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MOTIVATION Quantification of haplotype composition in wastewater samples has the potential to become
a cost-effective method to identify changes in viral community composition as SARS-CoV-2 becomes an
endemic virus. We sought to develop a computational method that accurately estimates proportions of
SARS-CoV-2 haplotypes from wastewater samples.
Wastewater surveillance has become essential for monitoring the spread of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). The quantification of SARS-CoV-2 RNA in wastewater correlates with
the coronavirus disease 2019 (COVID-19) caseload in a community. However, estimating the proportions
of different SARS-CoV-2 haplotypes has remained technically difficult. We present a phylogenetic imputation
method for improving the SARS-CoV-2 reference database and a method for estimating the relative propor-
tions of SARS-CoV-2 haplotypes from wastewater samples. The phylogenetic imputation method uses the
global SARS-CoV-2 phylogeny and imputes based on the maximum of the posterior probability of each
nucleotide. We show that the imputation method has error rates comparable to, or lower than, typical
sequencing error rates, which substantially improves the reference database and allows for accurate infer-
ences of haplotype composition. Our method for estimating relative proportions of haplotypes uses an initial
step to remove unlikely haplotypes and an expectation maximization (EM) algorithm for obtaining maximum
likelihood estimates of the proportions of different haplotypes in a sample. Using simulations with a reference
database of >3 million SARS-CoV-2 genomes, we show that the estimated proportions reflect the true pro-
portions given sufficiently high sequencing depth.
INTRODUCTION

The ongoing pandemic of coronavirus disease 2019 (COVID-

19) caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) continues to be the world’s worst public

health emergency in the last century. There is an emerging

need to identify the initiation of outbreaks, distribution, and

changing trends of COVID-19 in near real time (Korber et al.,

2020; Rockett et al., 2020). Wastewater-based epidemiology

(WBE) has become an effective monitoring strategy for early

detection of SARS-CoV-2 in communities as well as being

an important method for informing public health interventions

aimed at containing and mitigating COVID-19 outbreaks

(Ahmed et al., 2020). WBE for SARS-CoV-2 can detect the vi-

rus excreted by both symptomatic and asymptomatic individ-

uals alike, thus making it an effective approach for modeling
Cell Repo
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the disease signature of entire communities. WBE data also

strongly correlate with the COVID-19 case rates in a commu-

nity (Medema et al., 2020; Farkas et al., 2020). Currently, most

analyses of WBE data for SARS-CoV-2 focus on identifying

presence/absence as well as quantifying the abundance of

the virus (Kumar et al., 2020; Crits-Christoph et al., 2021;

Wu et al., 2020; Medema et al., 2020). However, identifying

and profiling multiple SARS-CoV-2 genotypes in a single sam-

ple can provide additional information for understanding the

dynamics and transmission of certain strains. The alarming

continued emergence of novel variants such as the Delta

variant B.1.617.2 and the Omicron variant B.1.1.529 un-

derscores the urgency and need for quantification of the

abundance of different viral strains across communities. Un-

fortunately, it is difficult to precisely quantify the proportions

of different haplotypes of a virus in an environmental sample,
rts Methods 2, 100313, October 24, 2022 ª 2022 The Author(s). 1
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Figure 1. Proportion of misassigned bases

for two imputation methods and heterozy-

gosity along SARS-CoV-2

Proportion of misassigned bases along SARS-

CoV-2 using the tree imputation method (A) and

the common allele imputation method (B) against

heterozygosity (C) using 3,117,131 SARS-CoV-2

genomes. Notice the difference in the scaling of

the y axis of (A) and (B).
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such as wastewater, using standard sequencing technologies

given the low quality and highly uneven depth of sequencing

data. Adding to these challenges is that many haplotypes

are nearly identical, differing by only one or a few mutations

across approximately �30,000 nucleotides. With millions of

possible candidate haplotypes, the combinatorial challenge

of identifying the correct haplotype is large, particularly

when haplotypes are not identified by individual diagnostic

mutations but rather by sets of mutations that jointly help

distinguish the haplotypes from each other. Nonetheless,

quantification of haplotype composition in WBE data has the

potential to become a cost-effective method to identify

changes in viral community composition as SARS-CoV-2 be-

comes an endemic virus. We present a method for estimating

the proportion of different SARS-CoV-2 haplotypes from

shotgun sequencing of wastewater samples, allowing re-

searchers to obtain results in real time. The method is based

on an initial filtering step, phylogenetic imputation of missing

nucleotides, and an expectation maximization (EM) algorithm

for obtaining maximum likelihood estimates of the proportions

of different haplotypes in the sample. Using simulations, we

show that the estimated proportions are close to the true pro-

portions and that the phylogenetic imputation is highly accu-

rate and improves the reference haplotypes. We also apply

this method to wastewater samples collected across the

San Francisco Bay Area and from San Diego (CA, USA).
2 Cell Reports Methods 2, 100313, October 24, 2022
RESULTS

Imputation
Many SARS-CoV-2 sequences submit-

ted to public databases contain missing

data (i.e., bases that are not coded as

A, G, C, or T). This poses a problem

when estimating the fraction of different

SARS-CoV-2 haplotypes, as haplotypes

with a high proportion of missing data,

on average, will contain fewer nucleotide

differences when compared with sequ-

encing reads. We solve this problem us-

ing an imputation approach, thereby al-

lowing for a like-to-like comparison of

reads against all reference haplotypes.

This method is in a spirit similar to impu-

tation approaches used in human ge-

netics (e.g., Marchini and Howie, 2010),

although as we will show that, due to

the strong phylogenetic structure in the
SARS-CoV-2 data, imputation is much more accurate than usu-

ally observed in diploid organisms. The method is based on

calculating the posterior probability of each nucleotide in the

leaf node of a phylogenetic tree and imputing based on the

maximum posterior probability (see STAR Methods). We

compare the method (tree imputation) with a naive imputation

approach based on simply replacing missing nucleotides with

the most frequent nucleotide observed in the alignment in

that position (common allele imputation). We evaluate the

methods by first removing sequenced nucleotides in a real da-

taset of 3,117,131 SARS-CoV-2 sequences and then re-

imputing them using either tree imputation or common allele

imputation. For the vast majority of sites, tree imputation has

an error rate of <5 3 10�4, although a few sites have imputation

errors between 10�3 and 3 3 10�3 (Figure 1). The imputation

error can be substantially higher for the naive common allele

imputation method, with many sites showing error rates >0.02

(Figure 1B). These are sites with high heterozygosity (Figure 1C),

where substituting with the most common allele leads to high

error rates. While the error rates for the common allele imputa-

tion method are naturally predicted by the heterozygosity, the

pattern is somewhat different for the tree imputation method.

The sites with the highest imputation error are not the sites

with highest heterozygosity, suggesting a high degree of homo-

plasy in these sites not directly predictable by the heterozygos-

ity. These may be sites that switch allelic state often, i.e., have
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Figure 2. Estimated proportions for simulated 300 bp single-end reads

Estimated proportions for simulated 300 bp single-end reads with five replicates for when the sample truly contains 1 (A), 3 (B), 5 (C), or 10 (D) haplotypes out of a

total of 1,499,078 non-redundant candidate haplotypes in the database. The red dashed lines indicate the true proportion of each haplotype. "Other" indicates the

sum of estimated proportions for all haplotypes that are not truly represented in the sample.
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high mutation rates, but where the minor allele never increases

substantially in frequency due to selection. An alternative

explanation is sequencing errors. In fact, the site with the high-

est amount of apparent imputation error (position 24,410) is a

site known to have a high proportion of sequencing errors

(https://github.com/W-L/ProblematicSites_SARS-CoV2). It is

located in a primer binding site where sequences containing

the non-reference allele, A, often erroneously are assigned

back to the reference allele, G, as a result of failed primer trim-

ming during consensus building (https://github.com/W-L/

ProblematicSites_SARS-CoV2). The A allele is one of the

defining mutations of the Delta strain, and the apparent

repeated re-emergence of the G allele within the Delta clade

(Figure S1) is likely a consequence of this common sequencing

error. Most other sites, including the site with the highest het-

erozygosity, position 23,604 (Figure 1C), do not show a similar

pattern of homoplasy (Figure S2). This suggests that the sites

with the highest apparent imputation error rate might in fact

have a much lower true imputation error; the tree imputation

method may provide a more accurate assignment of alleles
than the reported sequencing data for some problematic

sequencing sites.

Simulations
In the STAR Methods, we describe an algorithm for estimating

the proportion of different SARS-CoV-2 haplotypes in an envi-

ronmental sample using maximum likelihood. To evaluate the

performance of the method, we simulate several sets of reads

(single-end 300 bp, paired-end 2 3 150 bp, and paired-end

2 3 75 bp) from 1, 3, 5, and 10 haplotypes with average depths

of 1003, 5003, and 1,0003 and sequencing error rates of 0%

and 0.5% (see STAR Methods). We then apply the method to

these sets of reads using a database of 3,117,131 haplotypes,

report the estimated proportions of each candidate haplotypes,

and compare them with the truth (Figures 2, 3, and 4). In most

cases, the estimates are close to the true proportions; however,

with a low coverage and high error rate, the proportions of the

true haplotypes will tend to be underestimated, and haplotypes

that truly are not present will tend to be estimated as present

in the sample. With one true haplotype in the sample, the
Cell Reports Methods 2, 100313, October 24, 2022 3

https://github.com/W-L/ProblematicSites_SARS-CoV2
https://github.com/W-L/ProblematicSites_SARS-CoV2
https://github.com/W-L/ProblematicSites_SARS-CoV2


A

D

B C

Figure 3. Estimated proportions for simulated paired-end reads (2 3 150 bp with an insert size of +25 bp)

Estimated proportions for simulated paired-end reads (23 150 bpwith an insert size of +25 bp) with five replicates for when the sample truly contains 1 (A), 3 (B), 5

(C), or 10 (D) haplotypes out of a total of 1,499,078 non-redundant candidate haplotypes in the database. The red dashed lines indicate the true proportion of each

haplotype. ‘‘Other’’ indicates the sum of estimated proportions for all haplotypes that are not truly represented in the sample.
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proportion of this haplotype is always estimated to be 100%.

For sufficiently high depth, e.g., 1,0003 corresponding to

roughly a total of 30 Mb data, the estimates of haplotype pro-

portions are quite accurate, even when 10 haplotypes are pre-

sent and for haplotypes with a proportion as low as 5%. There

is similarly very little probability mass assigned to haplotypes

that are not truly in the sample. For example, for 150 bp

paired-end reads with a +25 bp insert and 1,0003 average

sequencing depth, the estimate of the cumulative average pro-

portion of all haplotypes not truly in the sample is 0.63%. The

speed of the method is highly dependent on the number of

true haplotypes and the average depth (Figure 5), but for realis-

tically sized datasets with a reference database of 3,117,131

haplotypes, the typical computational time is between 15 min

and 2 h using a single core. This includes the initial time cost

of �10.5 min for reading the large panel of reference haplotypes

into memory. There is no appreciable difference in speed be-

tween the different sequencing strategies used, except that

paired-end 2 3 75 bp sequences tends to take longer at higher

average coverage. Simulations using the higher error rate
4 Cell Reports Methods 2, 100313, October 24, 2022
(0.5%) are slower than simulations with no error. The average

time for all sets of simulations with 5 or fewer true haplotypes

is <30 min for all coverages, while the average time for 10

true haplotypes varies between �24 to �83 min depending on

the average depth. Additionally, utilization of multiple cores dur-

ing the creation of the mismatch matrix offers a substantial

reduction in time (Figure S3). In order to quantify the statistical

evidence for the presence of a candidate haplotype in the sam-

ple, we propose a likelihood ratio (LLR) test, formed by

comparing the maximum likelihood value calculated when the

candidate haplotype is eliminated from the sample (p = 0) with

the maximum likelihood value calculated when allowing the

haplotype to be present in the sample (p R 0), where p is the

proportion of the haplotype in the sample (see STAR Methods).

Standard asymptotic theory for the distribution of the LLR sta-

tistics does not apply to this situation for several reasons:

most importantly, a search is first made to find the haplotypes

that provide the largest increase in the likelihood among many

haplotypes, and we only calculate the LLR for the haplotypes

with estimates of p > 0. We, therefore, use simulations to
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Figure 4. Estimated proportions for simulated paired-end reads (2 3 75 bp with an insert size of +25 bp)

Estimated proportions for simulated paired-end reads (23 75 bp with an insert size of +25 bp) with five replicates for when the sample truly contains 1 (A), 3 (B),

5 (C), or 10 (D) haplotypes out of a total of 1,499,078 non-redundant candidate haplotypes in the database. The red dashed lines indicate the true proportion of

each haplotype. ‘‘Other’’ indicates the sum of estimated proportions for all haplotypes that are not truly represented in the sample.
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evaluate the distribution of the LLR test statistics under varying

conditions. We simulated 1,000 datasets with different numbers

of true haplotypes, coverage, read length, and error rate and

calculated the LLR for all haplotypes that were falsely inferred

to be present in the sample (Figure S4). Since the frequency

of LLR >2 and LLR >4 is about 0.001 and 0.0005, respectively,

we recommend using 2 and 4 as thresholds for strong and

extremely strong evidence for presence of the haplotype in

the sample.

Application to wastewater data
To apply our method to a published dataset, we estimated the

composition of SARS-CoV-2 haplotypes using wastewater

shotgun sequencing data fromCrits-Christoph et al. (2021) in Fig-

ure 6A and from Karthikeyan et al. (2021) in Figure 6B. The data

from Crits-Christoph et al. (2021) was all collected in the San

Francisco Bay Area. Two out of the top ten haplotypes were

collected in Alameda County (EPI_ISL_625508, which is identical

to EPI_ISL_625520, and EPI_ISL_672326), and the top five hap-

lotypes were all collected in North America. The data fromKarthi-
keyan et al. (2021) were collected at the Point Loma Wastewater

Treatment Plant in SanDiego, CA, onDecember 27 and 28, 2021.

We identified an increasing proportion for EPI_ISL_9593738

(0.017–0.038) and decreasing proportions for EPI_ISL_9976252

(0.069–0.032) and EPI_ISL_8727347 (0.022–0.019). EPI_ISL_

9593738, EPI_ISL_9976252, and EPI_ISL_8727347 are all desig-

nated as BA.1.1 (Pango v.4.0.6 PLEARN-v.1.8). The estimated

haplotypes are representative of the variability of circulating

strains and are nearly identical to the clinical samples that were

collected in San Diego County and were deposited to GISAID

1 week after the Point Lomawastewater sample collection dates.

We illustrate this by estimating a phylogenetic tree of the clinical

samples and the estimated samples on a background set of

SARS-CoV-2 genomes (Figure 7). The clinical samples and the

estimated samples cluster together in two clades. The Omicron

clade contains most of the clinical and estimated wastewater

haplotypes, with little divergence among the sequences and

withwastewater inferred haplotypes and clinical haplotypes clus-

tering among each other. A second set of wastewater inferred se-

quences cluster with the Delta clade containing the remainder
Cell Reports Methods 2, 100313, October 24, 2022 5



Figure 5. Average run times for read simula-

tions

Average run times for single-end 300 bp (A),

paired-end 2 3 150 bp (B), and paired-end

2 3 75 bp (C) read simulations using 1003, 5003,

and 1,0003 average depth with an error rate of 0%

and 0.5%. Each average run time reported is

based on 5 replicates. Timeswere calculated using

an AMD EPYC 7742 tetrahexaconta-core 2.25–

3.40 GHz processor.
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of the clinical and estimated samples. Furthermore, the average

genetic distance between clinical and estimated haplotypes,

3.99 3 10�4, is very similar to the average distance among the

estimated haplotypes, 4.45 3 10�4. The clinical samples had

an average genetic distance of 3.05 3 10�4.

DISCUSSION

In order to allow for accurate inferences of haplotype composi-

tion, we first developed a new phylogenetic method for data

imputation for SARS-CoV-2 sequences. The method proved to

be highly accurate with error rates comparable to, or lower

than, typical sequencing error rates (Figure 1A). In fact, apparent

wrongly inferred nucleotidesmay, in many cases, not be wrongly

inferred but rather be inferences of the true allele, correcting a

sequencing error in the reported sequence. Thus, similarly to

imputation-based genotype calling in humans, this method

could be used for correcting sequencing errors and could be

incorporated formally into an algorithm of imputation-informed

sequencing where the quality scores from sequencing reads

are combined with phylogenetically informed nucleotide proba-

bilities to call nucleotides in each position. Computationally, this

could be done simply by using the phylogenetic posterior prob-

abilities of nucleotides as priors for genotype calling. Our simu-

lation results for the EM algorithm show that the new method

can accurately estimate proportions of SARS-CoV-2 lineages
6 Cell Reports Methods 2, 100313, October 24, 2022
in wastewater samples when up to 10

haplotypes with frequencies as low as

5% are represented in the sample. None-

theless, the estimated proportions for the

true haplotypes tend to be slightly lower

than the actual proportions because the

presence of other non-true haplotypes is

also estimated at a low frequency. In or-

der to have some probability for other

non-true haplotypes to be estimated, the

true proportions for the true haplotypes

will naturally, on average, be slightly

underestimated. In all sets of simulations

of single-end 300 bp (Figure 2), paired-

end 2 3 75 bp (Figure 3), and paired-

end 2 3 150 bp reads (Figure 4), the esti-

mated proportions of the true haplotypes

tend to be more accurate as sequencing

depth increases. When there are many

haplotypes (i.e., when there are 10 true
haplotypes) and sequencing depth is low (i.e., 1003), there is a

high degree of noise in the dataset. However, as the total

sequencing depth increases, the estimates become progres-

sively more accurate. We recommend that studies focused on

identifying different haplotypes of SARS-CoV-2 in environmental

samples aim to achieve an average depth of 1,0003. Addition-

ally, the method presented here has only been evaluated for

the estimation of proportions of haplotypes with a frequency of

5% or larger. We recommend that haplotypes identified in the

sample at low frequencies are evaluated using the LLR test, as

they likely could be false positives.

Conclusions
Current strategies for monitoring community composition of

SARS-CoV-2 haplotypes include sequencing a large number

of clinical samples. As SARS-CoV-2 becomes endemic,

tracking the relative prevalence in local communities of different

SARS-CoV-2 haplotypes will be highly costly. Furthermore, the

use of clinical samples is associated with a lag from infection

onset to hospitalization. Our results suggest an alternative strat-

egy of monitoring using wastewater samples. Estimating rela-

tive proportions of haplotypes also directly allows for the esti-

mation of relative proportions of lineages, as each haplotype

can be assigned to a Pangolin lineage (O’Toole et al., 2021).

Wastewater sequencing has already proved effective for

tracking SARS-CoV-2 abundance (Korber et al., 2020; Rockett



Figure 6. Estimated proportions of the top

25 haplotypes estimated from wastewater

shotgun sequencing data

(A) Estimated proportions of the top 25 haplotypes

estimated from wastewater shotgun sequencing

data from Crits-Christoph et al. (2021) and their log

likelihood ratios. Haplotypes with an asterisk (*) are

identical to other haplotypes. EPI_ISL_682010* is

identical to EPI_ISL_682025, EPI_ISL_1373628,

EPI_ISL_1373632, and EPI_ISL_1373659. EPI_

ISL_451226* is identical to EPI_ISL_451227 and

EPI_ISL_455983. EPI_ISL_625508* is identical to

EPI_ISL_625520, EPI_ISL_672318, EPI_ISL_672

449, EPI_ISL_739003, EPI_ISL_739029, EPI_

ISL_739135, EPI_ISL_739161, EPI_ISL_739207,

and EPI_ISL_739286. EPI_ISL_1859609* is iden-

tical to EPI_ISL_1859762. EPI_ISL_510925* is

identical to EPI_ISL_510926. EPI_ISL_426109* is

identical to EPI_ISL_486012, EPI_ISL_570168,

EPI_ISL_570172, EPI_ISL_576500, and EPI_ISL_

576501. EPI_ISL_1074397* is identical to EPI_

ISL_2190584. EPI_ISL_517805* is identical to EPI_

ISL_527398 and EPI_ISL_137362.

(B) Estimated proportions of haplotypes from

wastewater samples collected from Point Loma

Wastewater Treatment Plant in San Diego, CA, on

December 27 and 28, 2021. These samples

correspond to SRA: SRR18541028 and SRA:

SRR185

41040, respectively, in the NCBI Sequence Read

Archive (SRA). An asterisk (*) denotes haplotypes

that are identical, and two asterisks (**) denote

haplotypes that are in an unidentifiable group.

EPI_ISL_9517034* is identical to EPI_ISL_9570

257. EPI_ISL_9646681* is identical to EPI_ISL_

9647084 and EPI_ISL_9647386. EPI_ISL_9415

045* is identical to EPI_ISL_8772397, EPI_ISL_

8573946, EPI_ISL_9461694, EPI_ISL_9499928,

EPI_ISL_10739875, EPI_ISL_10739633, EPI_ISL_

10175015, EPI_ISL_9125128, EPI_ISL_9461721,

EPI_ISL_9467296, EPI_ISL_9515067, EPI_ISL_

9515028, EPI_ISL_10739800, EPI_ISL_9395085,

EPI_ISL_9614169, EPI_ISL_9614158, EPI_ISL_9614168, EPI_ISL_11140829, EPI_ISL_9735298, EPI_ISL_9735205, EPI_ISL_9735252, EPI_ISL_97

35108, EPI_ISL_9791610, EPI_ISL_9850125, EPI_ISL_9908638, EPI_ISL_9753039, EPI_ISL_9964765, and EPI_ISL_10717937. EPI_ISL_9083737* is identical to

EPI_ISL_9218282. EPI_ISL_8915483* is identical to EPI_ISL_9279835. EPI_ISL_8755969** is in an unidentifiable group with identical haplotypes EPI_

ISL_9277900 and EPI_ISL_10842235. Identical haplotypes EPI_ISL_9230919** and EPI_ISL_9057497 are in an unidentifiable group with identical haplotypes

EPI_ISL_9220378, EPI_ISL_9220183, EPI_ISL_8859542, EPI_ISL_8837776, and EPI_ISL_9017371.
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et al., 2020). With the computational framework developed

here, it also promises to become an important cost-effective

strategy for monitoring the local composition of different viral

haplotypes.

Limitations of the study
A central limitation of the method is that it requires the availability

of a comprehensive and well-curated database. Haplotypes not

present in the database cannot be identified using this method.

Another limitation relates to frequency threshold (i.e., <1% allele

frequency threshold), which is used to filter out unlikely haplo-

types among the millions of possible haplotypes. If a true haplo-

type is present in the sample in a proportion less than the allelic

frequency threshold, our method would not be able to detect the

true haplotype. The number of true haplotypes that themethod is

able to detect is also a limitation. We have here assumed that
there are between 1 and 10 haplotypes in each sample. If there

are substantially more haplotypes than this, the method is not

expected to be able to accurately identify the proportions of all

haplotypes. While the inference of haplotypes does not rely on

a tree, the inference of missing data in the reference data

does. A tree is commonly assumed for most evolutionary ana-

lyses of SARS-CoV-2, such as common phylodynamic analyses

(Duchene et al., 2020; Dellicour et al., 2021). Nonetheless,

recombination is common among coronaviruses (M€uller et al.,

2021), and it is therefore relevant to consider the possibility of

recombination playing a role in SARS-CoV-2 as well. In fact,

there have been several reported observations of recombination

in SARS-CoV-2 (Wertheim et al., 2022; Ignatieva et al., 2022). A

heuristic approach to this problem might be to simply remove

apparent recombinant sequences, but if recombination is

frequent, this approach may not be feasible. An alternative
Cell Reports Methods 2, 100313, October 24, 2022 7



Figure 7. Estimated maximum likelihood

phylogenetic tree of 261 SARS-CoV-2 se-

quences, which includes 173 background

sequences (green nodes), 44 sequences

estimated by the method (purple nodes),

and 44 randomly chosen clinical sequences

from San Diego County from January 3 and

4, 2022 (red nodes)

The x axis is the number of substitutions per site.

The Omicron and Delta clades are labeled. The

maximum likelihood estimate of the phylogenywas

obtained using the program RAxML under the

GTR + G model of DNA substitution (Stamatakis,

2014). The multiple sequence alignment was

created using FAMSA (Deorowicz et al., 2016) with

default settings. Table S1 lists the sequences used

in this analysis.
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approach would be to estimate local trees in the genome. Such

an approach can readily be adapted in the framework proposed

here for inference of missing data.
STAR+METHODS

Detailed methods are provided in the online version of this paper
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each candidate haplotype

B Simulating missing data for imputation
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B Calculating time cost
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Data and code availability
All original code, simulated data, and the imputed MSA has been deposited to Zenodo and is publicly available as of the date of pub-

lication. DOIs are listed in the key resources table. Additional Supplemental Items are available fromMendeley Data: https://doi.org/

10.17632/j9pdn88sx5.1.

METHOD DETAILS

SARS-CoV-2 reference database
To build the SARS-CoV-2 reference database, a multiple sequence alignment (MSA) of 3,117,131 SARS-CoV-2 genomes (msa_2021-

10-15.tar.xz) and the corresponding phylogenetic tree (GISAID-hCoV-19-phylogeny-2021-10-13.zip) was downloaded from GISAID

(www.gisaid.org) on October 16, 2021. We pruned sequence EPI_ISL_4989640 from the tree since it was not present in the MSA.

We use the function collapse.singles to collapse elbow nodes (i.e., nodes other than the root with two degrees) andmulti2di to resolve

multichotomies in the R ape package (Paradis et al., 2004). We imputemissing data (i.e., every position in theMSA that did not contain

an A, G, C, or T), using the phylogenetic tree. To do so, we first scale the branch lengths in terms of substitutions per site by dividing

each reported branch length by the average sequence length (29618.5). For branch lengths that were reported to be 0, we define them

to be 0.01 divided by the average sequence length. We impute missing nucleotides using the maximum of the posterior probability of

each nucleotide in the leaf nodes under a standard Jukes and Cantor model (Jukes and Cantor, 1969), using standard computational

algorithms (Yang, 2014). In brief, because themodel is time-reversible, the root can be placed in any particular node, and the fractional

likelihoods (joint probabilities of a fraction of the data in the leaf nodes and the nucleotide state in the node) can be pulled recursively

towards the node from both the child nodes and the parental node. The posterior probability in the leaf nodes of a nucleotide is calcu-

lated as the product of the stationary probability of the nucleotide multiplied by the fractional likelihood in the leaf node conditioned on

the data in all other leaf nodes. This can be programmed so the calculation is linear in the number of leaf nodes using a single pre-order

and a single post-order traversal of the tree that will calculate the posterior probabilities in all nodes. We note that other models than

the Jukes and Cantor model could provide more accurate estimates, but at a computational cost. Since calculating fractional likeli-

hoods for the entire tree requiresmore RAM thanwas computationally feasible for us (� 72TB of RAM), we split the tree into partitions,

and process each partition sequentially as follows: Each internal node in the tree corresponds to a partition of leaf nodes into three

sets. First, we identify the node with the minimum variance in the number of elements among these three partitions, i.e. we find

min
n˛T

0
B@
�
na � n1 +n2 + na

3

�2
+
�
n1 � n1 +n2 + na

3

�2
+
�
n2 � n1 + n2 + na

3

�2
3

1
CA (Equation 1)
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where n is a node in the tree, T is the tree, n1 is the number of leaf nodes descending from the left child of n, n2 is the number of leaf

nodes descending from the right child, and na = N � n1 � n2, whereN is the total number of leaf nodes in the tree. We then split the

tree into 3 subtrees by eliminating the identified node.We then iterate this procedure for the resulting subtrees until all trees contain at

most 50,000 leaf nodes. Using this partitioning procedure, we obtain 121 trees which we use to calculate the posterior probabilities at

each site. After imputation, we trim the MSA to begin at the start of the Wuhan reference sequence (Wuhan-Hu-1), position 55 in the

MSA, and we removed every position in the MSA that contains a gap in Wuhan-Hu-1. After this trimming and imputation process, we

save non-informative invariant sites (856 sites), in order to reduce running time when eliminating unlikely haplotypes. We also remove

all identical sequences, resulting in 1,499,078 non-redundant genomes.

Estimating the proportions of SARS-CoV-2 genomes
All sequencing reads are aligned to Wuhan-Hu-1 (NC_045512.2) using bowtie2 (Langmead and Salzberg, 2012) with the following

command for single-end reads, bowtie2 –all -f -x wuhCor1 -U, and for paired-end reads, bowtie2 –all -f -x wuhCor1 -1 -2. For

each read data set, we first remove unlikely genomes from the candidate haplotype alignment by eliminating genomes with SNP al-

leles that have an allele frequency in the read data less than a user-defined frequency threshold. For the analyses in this data, that

threshold was set to 0.01. This typically reduced the size of the alignment to < 1; 000 relevant genomes. Using this reduced set of

SARS-CoV-2 genomes, we calculate a matrix of dimensions (number of reads) 3 (number of genomes) containing the number of

mismatches between each sequencing read and each genome, d = fdijg. For paired-end reads with reads that overlap, we use

the consensus nuleotide. If there is a conflict at any position in the overlap of the paired-end reads, we omit this site. Based on

the mismatch matrix, d, we first calculate the probability of observing read j given that it comes from haplotype i, denoted as qij.

Assuming that the reads are independent (PCR clones removed) and a user-defined error rate a (default = 0.005) at each nucleotide,

this probability is given by

qij = adij 3 ð1 � aÞnj �dij

where nj is the length of read j and dij is the number of mismatches in read j given that it comes from haplotype i. The log-likelihood is

then given by

logLðp1; /; pkÞ =
Xn
j = 1

log
Xk
i = 1

qijpi; (Equation 2)

where pi (i = 1;/; k) is the proportion of haplotype i, i.e. the parameters we wish to estimate. We then use the standard Expect-

ation Maximization (EM) algorithm (Dempster et al., 1977) to maximize the likelihood function with respect to these parameters

(Algorithm 1):
Algorithm 1. EM algorithm for estimating the proportions of candidate haplotypes

Input: The probability of observing read j given that it comes from haplotype i, qij, for all i and j.

Output: The proportion of each candidate haplotype, pi, for all i.

1. Initialize the proportions of each haplotype pið0Þ; i = 1.k, with uniform probabilities Uð0; 1Þ and then re-scaled to 1.

2. Compute the log-likelihood [0 =
Pn

j = 1log
Pk

i = 1qijpið0Þ;
3. repeat

4. Compute the proportion of each candidate haplotype at iteration t as piðtÞ = 1
n

Pn
j = 1

piðt� 1ÞqijPk

l = 1
plðt� 1Þqlj

;

5. Compute the log-likelihood at iteration t as [t =
Pn

j = 1log
Pk

i = 1qijpiðtÞ;
6. until [t � [t� 1 < ε, where ε is a pre-defined stopping criterion.
However, Algorithm 1 usually has a slow convergence rate, especially when the number of candidate haplotypes k is large. There-

fore, to accelerate the Algorithm 1, we use the SQUAREM algorithm proposed by Varadhan and Roland (2008) with its implementa-

tion in the R package turboEM (Bobb and Varadhan, 2020).

Determining unidentifiable haplotypes
Note that if two haplotypes have the same qij’s, say there exist i and i0 such that qij = qi0 j for all j = 1;/;n, the log-likelihood (2)

becomes

log L =
Xn
j = 1

log

" X
r ˛ f1; . ;kg=fi;i0g

qrjpr

!
+ qijðpi + pi0 Þ

#
: (Equation 3)
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Therefore, as long as pi +pi0 is fixed, (3) remains the same nomatter what value pi and pi0 take, making the model unidentifiable. To

solve this problem, we gather haplotypes with the same fqijgnj = 1 into an unidentifiable group and estimate its overall proportion

instead of the proportions of each haplotype in it.

Quantifying the statistical evidence of the existence of each candidate haplotype
To provide ameasure of statistical support for the presence of haplotype i0, i.e. pi0 > 0, we remove haplotype i0 from the candidate set

of haplotypes and re-run Algorithm 1 providing a new estimate f~pigki = 1 with ~pi0 = 0. Using Equation (2), we can then calculate the

difference in log likelihood before and after removing haplotype i0, denoted as LLRi0 . From our simulations (see results), we recom-

mend using LLRi0 R4 as strong statistical evidence in favor of existence of haplotype i0 in the sample.

Simulating missing data for imputation
For every SARS-CoV-2 genome (out of a total of 3,117,131 genomes), we randomly remove 1% of nucleotides, and save the true

nucleotide at each position that was removed. We then use the Tree imputation method and the Common allele method to impute

the nucleotides that are missing.

Simulating reads from SARS-CoV-2 genomes
We choose 10 haplotypes among 1,499,078 haplotypes uniformly at random. Then, to simulate single-end reads from a haplotype,

we choose a starting point uniformly at random and let it extendm0 bps, wherem0 is the read length. For paired-end reads, we simi-

larly choose a starting point at random and let it extend m0 bps. Then, starting from the end of this read, if the insert size is m1 is

positive, we simulate the start of the reverse read m1 bps forward with length m0; if m1 is negative, we simulate the start of the

reverse read m1 bps backwards. We then add sequencing errors independently with probability a = 0:005 at each site. Errors are

induced by relabeling the nucleotide to any of the other three possible nucleotides with the following probabilities used in Stephens

et al. (2016):

A C G T

A

C

G

T

2
666664

0 0:4918 0:3377 0:1705

0:5238 0 0:2661 0:2101

0:3754 0:2355 0 0:3890

0:2505 0:2552 0:4942 0

3
777775
Calculating time cost
To calculate running time of the method we use /usr/bin/time on an AMD EPYC 7742 tetrahexaconta-core 2.25–3.40 GHz processor

and report real time in the results (Figure 5). The running time that we calculate includes running the method from start (reading in the

reference haplotypes) to finish (reporting proportions) and includes the filtering step for eliminating unlikely haplotypes. We report

times that do not include calculating the log-likelihood ratio.

Applying the method to wastewater data from Crits-Christoph et al. (2021) and Karthikeyan et al. (2021)
Wastewater shotgun sequencing data from Crits-Christoph et al. (2021) was downloaded from NCBI BioProject: PRJNA661613

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA661613). All samples were pooled together and aligned against Wuhan-Hu-1 using

BWA-MEM (Li, 2013) to identify SARS-CoV-2 reads. Wastewater shotgun sequencing data from Karthikeyan et al. (2021) was

downloaded from NCBI BioProject: PRJNA819090 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA819090) and samples SRA:

SAMN27108230, and SRA: SAMN27108220 (https://www.ncbi.nlm.nih.gov/biosample/SAMN27108230 and https://www.ncbi.

nlm.nih.gov/biosample/SAMN27108220, respectively). Samples fromKarthikeyan et al. (2021) were analyzed using a reference data-

base created from a GISAID SARS-CoV-2 global phylogeny from March 21, 2022 that was filtered for sequences from January 1,

2022 to January 31, 2022. For genetic distances, we calculate genetic distance using dnadist using the F84 model from the

PHYLIP package.

QUANTIFICATION AND STATISTICAL ANALYSIS

All details regarding the method are fully explained in the section method details. Here we provide a brief summary of certain ana-

lyses, parameters, and software that were used. The section of method details entitled ’’Estimating the proportions of SARS-CoV-2

genomes’’ uses statistical analyses using base R v.4.0.5. To implement the SQUAREM algorithm, we use turboEM v.2020.1

(Bobb and Varadhan, 2020). We use the "parameter" type of convergence criterion with tolerance 10� 7. In the section of method

details entitled ’’Quantifying the statistical evidence of the existence of each candidate haplotype’’, to quantify the statistical evidence
e3 Cell Reports Methods 2, 100313, October 24, 2022
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for the presence of a candidate haplotype in the sample, we use empirical thresholds, which correspond to p-value < 0:001 and <

0:0005, respectively. In the section of method details entitled ‘‘Simulating missing data for imputation’’, to remove missing nucleo-

tides at random for our imputation method, we use the perl function rand(). To evaluate the performance of our method in Figures 2–4

and estimate its running speed in Figure S3, we use five replicates. To estimate the phylogenetic tree in Figure 7, we usemafft –maxi-

terate 1000 –globalpair for the alignment and raxmlHPC-PTHREADS -m GTRGAMMA -p 1234 to estimate the tree.
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