scored for the following: chromosome
number (ploidy), numerical aberrations, and structural aber-
rations. Spectrum-based classification and analysis of the flu-
orescent images (SKY) was achieved using SkyView™
software (Applied Spectral Imaging, Carlsbad, CA, USA). The
karyotypes of every metaphase spread from all groups were
characterized using the human chromosome nomenclature
rules adopted in the 2005 International System for Human
Cytogenetics Nomenclature.
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