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Background. Infections due to multidrug-resistant pathogens are particularly deadly and difficult to treat in immunocompro-
mised patients, where few data exist to guide optimal antimicrobial therapy. In the absence of adequate clinical data, in vitro phar-
macokinetic (PK)/pharmacodynamic (PD) analyses can help to design treatment regimens that are bactericidal and may be clinically 
effective. 

Methods. We report a case in which in vitro pharmacodynamic analyses were utilized to guide the treatment of complex, re-
current bacteremias due to vancomycin-, daptomycin-, and linezolid-resistant Enterococcus faecium and carbapenem-resistant 
Enterobacter cloacae complex in a liver transplant patient. 

Results. Whole-genome sequencing revealed unique underlying resistance mechanisms and explained the rapid evolution of 
phenotypic resistance and complicated intrahost genomic dynamics observed in vivo. Performing this comprehensive genotypic and 
phenotypic testing and time-kill analyses, along with knowledge of institution and patient-specific factors, allowed us to use preci-
sion medicine to design a treatment regimen that maximized PK/PD. 

Conclusions. This work provides a motivating example of clinicians and scientists uniting to optimize care in the era of escalating 
antimicrobial resistance.

Keywords.  combination therapy; CRE; Enterococcus faecium; Enterobacter cloacae; VRE.

The concomitant increase in bacterial resistance and decrease 
in novel antimicrobial agents has forced clinicians and scientists 
to find ways to optimize the use of our current antimicrobial 
armamentarium. Combination antimicrobial therapy is a com-
monly utilized optimization strategy, especially against mul-
tiply drug-resistant pathogens, to provide synergistic activity 
and reduce the potential for further resistance development. 
Combination therapy is routinely recommended for serious in-
fections due to enterococci [1] and is often employed against 
resistant Gram-negative pathogens, especially carbapenem-
resistant Enterobacteriaceae (CRE) [2]. Unfortunately, the op-
timal combination regimen for these pathogens is unknown, as 
clinical data are lacking and translation of in vitro data from 

the benchtop to clinical practice can be challenging. As such, 
clinicians are often forced to make an educated guess as to the 
best combination based on external clinical and in vitro data, 
patient-specific factors, and the pharmacokinetics (PK), phar-
macodynamics (PD), and toxicodynamics (TD) of given anti-
microbial agents.

In vitro PD models such as time-kill analyses are able to 
evaluate the bactericidal activity of antibiotics and are the gold 
standard for evaluating antimicrobial synergy. Unfortunately, 
these models are not always clinically translatable, as they may 
use clinically irrelevant drugs, supratherapeutic doses, and/or 
only evaluate a small set of pathogens, which may not repre-
sent the most prevalent strains. To be most useful clinically, 
these analyses would be performed ex vivo against the specific 
patient’s infecting pathogen vs the antimicrobial(s) alone and 
in combinations that are relevant to that patient’s case based on 
the patient’s organ function, allergies, hospital formulary, etc. 
This approach would allow for evidence-based therapy optimi-
zation and precision medicine against extremely difficult-to-
treat pathogens. Herein we provide a motivating example that 
supports the use of time-kill analyses to guide clinical deci-
sion-making for combination antimicrobial therapy in patients 
with complex and multidrug-resistant infections. We report 
on the use of pharmacodynamic analyses to help guide the 
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treatment of complex multidrug-resistant Enterococcus faecium 
and Enterobacter cloacae complex bacteremia in a critically ill 
immunocompromised liver transplant patient. Additionally, 
whole-genome sequencing was performed to elucidate the un-
derlying mechanisms of resistance in these pathogens with ab-
struse phenotypic resistance profiles.

PATIENT CASE

The patient was a 30-year-old female with a medical history of 
autoimmune hepatitis who received an orthotopic liver trans-
plant (OLT). Approximately 6 months post-transplant, she de-
veloped a right lobar hepatic abscess and successive bacteremias 
due to third-generation cephalosporin-resistant Enterobacter 
cloacae complex and daptomycin-susceptible (minimum in-
hibitory concentration [MIC],  4  mg/L), vancomycin-resistant 
Enterococcus faecium (VRE), for which she received treat-
ment with ertapenem and daptomycin (~11  mg/kg/d), re-
spectively (Figure  1). Blood cultures initially cleared after ~1 
week of therapy, but after ~4 weeks of treatment with this com-
bination (~day 29), blood cultures again grew daptomycin-
susceptible VRE, whereas cultures from the liver abscess grew 
daptomycin-resistant (MIC,  16  mg/L) VRE. Ampicillin was 
added to daptomycin and ertapenem given this elevated MIC 
to daptomycin, and blood cultures cleared again by day 32. 
Roughly 10 days later, blood cultures again grew VRE, which 
was now also daptomycin-resistant (E. faecium UIC1) (Table 1). 
Accordingly, the dose of daptomycin was increased from ~11 to 
~14 mg/kg/d, linezolid was added, and ampicillin was switched 
to ceftaroline. A  tracheal aspirate culture from the same day 

also grew E.  cloacae complex, which was now phenotypically 
carbapenem-resistant, and therefore ertapenem was switched 
to levofloxacin. Blood cultures became VRE-negative after ~2 
weeks of therapy with this triple combination, and the patient 
was stable enough to be discharged on ~day 80.

Three days after discharge, the patient was re-admitted 
with fevers, and meropenem was briefly added empirically to 
daptomycin, linezolid, and ceftaroline. Blood and hepatic ab-
scess cultures again were positive for daptomycin-resistant VRE. 
Based on results from time-kill analyses of E.  faecium UIC1 
(Figure  2), therapy was switched to daptomycin, ceftriaxone, 
and gentamicin. Linezolid was continued by the primary med-
ical team. This combination cleared her bacteremia in <1 week, 
and she was subsequently discharged on day 20 of this admis-
sion (~day 100 overall). Follow-up blood cultures remained 
negative for 3  months (~days 100–190) while maintained on 
this regimen, with the exception of gentamicin, which was 
discontinued after ~30 days (~day 130) due to elevated serum 
creatinine.

Approximately 11  months post-transplant, the patient was 
again readmitted with acute kidney injury and hypervolemia. 
Blood and respiratory cultures from this admission demon-
strated carbapenem-resistant, carbapenemase-negative E.  clo-
acae complex according to the BioFire FilmArray BCID panel 
(in vitro diagnostic [IVD]; BioFire Diagnostics, LLC, Salt Lake 
City, UT, USA), Xpert Carba-R (IVD; Cepheid, Sunnyvale, CA, 
USA), and Enterobacter spp. via the Verigene BC-GN system 
(research-use only [RUO]; Nanosphere, Northbrook, IL, USA) 
(Table  1). Ceftazidime-avibactam demonstrated bactericidal 
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Figure 1. Evolution of bacterial resistance and schematic of antimicrobial administration over the post-transplant infectious period. Timeline is not to scale. AMP, ampicillin; 
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activity alone against the CRE in time-kill analyses (Figure 2) 
and was therefore initiated, along with sulfamethoxazole/tri-
methoprim and tigecycline, based on in vitro susceptibilities. 
Blood cultures cleared within 3 days. She remained on quad-
ruple drug therapy (daptomycin, ceftriaxone, gentamicin, and 

linezolid) for her previous VRE infections until repeat he-
patic abscess cultures grew a daptomycin- and vancomycin-
susceptible, linezolid-resistant E.  faecium (E.  faecium UIC2) 
(Table 1). As such, antibiotics were switched from daptomycin, 
ceftriaxone, gentamicin, and linezolid to vancomycin (~day 

Table 1. Genotypic and Phenotypic Susceptibilities and Interpretive Categorya of Pathogens to Tested Antimicrobials

E. faecium UIC1 E. faecium UIC2 E. hormaechei

Resistance Genes

aac(6’)-Ii, ant(6)-Ia, aph(3’)-III,  
dfrG, erm(B), erm(T), msr(C), tet(L),  

tet(M), vanA
aac(6’)-Ii, aac(6’)-aph(2’’), dfrG, 
erm(T), msr(C), tet(L), tet(M) blaACT-7, fosA, mdf(A)

Antibioticb MIC, mg/L Interpretive Category MIC, mg/L Interpretive Category MIC, mg/L Interpretive Category

Ampicillin >256* R >256* R ≥16* I

Ampicillin-sulbactam - - - - >16/8* R

Aztreonam - - - - >256* R

Cefazolin - - - - ≥32* R

Cefepime - - - - ≥32* R

Ceftaroline >64 NC ≥128 NC ≥8 R

Ceftazidime - - - - ≥128* R

Ceftazidime-avibactam - - - - 8* S

Ceftolozane-tazobactam - - - - - R

Ceftriaxone >256 NC ≥128 NC ≥128* R

Chloramphenicol 4 S ≥32 R 16 I

Dalbavancind >2 R 0.12 S - -

Daptomycin 32* R 4* SDD - -

Eravacycline - - - - 1 S

Ertapenem 128 NC - - ≥64* R

Erythromycin ≥8 R 2 I - -

Fosfomycind 16 S 64 S >1024 R

Gentamicin 2* NC 8* NC ≤1* S

Levofloxacin ≥8 R ≥8 R 2* R

Linezolid 1* S >256* R - -

Meropenem - - - - 16* R

Meropenem-vaborbactam - - - - 8* I

Nitrofurantoin ≥128 R ≥128 R 64 I

Oritavancind 0.03 S 0.004 S - -

Piperacillin-tazobactam - - - - ≥128* R

Plazomicin - - - - 1 S

Polymyxin Be - - - - 0.25* S

Quinupristin-dalfopristinf 0.5* S 0.5* S - -

Rifampin 2 I 0.5 S ≥4 NC

Tedizolidd 0.5 S ≥8 R - -

Telavancin ≥4 R 0.06 S - -

Tetracycline ≥16 R ≥16 R ≥16 R

Tigecyclineg,* 2 NS 2 NS 2* S

Tobramycin - - - - ≤2* S

Trimethoprim-sulfamethoxazole - - - - <2/38* S

Vancomycin >256* R 1* S - -

Abbreviations: -, not tested; CLSI, Clinical and Laboratory Standards Institute; I, intermediate; MIC, minimum inhibitory concentration; NC, no CLSI interpretive category; NS, nonsusceptible; 
R, resistant; S, susceptible; SDD, susceptible dose-dependent. 
aAccording to CLSI M100-S29.
bAgents for which susceptibility testing was initially performed by the clinical microbiology laboratory and were immediately available to the clinical team before additional analyses in the 
research laboratory are indicated with an “*.” Otherwise, additional minimum inhibitory concentrations reported in this table are those obtained from the research laboratory.
cSusceptibility determined via disk diffusion.
dInterpreted according to CLSI breakpoint for vancomycin-susceptible E. faecalis.
eInterpreted according to CLSI breakpoint for Pseudomonas aeruginosa.
fInterpreted according to CLSI breakpoint for vancomycin-resistant E. faecium.
gInterpreted according to Food and Drug Administration breakpoints for vancomycin-susceptible E. faecalis and Enterobacteriaceae, respectively.
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195–200) (Figure 1), although blood cultures continued to grow 
vancomycin-susceptible E.  faecium despite additional therapy 
with quinupristin/dalfopristin and oritavancin (added on ~day 
225) (Figure 1). Finally, the patient developed massive pulmo-
nary hemorrhage and multisystem organ failure and ultimately 
succumbed to her disease ~8 months after initially discovering 
the hepatic abscess.

METHODS

Bacteria and Susceptibility Testing

Initial organism identification and susceptibility determination 
were performed via matrix-assisted laser-desorption ionization 
time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker 
Daltonics, Billerica, MA, USA) and MicroScan Walkaway 
(Beckman Coulter, Brea, CA, USA), respectively, in the clin-
ical microbiology laboratory. All subsequent testing was per-
formed in the research laboratory. Identification and resistance 
marker detection was subsequently confirmed via Verigene 
blood culture assay (NanoSphere, Northbrook, IL, USA). For 
phenotypic testing of the E. cloacae complex isolate, the mod-
ified Hodge test, carbapenem inactivation method, modified 
carbapenem inactivation method, and extended-spectrum 
beta-lactamase (ESBI) disk diffusion testing were performed 
according to clinical and laboratory standards institute (CLSI) 
guidelines [3]. Additionally, the metallo-beta-lactamase (MBL) 
Etest (bioMerieux, Marcy-L’Etoile, France) and Carba5 lateral 
flow immunoassay (Hardy Diagnostics, Santa Maria, CA, USA) 
were performed according to the manufacturer’s instructions.

Analytical grade ampicillin, avibactam, aztreonam, ceftazidime, 
ceftriaxone, daptomycin, ertapenem, fosfomycin, gentamicin, 
linezolid, meropenem, oritavancin, polymyxin B, rifampin, 
tigecycline, and vancomycin (Sigma-Aldrich, St. Louis, MO, USA), 
along with vaborbactam (MedChemExpress, Monmouth Junction, 
NJ, USA), were obtained commercially for broth microdilution 
testing. IVD Etest strips for ceftazidime-avibactam (bioMerieux, 
Marcy-l’Etoile, France), RUO Etest strips for eravacycline and 
plazomicin (Liofilchem, Roseto degli Abruzzi, Italy), and GPALL3F 
and FDANDPF Sensititre AST plates (ThermoFisher Scientific, 
Waltham, MA, USA) were utilized according to the manufacturer’s 
instructions. Minimum inhibitory concentrations (MICs) were 
determined in triplicate according to CLSI guidelines [3], with 
0.002% polysorbate-80 added to assays containing oritavancin and 
the Ca2+ content of CAMHB increased to 50 mg/L for assays con-
taining daptomycin. Nontissue culture-treated microtiter plates 
were used for all oritavancin assays to prevent any loss of drug po-
tency [4]. Modal MIC values are reported.

Time-Kill Experiments

Time-kill experiments were performed as previously described 
[5–7]. Antimicrobial agents selected for time-kill analyses alone 
and in combination were based on known or presumed in vitro 
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susceptibility or synergy, institutional formulary, patient’s organ 
function, antimicrobial stewardship considerations, and discus-
sion with the infectious diseases consult team. Maximum free 
drug plasma concentrations (fCmax) of each antibiotic were used 
according to the dose being administered to the patient clini-
cally (Supplementary Table 1).

Whole-Genome Sequencing

Each of the patient’s 3 isolates (E.  faecium UIC1, E.  faecium 
UIC2, and E.  cloacae complex) retrospectively underwent 
whole-genome sequencing to identify antimicrobial resistance 
mechanisms. Genomic DNA was extracted using the QIAmp 
and HT DNA Kit (Qiagen, Hilden, Germany) and library-
prepared using the Nextera XT library prep kit from Illumina. 
Paired-end genome sequencing was performed on an Illumina 
MiSeq (Illumina, San Diego, CA, USA) 2×150-bp configu-
ration (GENEWIZ, Inc., South Plainfield, NJ, USA). Adapter 
sequences were trimmed, and low-quality bases were removed 
using BBDuk 37.64. De novo genome assembly was performed 
using SPAdes 3.10 [8]. Antimicrobial resistance genes were ini-
tially identified by BLAST-searching the derived contigs for each 
organism against the ResFinder 3.1 [9] and CARD-RGI [10] 
databases. Single nucleotide polymorphisms in the liaFSR operon 
and cls gene (cardiolipin synthetase) in E.  faecium were identi-
fied vs reference E.  faecium ATCC 700221 (accession number: 
CP014449). To identify possible linezolid resistance–conferring 
mutations in the E.  faecium isolates, linezolid resistance in en-
terococci (LRE) finder was used [11]. To identify additional 
carbapenem resistance–conferring mutations in the E.  cloacae 
complex isolate, ompC and ompF sequences were compared with 
reference sequences from E.  cloacae 1537504 (accession num-
bers: KY086510.1 and KY086519.1).

To determine the genetic relatedness of the patient’s 2 
E.  faecium isolates, comparative genomics were used for the 
assembled sequences of E.  faecium UIC1 and UIC2. Pairwise 
whole-genome alignment was performed with MUMmer 3.0 
[12] to determine mismatches and the percent identity of the 
sequences. A  mummerplot was generated to identify regions 
of the sequences with gaps or inversions. Each E.  faecium se-
quence was also mapped to reference vanA plasmids pV24-5 
and pS177 (accession numbers: CP036156 and HQ115078) 
using Bowtie2 [13].

RESULTS

Susceptibility

Phenotypic susceptibilities for each pathogen against the tested 
antimicrobial agents are displayed in Table  1. Notably, the 
E.  faecium UIC1 isolate was daptomycin- and vancomycin-
resistant but susceptible to the oxazolidinones, whereas 
E. faecium UIC2 was daptomycin- and vancomycin-susceptible, 
but oxazolidinone-resistant. The only agent with interpretive 
criteria for E. faecium that both isolates were susceptible to was 

quinupristin-dalfopristin, although fosfomycin and oritavancin 
had MICs within the susceptible range for E. faecalis.

The E. cloacae complex isolate was extensively drug-resistant 
and remained susceptible only to ceftazidime-avibactam, 
eravacycline, gentamicin, plazomicin, polymyxin B, tigecycline, 
tobramycin, and trimethoprim-sulfamethoxazole. Despite 
carbapenem resistance, all phenotypic tests for carbapenemase 
production were negative.

Time-Kill Analyses

Time-kill analyses were performed on E.  faecium UIC1 
and E.  cloacae complex in order to inform clinical treat-
ment (Figure 2). Time-kill analyses on E.  faecium UIC1 were 
performed during the second episode of VRE bacteremia 
(Figure 1), although due to the time required for completion, 
the patient cleared her bacteremia before the availability of 
these results. As such, they were utilized to design the anti-
microbial regimen during the third episode of bacteremia 
(Figure 1). Against E.  faecium UIC1, no single drug was bac-
tericidal. Daptomycin plus gentamicin was bactericidal (3.27 
log10 colony-forming units [CFU]/mL reduction at 24 hours), 
along with the triple combinations of daptomycin plus am-
picillin and gentamicin (3.67 log10 CFU/mL reduction at 24 
hours), daptomycin plus ertapenem and gentamicin (5.79 
log10 CFU/mL reduction at 24 hours), and daptomycin plus 
ceftriaxone and gentamicin (5.79 log10 CFU/mL reduction at 
24 hours). Time-kill analyses against the Enterobacter isolate 
were performed as soon as the carbapenem-resistant isolate 
was detected in blood cultures (~day 195) (Figure 1). Against 
the E. cloacae complex, ceftazidime-avibactam and polymyxin 
B alone and together were bactericidal and achieved bacterial 
eradication at 24 hours (5.97 log10 CFU/mL reduction for each). 
Meropenem-vaborbactam in combination with aztreonam also 
resulted in bactericidal activity, synergy, and bacterial eradica-
tion at 24 hours (5.97 log10 CFU/mL reduction).

Whole-Genome Sequencing

Molecular analysis of E.  faecium UIC1 revealed resistance 
genes for aminoglycosides (aac(6’)-Ii, ant(6)-Ia, aph(3’)-III), 
trimethoprim (dfrG), macrolides/lincosamides/streptogramin 
B (erm(B), erm(T), msr(C)), tetracyclines (tet(L), tet(M)), and 
vancomycin (vanA). Whole-genome sequencing (WGS) of 
E. faecium UIC2 revealed resistance genes for aminoglycosides 
(aac(6’)-li), trimethoprim (dfrG), macrolides/lincosamides/
streptogramin B (msr(C), erm(T)), and tetracyclines (tet(L)). 
Although mutations in the liaFRS operon and cardiolipin 
synthase gene (cls) have been previously shown to confer ele-
vated MICs to daptomycin, the liaFRS and cls sequences were 
identical between E.  faecium UIC1 and UIC2, and the liaF 
genes remained unaltered compared with E.  faecium ATCC 
700221. However, amino acid substitutions known to increase 
daptomycin MICs were detected in liaR (W73C) and liaS 

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofz545#supplementary-data
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(T120A) in both E. faecium isolates. Each isolate also had amino 
acid substitutions (L38V, V173G, I432V) in the cls gene com-
pared with E. faecium ATCC 700221, although these mutations 
in the cls gene have not yet been shown to confer daptomycin 
resistance alone [14]. The LRE finder did not identify any mu-
tations in the 23S rRNA or in the optrA, cfr, cfr(B), and poxtA 
genes encoding linezolid resistance in enterococci.

Comparative genomics revealed that E.  faecium UIC1 and 
E.  faecium UIC2 were closely aligned, with 99.994% nucle-
otide similarity across an alignment of 2  913  393 base pairs. 
Furthermore, there were not any gaps or translocations between 
the 2 E.  faecium sequences. The E.  faecium UIC1 sequence, 
which harbored vanA, covered 92.2% and 91.5% of reference 
vanA plasmids pV24-5 and pS177, whereas E.  faecium UIC2 
only covered 63.5% and 53.3%, respectively.

Whole-genome sequencing of the E.  cloacae complex re-
vealed that the specific species within the complex was 
E.  hormaechei and that the ampC-type β-lactamase blaACT-7 
and the fosfomycin-modifying enzyme fosA were detected. 
Additional analysis of the ompC and ompF outer-membrane 
porin channels revealed premature stop codons at amino acid 
positions 82 and 252, respectively.

DISCUSSION

We report the case of a medically complex and vulnerable pa-
tient suffering from recurrent and persistent bacteremia due 
to E.  faecium and E.  cloacae complex secondary to a post-
transplantation liver abscess. Both of these pathogens had 
unique resistance mechanisms and phenotypic susceptibility 
profiles, making selection of optimal antimicrobial therapy ex-
tremely challenging. In addition, limited robust clinical data 
exist to assist antimicrobial selection and treatment of serious 
endovascular infections due to infrequently encountered MDR 
pathogens. As such, pharmacodynamic analyses were per-
formed to help guide antimicrobial therapy for this patient in 
the setting of conflicting genotypic–phenotypic resistance and 
rapidly changing within-host susceptibility profiles during the 
course of therapy. Time-kill analyses were able to identify the 
most bactericidal antimicrobial regimens, and when employed 
clinically, these regimens demonstrated success in clearing CRE 
bacteremia and keeping the VRE infection controlled for sev-
eral months.

Our group and others have previously implemented phar-
macodynamic analyses to guide antimicrobial therapy in 
patients [15–18]. However, to our knowledge, the enclosed ex-
ample represents the first report that leverages this approach 
for either VRE or E.  cloacae complex and adds to the accu-
mulating evidence showing a potential benefit of pharmaco-
dynamic analyses for difficult-to-treat infections. Further, the 
results of our time-kill analyses are in agreement with previous 
work demonstrating synergy between daptomycin and either 

β-lactams or aminoglycosides against VRE [19–22], including 
daptomycin-nonsusceptible strains, but to our knowledge this is 
the first modern study to examine relevant triple and quadruple 
antimicrobial combinations [23–26]. Finally, our work adds to 
the literature supporting the in vitro activity of ceftazidime-
avibactam against CRE, even for isolates with MICs at or near 
the susceptibility breakpoint [27].

In addition to the PD analyses, retrospective whole-genome 
sequencing helped identify genetic resistance determinants 
for each of the patient’s isolates and explain the evolution of 
phenotypic resistance over time in response to antimicrobial 
therapy. After development of daptomycin resistance in the in-
itial VRE isolate post-treatment, high sequence identity in con-
junction with the patient’s clinical course strongly supports that 
E. faecium UIC2 evolved from E. faecium UIC1. Treatment of 
E.  faecium UIC1 with linezolid likely selected for a linezolid-
resistant subpopulation that was subsequently obtained from 
blood cultures as E.  faecium UIC2. Unfortunately, whole-
genome sequencing and use of the LRE finder did not identify 
the underlying mechanism for linezolid resistance in E. faecium 
UIC2. Linezolid-resistant E. faecium lacking all common resist-
ance mechanisms have been previously reported in the litera-
ture [28–30] and suggest the presence of additional unidentified 
mechanisms. Conversely, E.  faecium UIC2 reverted back to a 
vanA-negative, vancomycin-susceptible phenotype, likely 
due to the loss of a plasmid or transposon containing vanA 
and ant(6)-Ia, aph(3’)-III, and erm(B) from E.  faecium UIC1 
(Table 1), which have previously been shown to reside together 
on vanA plasmids in E. faecium [31, 32]. A previous report on 
the genomic dynamics of E. faecium also demonstrated that the 
loss of plasmids or transposons is associated with intrapatient 
variations in vancomycin resistance and virulence during infec-
tion in immunocompromised patients [33].

Unique to this case, intrahost changes in susceptibility oc-
curred within the E. cloacae complex isolate in addition to the 
E.  faecium. This rapid evolution of E.  cloacae complex resist-
ance from third-generation cephalosporin-resistant to CRE 
phenotype, in addition to the inability of commercially avail-
able genotypic and phenotypic tests to detect the presence of 
a carbapenemase in these isolates, contributed to the diffi-
culty in selecting timely and effective antimicrobial therapy. 
Whole-genome sequencing was able to identify the species as 
E. hormaechei, 1 of 6 genetically related species within the E. clo-
acae complex [34]. Genome analysis also detected the pres-
ence of blaACT-7, an inducible plasmid-mediated serine class C 
β-lactamase [35], along with mutations in the outer membrane 
porins ompC and ompF. To our knowledge, this is the first re-
port of a clinical case of infection with a blaACT-7-producing 
pathogen [36]. Overexpression of blaACT in conjunction with 
impaired function of outer membrane porins has previously 
been shown to induce carbapenem resistance [37] and may ex-
plain the reduced susceptibility observed to the carbapenems, 
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ceftazidime-avibactam, and meropenem-vaborbactam in the 
E. cloacae complex in our patient. Taken together, the whole-
genome sequencing data may enable our optimized antimicro-
bial regimens to be translated to future patients infected with 
organisms harboring similar resistance mechanisms. These 
data also highlight the importance of repeated phenotypic sus-
ceptibility testing in the clinical arena, especially in vulnerable 
patients with persistent infections for which source control is 
unachievable.

The case presented herein highlights the complexity of 
treating rapidly evolving, extremely drug-resistant pathogens, 
especially in critically ill and/or immunocompromised patients. 
Performing comprehensive genotypic and phenotypic suscep-
tibility and time-kill analyses, along with knowledge of insti-
tution- and patient-specific factors, allowed us to use precision 
medicine to design a treatment regimen that maximized PK 
and PD. Although we felt that this approach helped optimize 
treatment for this patient, it is obviously not feasible or required 
for all patients, and cases for which these types of analyses are 
useful should be carefully selected. Importantly, this type of ap-
proach has not been definitively shown to improve patient out-
comes, and in our case the patient ultimately succumbed to her 
illnesses despite optimization of antimicrobial therapy, likely 
due in part to an inability to achieve complete source control. 
Nevertheless, we provide a motivating example of the important 
role of genotypic, phenotypic, PK/PD, and clinical information 
coming together to optimize the treatment of a very challenging 
patient case. As bacterial resistance and the medical complexity 
of our patients continue to increase while the antimicrobial de-
velopment pipeline dwindles, clinicians and researchers need to 
continue to work together to optimize patient care and achieve 
precision medicine.
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