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Abstract

MiR-873/CDK3 has been shown to play a critical role in ERα signaling and tamoxifen resis-

tance. Thus, targeting this pathway may be a potential therapeutic approach for the treat-

ment of ER positive breast cancer especially tamoxifen resistant subtype. Here we report

that Norcantharidin (NCTD), currently used clinically as an ani-cancer drug in China, regu-

lates miR-873/CDK3 axis in breast cancer cells. NCTD decreases the transcriptional activity

of ERα but not ERβ through the modulation of miR-873/CDK3 axis. We also found that

NCTD inhibits cell proliferation and tumor growth and miR-873/CDK3 axis mediates cell pro-

liferation suppression of NCTD. More important, we found that NCTD sensitizes resistant

cells to tamoxifen. NCTD inhibits tamoxifen induced the transcriptional activity as well ERα
downstream gene expressions in tamoxifen resistant breast cancer cells. In addition, we

found that NCTD restores tamoxifen induced recruitments of ERα co-repressors N-CoR and

SMRT. Knockdown of miR-873 and overexpression of CDK3 diminish the effect of NCTD on

tamoxifen resistance. Our data shows that NCTD regulates ERα signaling and tamoxifen

resistance by targeting miR-873/CDK3 axis in breast cancer cells. This study may provide

an alternative therapy strategy for tamoxifen resistant breast cancer.

Introduction

The estrogen receptor (ER), which plays a prominent role in breast cancer, is a member of the

nuclear receptor superfamily of ligand-activated transcription factors. There are two different

forms of the estrogen receptor, usually referred to as α and β, each encoded by a separate gene

(ESR1 and ESR2, respectively) [1,2]. ERα mediates the tumor-promoting effects of estrogens,

whereas ERβ inhibits breast cancer cell growth. In common with other nuclear receptors, ER

regulates target genes by recruiting transcriptional coregulators and components of the basal

transcription machinery [3,4]. The ligand-bound ER, depending on the nature of the ligand,

recruits and interacts with coregulatory proteins that can either enhance (coactivators) or
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repress (corepressors) its transcriptional activity. Ligand-activated ER binds to estrogen-

response elements (ERE) of target genes such as TFF1 and c-Myc [3,5].

As approximately 70% of all breast cancers are ERα positive at the time of diagnosis, disrup-

tion of ER function is the main therapeutic strategy employed in targeting the disease. The

selective estrogen receptor modulator (SERM), tamoxifen, can bind to the ER and block the

interaction between estrogen and the ER [6–8]. Through this way, tamoxifen inhibits ER target

gene expression and reduces tumor growth. Tamoxifen has been the mainstay of endocrine

therapy in both early and advanced breast cancer patients for almost three decades. Unfortu-

nately, up to half of all ER-positive tumors either do not respond to this endocrine therapy or,

after initial successful treatment, the tumors recur as endocrine-resistant breast cancer. Thus,

tamoxifen resistance presents a major challenge in treating breast cancer [7–9].

MicroRNAs (miRNAs) are 20–22 nucleotide RNAs that negatively regulate gene expression

in eukaryotes. Increasingly evidences reveal the key roles of miRNAs in breast cancer initiation

and progression. MiRNAs can function as oncogenes or tumor suppressor genes depending

on their gene targets. Several recent studies have demonstrated the roles of miRNAs in estro-

gen signaling and tamoxifen resistance [10–16]. Our group recently reported that miR-873

regulates estrogen receptor signaling and tamoxifen resistance. MiR-873 is down-regulated in

breast cancer and its overexpression sensitized breast cancer cells to tamoxifen in vitro and in

vivo. CDK3 is the direct target of miR-873 and is overexpressed in breast cancer. Mir-873

exerted its functions through inhibiting CDK3 expression in breast cancer. Thus, targeting

miR-873/CDK3 may be a potential therapeutic approach for the treatment of ER positive

breast cancer especially tamoxifen resistant breast cancer [17].

Here, we, we found that Norcantharidin (NCTD) significantly increases miR-873 expres-

sion. NCTD inhibits breast cancer cell growth in vitro and in vivo through regulating miR-

873/CDK3 axis. More important, NCTD sensitized resistant cancer cells to tamoxifen.

Results

Norcantharidin (NCTD) regulates miR-873/CDK3expressions in breast

cancer cells

Our previous study shows that miR-873/CDK3 axis plays a critical role in ERα signaling and tamox-

ifen resistance. Targeting this pathway may be a potential therapeutic approach for the treatment of

ER positive breast cancer especially tamoxifen resistant subtype [17]. Since natural compounds have

been an important source of many clinically useful anti-cancer agents, here we tried to screen natu-

rally derived compounds regulating miR-873 expression using real-time PCR. As a result, we found

that NCTD increased significantly miR-873 expression in MCF-7 and ZR75-1 cells (Fig 1A).

CDK3 is the target of miR-873 to regulate ERα signaling and tamoxifen resistance. Then,

we investigated the effect of NCTD on CDK3 expression and Western blot assays showed that

NCTD inhibited CDK3 expression (Fig 1B and 1C). To determine whether NCTD inhibits

CDK3 expression via miR-873, we used anti-miR-873 inhibitor to diminish miR-873 expres-

sion in MCF-7 cells. As expected, the anti-miR-873 inhibitor oligo effectively inhibited miR-

873 expression, whereas the control oligo had no effect (Fig 1D). Importantly, suppression of

the normal expression of miR-873 in MCF-7 cells significantly diminished the inhibitory effect

of NCTD on CDK3 expression (Fig 1E).

NCTD regulates ERα signaling in breast cancer cells

To investigate the role of NCTD in ER transcriptional activities, the ERE-Luc was transfected

into breast cancer cells and then cells were treated with NCTD. As shown in Fig 2A and 2B,

Norcantharidin sensitizes breast cancer cells to tamoxifen
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NCTD inhibited luciferase reporter activities in presence of E2 in MCF-7 cells. Interestingly,

NCTD significantly decreased reporter gene activity in response to the ERα-specific agonist

propylpyrazoletriol (PPT) but not to the ERβ-specific agonist, diarylpropionitrile (DPN).

These results indicate that NCTD inhibits ERα but not ERβ transcriptional activity. We also

found NCTD inhibited ER transcriptional activities in T47D cells (S1 Fig)

Then, we also examined the effect of NCTD on several well-known endogenous ERα target

genes. NCTD treatment inhibited TFF1 and c-Myc expression at the mRNA level (Fig 2C).

ERα function is regulated by phosphorylation by various protein kinases [18]. Thus, we exam-

ined the effect of NCTD on ERα phosphorylation. In the presence of E2, NCTD inhibited

phosphorylation of S118 but not S167 (Fig 2D). Finally, we performed ChIP to investigate the

effect of NCTD on the occupancies of ERα and its co-activators. As a result, NCTD inhibited

the recruitments of ERα and its co-activators (MED1 and AIB1) to TFF1and c-Myc promoter

(Fig 2E and 2F).

NCTD regulates ERα signaling via miR-873/CDK3

To further explore whether NCTD inhibits ERα transcriptional activities via miR-873/CDK3,

we re-introduced the anti-miR-873 inhibitor or CDK3 coding sequence without the 3’UTR

Fig 1. NCTD regulates miR-873/CDK3 axis. (A) Real-time PCR analysis of miR-873 level in MCF-7 and ZR75-1 cells

treated with NCTD. MCF-7 and ZR75-1 cells were treated with vehicle (Veh) or 25μM NCTD for 24h and then cells

were harvested to perform real-time PCR. (B) and (C) MCF-7 and ZR75-1 cells were treated with 25μM NCTD. 24h

later cells were harvested to perform western blot using anti-CDK3 antibody. Quantifications of western blot are

shown in the right column. (D) Real-time PCR analysis of miR-873 level in MCF-7 cells transfected with anti-miR-873

or control oligo. (E) MCF-7 cells were transfected with anti-miR-873 or control oligo and then treated with Vehicle

(Veh) or 25μM NCTD for 24h. Western blot assays were performed to detect the expression CDK3. Data are expressed

as mean ± SD. � P< 0.05.

https://doi.org/10.1371/journal.pone.0217181.g001

Norcantharidin sensitizes breast cancer cells to tamoxifen
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into MCF-7 cells. Real-time PCR and western blots showed that miR-873 and CDK3 expres-

sion restored to similar levels in NCTD treated cells as untreated cells (Fig 3A and 3B). We

then measured ERα transcriptional activity and found that knockdown of miR-873 and re-

expression of CDK3 both diminished the inhibitory effect of NCTD on ERα transcriptional

activities in MCF-7 cells (Fig 3C). Real-time PCR assays showed that knockdown of miR-873

and re-expression of CDK3 could also restore ER target genes such as TIFF1 and c-Myc

expression which were inhibited by NCTD (Fig 3D and 3E).

NCTD inhibits cell growth in vitro and in vivo via targeting miR-873/CDK3

Our above data indicated a key role for NCTD in ERα-mediated transcription. As well known,

ERα determines the growth of ER-positive breast cancer cells. Thus, we further assessed the

role of NCTD in the growth of this type of breast cancer cells. We first performed cell prolifer-

ation assays in MCF-7 and ZR75-1. As expected, estrogen treatment strongly promoted the

proliferation of MCF-7 and ZR75-1 cells. NCTD significantly diminished cell proliferation of

MCF-7 and ZR75-1 cells (Fig 4A and 4B). Moreover, we found that NCTD suppressed MCF-7

cell proliferation in a dose dependent manner (S2 Fig). Next, we determined the role of NCTD

in tumor growth of nude mice. We found that NCTD significantly reduced tumor growth in
vivo (Fig 4C).

Fig 2. NCTD inhibits ERα transcriptional activity in breast cancer cells. (A) NCTD inhibited ERE (estrogen

response element) reporter gene activities. MCF-7 cells were transfected with plasmids expressing ERE-TK-LUC

reporter and pRL-TK (internal control) and followed by vehicle, E2, PPT, DPN or NCTD treatment as indicated for 24

hours. The relative luciferase values are expressed as mean ± S.E. (B) NCTD inhibited ER transcriptional activities in a

dose-dependent manner. Cells indicated above were treated with E2 and different concentration of NCTD as indicatd

and the relative luciferase activities were detected. (C) MCF-7 cells were treated with E2 or and 25μM NCTD for 24h.

Real-time PCR assays were performed to detect the effect of NCTD on ERα downstream gene expressions as indicated.

(D) MCF-7 cells were treated with E2 or and 25μM NCTD for 24h. Western blot assays were performed to detect the

effect of NCTD on ERα phosphorylation level as indicated. (E, F) NCTD inhibited the recruitments of ERα and its

coregulators. MCF-7 were treated with 25μM NCTD and followed by ChIP to detect the recruitments of ERα and its

coregulators on the promoter of TFF1 (E) and c-Myc (F). Data are expressed as mean ± SD. � P< 0.05.

https://doi.org/10.1371/journal.pone.0217181.g002

Norcantharidin sensitizes breast cancer cells to tamoxifen
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We further investigated whether NCTD inhibits cell proliferation via targeting miR-873/

CDK3. As a result, we found that knockdown of miR-873 and re-expression of CDK3 both

diminished the inhibitory effect of NCTD on cell proliferation in MCF-7 cells (Fig 4D).

NCTD regulates tamoxifen resistance in breast cancer cells

Our previous study showed that miR-873/CDK3 axis plays a critical role in tamoxifen resis-

tance. We decided to carry out experiments to investigate whether NCTD could regulate

tamoxifen resistance in breast cancer cells. For this purpose, MCF-7/TamR cells were treated

with tamoxifen and/or NCTD and then MTT assays were performed. We found that NCTD

treatment was capable of sensitizing MCF-7/TamR cells to tamoxifen (Fig 5A).

Fig 3. NCTD inhibits ER transcriptional activity and cell growth via miR-873/CDK3 axis. (A) Real-time PCR

analyses of miR-873 expression in MCF-7 cells which were transfected with anti-miR-873 oligo in the absence and the

presence of 25μM NCTD. (B) Western blot analyses of CDK3 protein levels after infections with lentivirus expressing

CDK3 into MCF-7 cells in the absence and the presence of 25μM NCTD. Quantifications of western blot are shown in

the right column. (C) MCF-7 cells which transfected with anti-miR-873 oligo or CDK3 expression vector were co-

transfected with plasmids expressing ERE-TK-LUC reporter and pRL-TK (internal control) and followed by vehicle,

25μM NCTD or E2 treatment for 24 hours. The relative luciferase values are expressed as mean ± S.E. (D, E) MCF-7

cells which transfected with anti-miR-873 oligo or CDK3 expression vector were treated with vehicle, 25μM NCTD or

100nM E2 treatment for 24 hours. Real-time PCR assays were then performed to measure TFF1 and c-Myc expression.

Data are expressed as mean ± SD. � P< 0.05.

https://doi.org/10.1371/journal.pone.0217181.g003

Norcantharidin sensitizes breast cancer cells to tamoxifen
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Our and other studies have shown that tamoxifen plays an agonist role on ERα-mediated

transcription in tamoxifen resistant cells. To determine the effect of NCTD on ERα transcrip-

tional activity and estrogen-responsive gene expression in response to tamoxifen, we decided

to carry out a series of experiments. Reporter gene activity assays showed NCTD could inhibit

ERα transcriptional activity induced by tamoxifen in MCF-7/TamR cells (Fig 5B). We then

examined the effects of NCTD on tamoxifen-induced expression of endogenous ERα target

genes in MCF-7/TamR cells. As shown in Fig 5C, our results indicate that NCTD inhibited

tamoxifen induced expression of ERα target genes such as TFF1 and c-Myc.

N-CoR and SMRT were shown to play important roles in the anti-proliferative action of

tamoxifen [17,19]. Constant with our previous study, tamoxifen was not able to recruit N-CoR

and SMRT onto the promoters of ERα target genes in MCF-7/TamR cells. Importantly,

NCTD treatment effectively restored the recruitments of N-CoR and SMRT recruitment by

tamoxifen to TFF1 promoter (Fig 5D) and c-Myc promoter (S3 Fig).

NCTD regulates tamoxifen resistance via miR-873/CDK3 in breast cancer

cells

To further explore whether NCTD regulates tamoxifen resistance via miR-873/CDK3, we re-

introduced the anti-miR-873 inhibitor or CDK3 coding sequence without the 3’UTR into

MCF-7/TamR cells (Fig 6A and 6B). MTT assays revealed that knockdown of miR-873 and re-

expression of CDK3 both reversed the effect of NCTD on tamoxifen resistance in MCF-7/

TamR cells (Fig 6C). We also found that knockdown of miR-873 and re-expression of CDK3

could diminish the effect of NCTD on tamoxifen induced ERα transcriptional activity and

estrogen-responsive gene expression in MCF-7/TamR cells (Fig 6D and 6E). Taken together,

our results show that NCTD sensitizes resistant cells to tamoxifen via targeting miR-873/CDK3.

Fig 4. NCTD inhibits cell growth in vitro and in vivo. (A, B) MTT assays of cell proliferation in MCF-7 (A) and

ZR75-1 (B) cells in the presence of 25μM NCTD. (C) NCTD inhibited tumor growth in a human breast cancer MCF-7

xenograft mouse model. Tumor weights were calculated and shown as a box-plot with median and whiskers from

minimum to maximum. (D) NCTD inhibited cell growth via miR-873/CDK3 axis. MCF-7 cells were transfected with

anti-miR-873 oligo or CDK3 expression vector and then subjected to 25μM NCTD and 100nM E2 treatment for 6

days. MTT assay was performed to detect the cell proliferation. Data are expressed as mean ± SD. � P< 0.05.

https://doi.org/10.1371/journal.pone.0217181.g004

Norcantharidin sensitizes breast cancer cells to tamoxifen
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Discussion

In this study, we have demonstrated the role of NCTD in regulating ER signaling and tamoxi-

fen resistance of human breast cancer cells via miR-83/CDK3 axis. We found that: (i) NCTD

increases miR-873 expression and inhibits CDK3 expression in MCF-7 cells; (ii) NCTD inhib-

its ER signaling and breast cell growth via targeting miR-873/CDK3 in vitro and in vivo; (iii)

NCTD treatment sensitizes resistant cells to tamoxifen though miR-873/CDK3 axis; (iv)

NCTD is able to restore the tamoxifen-induced recruitment of N-CoR and SMRT to the pro-

moters of ER target genes. Taken together, these findings support a key role for NCTD in regu-

lating ER signaling and tamoxifen resistance in human breast cancer.

Studies have revealed that miRNAs are frequently aberrantly expressed in cancer. MiRNAs

have been implicated in almost all aspects of cancer biology, including proliferation, apoptosis,

invasion, metastasis, angiogenesis and drug resistance [15,16,20–22]. Our group has identified

that an unknown function miRNA, miR-873 is downregulated in breast cancer. MiR-873

inhibits the transcriptional activity of ERα but not ERβ there by modulating ERα phosphoryla-

tion. MiR-873 was also found to inhibit the proliferation of breast cancer cells and tumor

growth. We then noted that miR-873 reverses tamoxifen resistance by targeting CDK3. These

data suggest the role of miR-873/CDK3 in regulating ER signaling and tamoxifen resistance in

breast cancer cells [17]. Despite the fact that the majority of breast cancer patients have estro-

gen receptor (ER) α-positive tumors, most of the patients are or soon develop resistance to

endocrine therapy. Until now, tamoxifen resistance remains a major challenge in breast cancer

treatment [6,9,19,23,24]. Our data provides miR-873/CDK3 axis is a potential target to treat

ER positive cancer especially tamoxifen resistant subtype, but how to target this axis is a chal-

lenge. For some serious problems such as delivery, microRNA drug has been not used in clinic.

Fig 5. NCTD sensitizes resistant cells to tamoxifen treatment. (A) MCF-7/TamR cells were treated with indicated

amount of 4-hydroxytamoxifen (TAM) and/or 25μM NCTD for 7 days. Cells were then harvested and assessed for cell

proliferation by MTT assays. (B) MCF-7/TamR cells were along transfected with plasmids expressing ERE-TK-LUC

reporter and PRL-TK (internal control) and followed by vehicle, TAM and/or NCTD treatment for 24 hours. The

relative luciferase values are expressed as mean ± S.E. (C) MCF-7/TamR cells were treated with treated with vehicle

(Veh), TAM and/or NCTD for 24 h and TFF1 and c-Myc gene expression was detected by Real-time PCR. (D) MCF-7/

TamR cells were treated with treated with NCTD for 24h and then followed by TAM treatment for 1 h. ChIP assays

were performed to detect the recruitments of N-CoR and SMRT on the promoter of TFF1. Data are expressed as

mean ± SD. � P< 0.05.

https://doi.org/10.1371/journal.pone.0217181.g005
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As for CDK3, there is no specific inhibitor was available although CDK4/6 inhibitors have

been approved by FDA. Naturally derived compounds become key role players in future can-

cer treatments. More than 30% of anti-cancer agents have their origin in natural sources

[25,26]. Thus, to screen natural compounds of targeting miR-873/CDK3 is a promising strat-

egy. In this study, we employed a real-time PCR based screen for natural compounds to target

miR-873. As a result, we found several compounds could regulate miR-873 expression, of

which norcantharidin (NCTD) significantly increases miR-873 expression.

NCTD is the demethylated analog of cantharidin isolated from blister beetles (Mylabris
phalerata Pall.). NCTD is synthesized to reduce the toxic side effects and retain the bioactivity

of cantharidin. It is now used clinically to treat liver cancer in china. It has been reported that

NCTD could inhibits cell proliferation, invasion, metastasis and angiogenesis in various types

of cancer cells [27–29]. Unlike the conventional chemotherapeutics, NCTD is preferentially

Fig 6. NCTD regulates tamoxifen resistance via miR-873/CDK3 axis. (A) Real-time PCR analyses of miR-873

expression in MCF-7/TamR cells which were transfected with anti-miR-873 oligo in the absence and the presence of

25μM NCTD. (B) Western blot analyses of CDK3 protein levels after infections with lentivirus expressing CDK3 into

MCF-7/TamR cells in the absence and the presence of 25μM NCTD. Quantifications of western blot are shown in the

right column. (C) MCF-7/TamR cells which transfected with anti-miR-873 oligo or CDK3 expression vector and

followed by vehicle, 25μM NCTD or TAM treatment for 7 days. MTT assays were then performed to determine the

tamoxifen response. (D) MCF-7/TamR cells which transfected with anti-miR-873 oligo or CDK3 expression vector

were co-transfected with plasmids expressing ERE-TK-LUC reporter and pRL-TK (internal control) and followed by

vehicle, 25μM NCTD or TAM treatment for 24 hours. The relative luciferase values are expressed as mean ± S.E. Cells

mentioned in (D) were harvested for real-time PCR assays to detect the expression of TFF1 and c-Myc (E). Data are

expressed as mean ± SD. � P< 0.05.

https://doi.org/10.1371/journal.pone.0217181.g006
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toxic to cancer cells than normal cells, making this small molecule attractive in cancer treat-

ment. Recent studies showed that NCTD could overcome doxorubincin resistance in breast

cancer cells and Hepatocyte growth factor (HGF) induced resistance to epidermal growth fac-

tor receptor tyrosine kinase inhibitors (EGFR-TKI) in lung cancer cells. These studies broaden

the usage of NCTD in cancer treatment [28,30,31]. Here, we found that NCTD possesses the

anti-cancer properties in ER positive cancer cells and tamoxifen resistant cells. This suggests

that NCTD might be used to treat not only ER positive cancer but also tamoxifen resistant can-

cer. Since NCTD is already used clinically for cancer treatment, it is promising for combina-

tion NCTD with tamoxifen to treat ER positive and even tamoxifen resistant breast cancer.

Recent studies showed that CD44+CD24- cell population (breast cancer stem cell subpopu-

lation) in MCF-7 cells were resistant to tamoxifen treatment, however, tamoxifen resistant

cells harbored higher number of CD44+CD24- cell population than MCF-7 cells [32,33]. This

crosstalk between cancer stem cells and tamoxifen resistant cells suggests that cancer stem cells

play a vital role in tamoxifen resistance acquirement. NCTD has been shown to repress cancer

stem cell expansion by inhibiting ß-catenin in pancreatic cancer [29,34]. Thus, it is very inter-

esting to study the molecular mechanisms for NCTD affect this crosstalk.

Compared with other members of the CDK family, little is known about CDK3. While

CDK3 is closely related to CDK2, it is not required for cell cycle progression in normal cells.

CDK3 exhibits low expression in human tissue and spontaneous mutational inactivation in

the germline of laboratory mice. In breast cancer and glioblastoma tissue, CDK3 is overex-

pressed [35–38]. CDK2 inhibitor can selectively target CD44+CD24- subpopulation and

restores chemo-sensitivity in breast cancer [39]. During the preparation of this manuscript,

miR-873/CDK3 has been shown to function in cancer stemness of lung cancer cells [40].

These reports imply that miR-873/CDK3 mediates the potential effect of NCTD on the cross-

talk between tamoxifen resistance and cancer stemness in breast cancer cells. Further experi-

ments on the cell and mouse models are underway.

Taken together, our data shows that NCTD overcomes tamoxifen resistance by targeting

miR-873/CDK3 axis in breast cancer cells. This study may identify a novel therapeutic target

of NCTD for breast cancer treatment. Combination NCTD with tamoxifen would be a promis-

ing strategy to treat ER positive and even tamoxifen resistant breast cancer.

Materials and methods

Cell culture

The human breast cancer cell lines MCF-7, ZR75-1, T47D and tamoxifen resistant cells MCF-

7/TamR were described previously [17]. Cell lines were authenticated on the basis of viability,

recovery, growth, and morphology. The expression status of ER was further confirmed by

Western blot before they were used in experiments. All cells were cultured in Dulbecco’s Mod-

ified Eagle’s Media (DMEM) medium containing 10% FBS (Hyclone, Thermo fisher scientific,

Florence, KY, USA) at 37˚C with 5% CO2 in tissue culture incubators. Norcantharidin

(NCTD), 17β-estradiol (E2), propylpyrazoletriol (PPT), diarylpropionitrile (DPN) and

4-hydroxytamoxifen (TAM) were purchased from Sigma (St Louis, MO, USA). The concentra-

tions of these drugs used in this study were according to previous studies [17, 41].

Plasmids and lentiviral vector preparation

The plasmid pERE-TK-Luc, pRL-TK, lentiviral construct pCDH-CMV-CDK3 and lentivirus

package was described previously [17,19]. Anti-miR-873 inhibitor and control oligonucleo-

tides were purchased from Invitrogen (Invitrogen, Carlsbad, CA, USA).
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Transient transfections and reporter gene assays

For transfection, cells were plated in 24-well plates containing phenol red-free RPMI 1640

medium supplemented with 10% charcoal-stripped FBS, and the plasmids were transfected

with Lipofectamine2000 (Invitrogen, Carlsbad, CA, USA). Cells were treated with NCTD, E2

or TAM for 24 hours and then harvested for the dual luciferase assay. The dual luciferase

reporter assay system (Promega, Madison, WI, USA) was employed to measure the luciferase

activity.

Real-time PCR

Total RNA was isolated from cells with an Rneasy Mini kit (Qiagen, Hilden, Germany) or Tri-

zol (Invitrogen, Carlsbad, CA, USA) reagent according to the manufacturer’s instructions.

Total RNA from each sample was reverse transcribed using SuperScript III Reverse Transcrip-

tase (Invitrogen) followed by Real-time PCR. Primers for miR-873 were purchased from (Exi-

qon, Vedbaek, Denmark). Primer sequences for TFF1 and c-Myc were described previously

[17]. Real-time PCR was performed with SYBR Green PCR Master Mix reagents using an ABI

Prism 7700 Sequence Detection System (Applied Biosystems, Foster City, CA, USA).

Western blot

Cells were lysed and total proteins separated using 10% SDS-PAGE gel and then transferred to

PVDF membrane. The membrane was blocked using BSA for 1 h at room temperature (RT).

After incubation with primary antibody against CDK3 antibody (Abcam, Cambridge, MA,

USA) for 2h at RT, the membrane was washed extensively and then incubated with secondary

horseradish peroxidase–conjugated antibody for 1h at RT. Blots were developed with the ECL

plus western blotting detection system (Thermo Fischer Scientific, Waltham, MA USA).

Chromatin immunoprecipitation (ChIP)

Cells were treated with NCTD for 24h. Before harvesting, cells were treated for 1h with vehicle

(ethanol), 100nM E2 or 1μM TAM and immediately fixed by adding 37% formaldehyde to the

medium to a final concentration of 1%. After PBS washing, cells were harvested and lysised.

The nuclear lysates were sonicated to generate an average DNA size of 0.5–1 kb, and then

immunoprecipitation was performed with anti-ERα, anti-N-CoR or anti-SMRT (Santa Cruz,

CA, USA). The recruitments of proteins on the TFF1 and c-Myc promoter were detected

using real-time PCR. The primers for TFF1 and c-Myc promoter were described previously

[17, 19].

Cell proliferation assays

MTT assay was described previously [17, 42]. Cells were treated with NCTD, vehicle, E2 or

TAM. The proliferation was determined using a CellTiter 96 nonradioactive cell proliferation

assay kit (Promega, Madison, MI, USA) according to the manufacturer’s instructions.

Animal experiment

All the experimental procedures involving animals were conducted in accordance with the

National Institutes of Health guide for the care and use of laboratory animals (NIH publica-

tions No.8023, revised 1978). The protocol has been approved ethically by the Administration

Committee of Experimental Animals, Medicine School, Yichun University, Yichun, China

and the protocol number is IACUC-2016012. Two days after implantation of estrogen pellets

(E2, 0.36 mg/pellet, 60-day release) (Innovative Research of America, Sarasota, FL, USA),
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1 × 107 tumor cells were injected into the abdominal mammary fat pad of 6-week-old female

nude mice. When tumors reached the volume of approximately 100 mm3, we randomly allo-

cated the mice to two groups and 8 mice in each group. Mice were i.p. injected with 30 mg / kg

NCTD twice each week for 6 weeks. Excised tumors were weighed, and portions were frozen

in liquid nitrogen.

Statistical analysis

All the experiments were repeated at least three times. Presented data are the mean ± SEM of

three experiments. Student’s t-test for multiple group comparisons was performed using SPSS.

P< 0.05 was considered statistically significant.

Supporting information

S1 Fig. NCTD decreased ERα transcriptional activities in T47D cells. T47D cells were trans-

fected with plasmids expressing ERE-TK-LUC reporter and pRL-TK (internal control) and

followed by vehicle, E2, or/and NCTD treatment as indicated for 24 hours. The relative lucifer-

ase values are expressed as mean ± S.E.

(TIF)

S2 Fig. NCTD inhibits MCF-7 cell proliferation in a dose dependent manner. MCF-7 cells

were treated with various concentrations of NCTD as indicated and E2 for 6 days. Cells were

subjected to MTT assay. Data are expressed as mean ± SD. Ns, not significant, � P< 0.05, ��

P< 0.05.

(TIF)

S3 Fig. NCTD restores the recruitments of N-CoR and SMRT by tamoxifen onto c-MYC
promoter in MCF-7/TamR cells. MCF-7/TamR cells were treated with treated with NCTD

for 24h and then followed by TAM treatment for 1 h. ChIP assays were performed to detect

the recruitments of N-CoR and SMRT on the promoter of TFF1. Data are expressed as

mean ± SD. � P < 0.05.

(TIF)
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