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Abstract

Motivation: Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regu-
latory and functional potential of cells at the individual, population and community levels of organization. Although
the most common methods for metabolic pathway reconstruction are gene-centric e.g. mapping annotated proteins
onto known pathways using a reference database, pathway-centric methods based on heuristics or machine learn-
ing to infer pathway presence provide a powerful engine for hypothesis generation in biological systems. Such
methods rely on rule sets or rich feature information that may not be known or readily accessible.

Results: Here, we present pathway2vec, a software package consisting of six representational learning modules
used to automatically generate features for pathway inference. Specifically, we build a three-layered network com-
posed of compounds, enzymes and pathways, where nodes within a layer manifest inter-interactions and nodes be-
tween layers manifest betweenness interactions. This layered architecture captures relevant relationships used to
learn a neural embedding-based low-dimensional space of metabolic features. We benchmark pathway2vec per-
formance based on node-clustering, embedding visualization and pathway prediction using MetaCyc as a trusted
source. In the pathway prediction task, results indicate that it is possible to leverage embeddings to improve predic-
tion outcomes.

Availability and implementation: The software package and installation instructions are published on http://github.
com/pathway2vec.

Contact: shallam@mail.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolic pathway reconstruction from genomic sequence informa-
tion is a key step in predicting regulatory and functional potential of
cells at the individual, population and community levels of organiza-
tion (Abubucker et al., 2012). Exponential advances in sequencing
throughput continue to lower the cost of data generation with con-
comitant increases in data volume and complexity (Ansorge, 2009).
Resulting datasets create new opportunities for metabolic recon-
struction within biological systems that require the development of
new computational tools and approaches that scale with data vol-
ume and complexity. Although the most common methods for meta-
bolic pathway reconstruction are gene-centric e.g. mapping
annotated proteins onto known pathways using a reference database
based on sequence homology, heuristic or rule-based methods for
pathway-centric inference including PathoLogic (Karp et al., 2016)
and MinPath (Ye and Doak, 2009) have become increasingly used
to generate hypotheses and build quantitative models. For example,

Pathologic generates pathway genome databases (PGDBs) that can
be refined based on experimental validation e.g. EcoCyc (Karp
et al., 2018) and stored in repositories e.g. BioCyc (Caspi et al.,
2016a) for community access and use in flux balance analysis.

The development of accurate and flexible rule sets for pathway
prediction remains a challenging enterprise informed by expert cura-
tors incorporating thermodynamic, kinetic and structural informa-
tion for validation (Toubiana et al., 2019). Updating these rule sets
as new organisms or pathways are described and validated can be
cumbersome and out of phase with current user needs. This has led
to the consideration of machine-learning (ML) approaches for path-
way prediction based on rich feature information. Dale et al. (2010)
conducted a seminal study comparing the performance of
Pathologic to different types of supervised ML algorithms (naive
Bayes, k-nearest neighbors, decision trees and logistic regression),
converting rules into features, defining new features and evaluating
on experimentally validated pathways from six highly curated
organisms in the BioCyc collection randomly divided into training
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and test sets. Resulting performance metrics indicated that generic
ML methods equaled and, in some cases, exceeded performance of
Pathologic with the benefit of probability estimation for pathway
presence and increased flexibility and transparency of use.

Despite the potential benefits of adopting ML methods for path-
way prediction from genomic sequence information, Pathologic
remains the primary inference engine of Pathway Tools (Karp et al.,
2016), and alternative methods for pathway-centric inference
expanding on the generic methods described above remain nascent.
Several of these methods incorporate metabolite information to im-
prove pathway inference and reaction rules to infer metabolic path-
ways (Carbonell et al., 2018; Tabei et al., 2016; Toubiana et al.,
2019). Other methods including BiomeNet (Shafiei et al., 2014) and
MetaNetSim (Jiao et al., 2013) dispense with pathways all together
and model reaction networks based on enzyme abundance informa-
tion. Recently, M.A. Basher et al. (2020) implemented a multi-label
classification approach to predict metabolic pathways for organis-
mal and multi-organismal genomes e.g. microbiomes. One of the
primary challenges encountered in developing mlLGPR related to
engineering reliable features representing heterogeneous and degen-
erate functions within multi-organismal datasets (Lawson et al.,
2019).

Advances in representational learning have led to the develop-
ment of scalable methods for engineering features from graphical
networks e.g. networks composed of multiple nodes including infor-
mation systems or social networks (Dong et al., 2017; Grover and
Leskovec, 2016; Perozzi et al., 2014). These approaches learn fea-
ture vectors for nodes in a network by solving an optimization prob-
lem in an unsupervised manner, using random walks followed by
Skip-Gram extraction of low-dimensional latent continuous fea-
tures, known as embeddings (Mikolov et al., 2013). Here, we pre-
sent pathway2vec, a software package incorporating multiple
random walks-based algorithms for representational learning used
to automatically generate feature representations of metabolic path-
ways, which are decomposed into three interacting layers: com-
pounds, enzymes and pathways, where each layer consists of
associated nodes. A Skip-Gram model is applied to extract embed-
dings for each node, encoding smooth decision boundaries between
groups of nodes in that graph. Nodes within a layer manifest inter-
interactions and nodes between layers manifest betweenness interac-
tions resulting in a multi-layer heterogeneous information network
(Shi et al., 2017). This layered architecture captures relevant rela-
tionships used to learn a neural embedding-based low-dimensional
space of metabolic features (Fig. 1).

In addition to implementing several published random walk
methods, we developed unit-circle based jump and stay random
walk (RUST), adopting a unit-circle equation to sample node pairs
that generalize previous random walk methods (Dong et al., 2017;
Grover and Leskovec, 2016; Hussein et al., 2018). The modules in
pathway2vec were benchmarked based on node-clustering, embed-
ding visualization and pathway prediction. In the case of pathway
prediction, pathway2vec modules provided a viable adjunct or alter-
native to manually curated feature sets used in ML-based metabolic
pathway reconstruction from genomic sequence information at dif-
ferent levels of complexity and completion. The distinctness of this
work lies in decomposing pathway into components, so various
graph-learning methods can be applied to automatically extract

semantic features of metabolic pathways, and to incorporate the
learned embeddings for pathway inference.

2 Definitions and problem statement

In this section, we formulate the problem of metabolic features en-
gineering using a heterogeneous information network. Throughout
the article, all vectors are column vectors denoted by boldface low-
ercase letters (e.g. x) while matrices are represented by boldface
uppercase letters (e.g. X). The Xi matrix denotes the i-th row of X
and Xi;j denotes the ði; jÞ-th element of X. A subscript character to a
vector, xi, denotes an i-th cell of x. Occasional superscript, xðiÞ, sug-
gests an index to a sample, position, or current epoch during learn-
ing period. We use calligraphic letters to represent sets (e.g. E) while
we use the notation j:j to denote the cardinality of a given set.

Definition 2.1.Multi-label Pathway Dataset (M.A.Basher et al., 2020). A

pathway dataset is characterized by S ¼ fðxðiÞ; yðiÞÞ : 1 < i6ng consist-

ing of n examples, where xðiÞ is a vector indicating abundance informa-

tion for each enzymatic reaction denoted by z, which is an element of a

set Z ¼ fz1; z2; . . . ; zrg, having r possible reactions. The abundance of an

enzymatic reaction for a given example i, say z
ðiÞ
l , is defined as

a
ðiÞ
l ð2 R�0Þ. The class label yðiÞ ¼ ½yðiÞ1 ; . . . ; y

ðiÞ
t � 2 f�1;þ1gt is a pathway

label vector of size t representing the total number of pathways obtained

from a trusted source of experimentally validated metabolic pathways

Y. The matrix form of xðiÞ and yðiÞ are symbolized as X and Y,

respectively.

Both Z and Y are derived from trusted sources, such as KEGG
(Kanehisa et al., 2017) or MetaCyc (Caspi et al., 2016b). We assume
that there is a numerical representation behind every instance and
label.

The pathway inference task can be formulated as retrieving a set
of pathway labels for an example i given features learned according
to a heterogeneous information network defined as:

Definition 2.2.Heterogeneous Information Network. A heterogeneous

information network is defined as a graph G ¼ ðV; EÞ, where V and E de-

note to the set of nodes and edges (either directed or undirected), respect-

ively (Sun et al., 2011). Each v 2 V is associated with an object type

mapping function /ðvÞ : V ! O, where O represents a set of object

types. Each edge e 2 E � V � V includes multiple types of links, and is

associated with a link type mapping function /ðeÞ : E ! R, where R
represents a set of relation types. In particular, when jOj þ jRj > 2, the

graph is referred to as a heterogeneous information network.

In heterogeneous information networks, both object types and
relationship types are explicitly segregated. For the undirected edges,
notice that if a relation exists from a type Oið2 OÞ to a type
Ojð2 OÞ, denoted as OiROj and R 2 R, the inverse relation R�1

holds naturally for OjR
�1Oi. However, in many circumstances, R

and its inverse R�1 are not equal, unless the two objects are in the
same domain, and R is symmetric. In addition, the network may be
weighted where each edge ei;j, of nodes i and j, is associated with a
weight of type R. The linkage type of an edge automatically defines
the node types of its end points. The graph articulated in this article
is considered directed and weighted (in some cases), but for simplifi-
cation is converted to an undirected network by simply treating
edges as symmetric links.

Example 2.1.MetaCyc can be abstracted as a heterogeneous information

network, in Figure 1b, which contains three types of objects, namely

compounds (C), enzymes (Z) and pathways (T). There exist different

types of links between objects representing semantic relationships e.g.

‘composed of’ and ‘involved in’, relationships between pathways and

compounds or relations between enzymes and compounds e.g. ‘trans-

form’ and ‘transformed by’. An enzyme may be mapped to a numerical

category, known as an enzyme commission number (EC) based on the

chemical reaction it catalyzes.

Fig. 1. Three interacting metabolic pathways (a), depicted as a cloud glyph, where

each pathway is comprised of compounds (green) and enzymes (red). Interacting

compound, enzyme and pathway components are transformed into a multi-layer

heterogeneous information network (b)
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Two objects within heterogeneous information networks describe meta-

level relationships referred to as meta-paths (Sun et al., 2011).

Definition 2.3.Meta-Path. A meta-path P 2 P is a path over G in the

form of O1R1O2R2OiRk . . . RjOjþ1, which defines an aggregation of

relationships U ¼ R1
�R2

� . . .� Rj between type O1 and Ojþ1, where �

denotes the composition operator on relationships and Oi 2 O and Rk 2
R are object and relation type, respectively.

Example 2.2.MetaCyc contains multiple meta-paths conveying different

semantics. For example, a meta-path ‘ZCZ’ represents the co-catalyst

relationships on a compound (C) between two enzymatic reactions (Z),

and ‘ZCTCZ’ may indicate a meta-path that requires two enzymatic

reactions (Z) transforming two compounds (C) within a pathway (T).

Another important meta-path to consider is ‘CZC’, which implies ‘CþZ

) C’ transformation relationship.

Problem Statement. Metabolic Pathway Prediction. Given three
inputs: (i) a heterogeneous information network G, (ii) a dataset S
and (iii) an optional set of meta-paths P, the goal is to automatically
resolve node embeddings such that leveraging the features will effect-
ively improve pathway prediction for a hitherto unseen instance x�.

3 The pathway2vec framework

The pathway2vec framework is composed of five modules: (i)
node2vec (Grover and Leskovec, 2016), (ii) metapath2vec (Dong
et al., 2017), (iii) metapath2vecþþ (Dong et al., 2017), (iv) JUST
(Hussein et al., 2018) and (v) RUST (this work), where each module
contains a random walk modeling and node representation step. A
graphical representation of the pathway2vec framework is depicted
in Figure 2.

C1. Random Walks. In this step, a sequence of random walks

over an input graph (whether heterogeneous or homogeneous) is

generated based on the selected model (see Section 3.1).

C2. Learning Node Representation. Resulting walks are fed into

the Skip-Gram model to learn node embeddings (Dong et al.,

2017; Fu et al., 2017; Grover and Leskovec, 2016; Mikolov

et al., 2013). An embedding is a low-dimensional latent continu-

ous feature for each node in G, which encodes smooth decision

boundaries between groups or communities within a graph.

Details are provided in Section 3.2.

3.1 Random walks
To capture meaningful graph relationships, existing techniques,
such as DeepWalk (Perozzi et al., 2014), design simple but effective
algorithms based on random walks for representational learning of
features. However, DeepWalk does not address in-depth and in-
breadth graph exploration. Therefore, node2vec (Grover and
Leskovec, 2016) was developed to traverse local and global graph
structures based on the principles of: (i) homophily (Fortunato,
2010; Newman, 2006) where interconnected nodes form a commu-
nity of correlated attributes and (ii) structural equivalence
(Henderson et al., 2012), where nodes having similar structural roles
in a graph should be close to one another. node2vec simulates a
second-order random walk, where the next node is sampled condi-
tioned on the previous and the current node in a walk. For this, two
hyperparameters are adjusted, s 2 R>0 that extracts local informa-
tion of a graph, and h 2 R>0 that enables local and global traversals
by moving deep in a graph or walking within the vicinity of the cur-
rent node. This method is illustrated in Figure 2b top.

First-order and second-order random walks were initially pro-
posed for homogeneous graphs, but can be readily extended to het-
erogeneous information networks. Sun et al. (2011) have observed
that random walks can suffer from implicit bias due to initial node
selection or the presence of a small set of dominant node types skew-
ing results toward a subset of interconnected nodes. metapath2vec
was developed (Dong et al., 2017) to resolve implicit bias in graph
traversal to characterize semantic associations embodied between
different types of nodes according to a certain path definition. This
method is illustrated in Figure 2b bottom.

Fig. 2. Graphical representation of pathway2vec framework. Main components: (a) a multi-layer heterogeneous information network composed from MetaCyc, showing

meta-level interactions among compounds, enzymes and pathways, (b) four random walks and (c) two representational learning models: traditional Skip-Gram (top) and Skip-

Gram by normalizing domain types (bottom). In the subfigure (a), the highlighted network neighbors of T1 (nitrifier denitrification) indicate this pathway interacts directly

with T2 [nitrogen fixation I (ferredoxin)] and indirectly to T3 [nitrate reduction I (denitrification)] by second-order with relationships to several compounds, including nitric

oxide (C3) and nitrite (C4) converted by enzymes represented by the EC numbers (Z2: EC 1.7.2.6, Z3: EC 1.7.2.1 and Z4: EC 1.7.2.5). The black colored nodes in subfigure (b)

indicate the current position of the walkers and red links suggest the next possible nodes to sample while black links indicate route taken by a walker to reach the current node.

node2vec is parameterized by local search s and in–out h hyperparameters. These two hyperparameters constitute a unit circle, i.e. h2 þ s2 ¼ 1, for RUST. M stores previously

visited node types, which is 2 and only applied for JUST and RUST. c is number of nodes of the same domain type as the current node, which is 3 and is associated with JUST.

For metapath2vec, a walker requires a prespecified scheme, which is set to ‘ZCTCZ’. The normalized Skip-Gram in the subfigure (c) bottom is simply trained based on the do-

main type, in contrast to the traditional Skip-Gram model. More information related to both learning strategies is provided in Section 3.2. Zoom for readability
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metapath2vec overcomes the limitation of node2vec by enabling
to extract semantical representations over heterogeneous graph.
However, the use of meta-paths requires either prior domain-
specific knowledge to recover semantic associations of HIN accord-
ing to a certain path definition. As a result, groups of vertices with
the heterogeneous information network may not be visited or revis-
ited multiple times. This limitation was partially addressed by lever-
aging multiple path schemes (Fu et al., 2017) to guide random walks
based on a meta-path length parameter. Hussein et al. (2018) devel-
oped the Jump and Stay (JUST) heterogeneous graph embedding
method using random walks as an alternative to meta-paths. JUST
randomly selects the next node in a walk from either the same node
type or from different node types using an exponential decay func-
tion and a tuning parameter based on two history records: (i) c cor-
responding the number of nodes consecutively visited in the same
domain as the current node and (ii) a queue M of size m storing the
previously visited node types. This method is illustrated in Figure 2b
second from top.

However, in order to balance the node distribution over multiple
node types, JUST constrains the number of memorized domains m
to be within the range of ½1; jOj � 1� 2 Z>1. This can misrepresent
graph structure in two ways: (i) explorations within domain because
the last visited consecutive c nodes may enforce sampling from an-
other domain, or (ii) jumping deep toward nodes from other
domains because M is constrained. To alleviate these problems, we
develop a novel random walk algorithm, RUST, adopting a unit-
circle equation to sample node pairs that generalize previous repre-
sentational learning methods, as illustrated in Figure 2b second from
bottom. The two hyperparameters s and h constitute a unit circle,
i.e. h2 þ s2 ¼ 1, where h 2 ½0; 1� indicates how much exploration is
needed within a domain while s 2 ½0;1� defines the in-depth search
toward other domains such that s > h encourages the walk to ex-
plore more domains and vice versa. Consequently, RUST blends
both semantic associations and local/global structural information
for generating walks without restricting domain size m in M.

To better illustrate the effect of s and h on RUST, consider an ex-
ample in Figure 3, where the walkers in JUST and RUST are current-
ly stationed at C3 of compound type. While JUST enforces its

walker to jump toward pathway domain, because of the combined
effect of c that holds three consecutive nodes of compound type and
M that is currently storing EC and compound types, RUST may pre-
fer returning to C2 (no links exist to C4) than jumping to T1 or T2.
This is because s < h promotes exploration within the same domain
as C3. If, however, s > h then RUST will perform in-depth search by
selecting a node of type pathway. For formal definitions about the
discussed random walks, see Supplementary Section S1.

3.2 Learning latent embedding in graph
Random walks W generated using node2vec, metapath2vec, JUST
and RUST are fed into the Skip-Gram model to learn node embed-
dings (Mikolov et al., 2013). The Skip-Gram model exploits context
information defined as a fixed number of nodes surrounding a target
node. The model attempts to maximize co-occurrence probability
among a pair of nodes identified within a given window of size q in
W based on log-likelihood:

X

l2W

X

j2l

X

�q	 k	 q;j6¼0

log pðvjþkjvjÞ; (1)

where vj�c; . . . ; vjþc are the context neighbor nodes of node vj and

pðvjþijvjÞ defines the conditional probability of having context nodes

given the node vj. The pðvjþkjvjÞ is the commonly used softmax func-

tion, i.e ¼ e
D

vjþk :DvjP
i2V e

D
vi :Dvj

, where D 2 R
jVj�d stores the embeddings of all

nodes and Dv is the v-th row corresponding to the embedding vector
for node v. In practice, the vocabulary of nodes may be very large,

which intensifies the computation of pðvjþkjvjÞ. The Skip-Gram
model uses negative sampling, which randomly selects a small set of
nodes N that are not in the context to reduce computational com-
plexity. This idea represented in updated Equation (1) is imple-
mented in node2vec, metapath2vec, JUST and RUST according to:

X

l2W

X

j2l

X

�q	k	q;j 6¼0

ð log rðDvjþk :Dvj Þ þ
X

u2N^u 62N ðjÞ
Evu ½log pðvujvjÞ�Þ;

(2)

where rðvÞ ¼ 1
1þe�v is the sigmoid function.

In addition to the equation above, Dong and colleagues pro-
posed a normalized version of metapath2vec, called meta-
path2vecþþ, where the domain type of the context node is
considered in calculating the probability pðvjþkjvjÞ, resulting in the
following objective formula:

X

l2W

X

j2l

X

�q	k	q;j 6¼0

ð log rðDvjþk :Dvj Þ

þ
X

u2N^u62N ðjÞ^/ðvuÞ¼/ðvjþkÞ
Evu ½log pðvujvjÞ�Þ;

(3)

where /ðvuÞ ¼ /ðvjþkÞ suggests that the negative nodes are of the
same type as the context node /ðvjþkÞ. The above formula is also
applied for RUST, and we refer it to RUST-norm. Through iterative
update over all the context nodes, whether using Equation (2) or (3),
for each walk inW, the learned features are expected to capture se-
mantic and structural contents of a graph useful for pathway
inference.

4 Predicting pathways

For pathway inference, the learned EC embedding vectors are con-
catenated into each example i according to:

~xðiÞ ¼ xðiÞ�
1

r
xðiÞDv:v2Z ; (4)

where � denotes the vector concatenation operation, D 2 R
jVj�d

stores the embeddings of all nodes and Dv:v2Z indicates feature vec-
tors for r enzymatic reactions. By incorporating enzymatic reaction
features into xðiÞ, the dimension size is extended to r þ d, where r is
the enzyme vector size while d corresponds to embeddings size. This

Fig. 3. An illustrative example showing the selection of the next node for both JUST

and RUST on HIN extracted from MetaCyc. The walker is currently stationed at C3

arriving from node C2 (indicated by black colored link), where M stores two previ-

ously visited node types and c (for JUST) holds three consecutive nodes that are of

the same domain as C3. As can be seen JUST would prefer selecting the next node of

type pathway while RUST may prefer returning to C2 than jumping to T1 or T2, as

indicated by red edges, because s < h represented by an ellipsis glyph
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modified version of xðiÞ is denoted by ~xðiÞ, which then can be used by
an appropriate ML algorithm, such as mlLGPR (M.A.Basher et al.,
2020), to train and infer a set of metabolic pathways from enzymat-
ic reactions.

5 Experimental setup

In this section, we explain the experimental settings and outline
materials used to evaluate the performance of pathway2vec modules
that were written in Python v3 and trained using tensorflow v1.10
(Abadi et al., 2016). Unless otherwise specified all tests were con-
ducted on a Linux server using 10 cores of Intel Xeon CPU E5-
2650.

5.1 Preprocessing MetaCyc
We constructed three hierarchical layers of HIN using MetaCyc v21
(Caspi et al., 2016b), according to: EC (bottom-layer), compound
(mid-layer) and pathway (top-layer) as in Figure 2a. Relationships
among these layers establish inter-interactions and betweenness
interactions. Three inter-interactions were built: (i) ECs interactions
that were collected-based shared metabolites, e.g. if a compound is
engaged in two ECs then the two ECs were considered connected;
(ii) compounds interactions that were processed based on shared
reactions, e.g. if any two compounds constituting substrate and
product of an engaged enzymatic reaction they would be linked; and
(iii) pathways interactions that were constructed based on shared
metabolites, e.g. if any product in one pathway is being consumed
by another then these two pathways were linked. With regard to
betweenness interactions, we considered two forms: (i) EC-
compound interaction if any enzyme (represented by an EC number)
engages in any compound then nodes of both types were linked and
(ii) compound-pathway interaction if any compound involves in any
pathway then those nodes were considered related. After building
multi-layer HIN, we applied different configurations, as summar-
ized in Table 1, to explore relationship between different graph
types and the quality of generated walks and embeddings.

5.2 Parameter settings
Parameterization for the other random walk methods can be found
in Dong et al. (2017), Grover and Leskovec (2016) and Hussein
et al. (2018). For training, we randomly initialized model parame-
ters with a truncated Gaussian distribution, and set the learning rate
to 0.01, the batch size to 100 and the number of epochs to 10.
Unless otherwise indicated, for each module, the number of sampled
path instances is K ¼ 100, the walk length is l ¼ 100, the embedding
dimension size is d ¼ 128, the neighborhood size is 5, the size of
negative samples is 5 and the number of memorized domain m for
JUST and RUST are 2 and 3, respectively. The explore and the in–
out hyperparameters for node2vec and RUST are h ¼ 0.7 (or
h ¼ 0.55) and s ¼ 0.7 (or s ¼ 0.84), respectively, using the uec con-
figuration. For metapath2vec and metapath2vecþþ, we applied the

meta-path scheme ‘ZCTCZ’ to guide random walks. For brevity, we
denote node2vec, metapath2vec, metapath2vecþþ, JUST, RUST
and RUST-norm as n2v, m2v, cm2v, jt, rt and crt, respectively.

6 Experimental results and discussion

In this section, we first evaluate parameter sensitivity of RUST prior
to benchmarking the four random walk algorithms, jointly with the
two learning methods, based on node-clustering, embedding visual-
ization and pathway prediction.

6.1 Parameter sensitivity of RUST
6.1.1 Experimental setup

In this section, the effect of different hyperparameter settings in
RUST on the quality of learned nodes embeddings is described.
Since the hyperparameter space involved in RUST, is infinite, ex-
haustive searches for optimal settings are prohibitive. Therefore, set-
tings were sub-selected to determine RUST performance.
Specifically, the effects of the dimensions d 2 f30;50; 80; 100;
128;150g, the neighborhood size q 2 f3; 5;7; 9g, the memorized
domains m 2 f3; 5; 7g and the two hyperparameters s and h
(2 f0:55;0:71; 0:84g) were evaluated based on Normalized Mutual
Information (NMI) scores, after 10 trials. The NMI produces scores
between 0, indicating no mutual information exists, and 1, indicat-
ing node clusters (feature groups) are perfectly correlated based on
class information: enzyme, compound and pathway. Clustering was
performed using the k-means algorithm (Arthur and Vassilvitskii,
2007) to group data based on the learned representations from
RUST as described in Dong et al. (2017) and Hussein et al. (2018).
Random walks W were generated using MetaCyc with uec option
for RUST test parameters.

6.1.2 Experimental results

Supplementary Figure S1a indicates that RUST performance
tends to saturate when the memorized domains are concentrated
around m ¼ 5 and h ¼ 0.55, indicating a preference to explore
more domain types. By fixing m ¼ 3 and h ¼ 0.55, the optimal
results of NMI score w.r.t. the number of embedding dimen-
sionality was found to be at 80 and 128 (Supplementary Fig.
S1b). Beyond this value RUST performance deteriorated. A simi-
lar trend was also observed when the context neighborhood size
was increased beyond q > 5 (Supplementary Fig. S1c). Based on
these observations, the following settings m ¼ 3, h ¼ 0.55,
d ¼ 80 or d ¼ 128 and q ¼ 5 provide the most efficient and
accurate clustering outcomes using MetaCyc with uec option.
For comparative purposes, we set d ¼ 128.

6.2 Node clustering
6.2.1 Experimental setup

The performance of different random walk methods was tested in
relation to node-clustering using NMI after 10 trials and the hyper-
parameters described above on all MetaCyc graph types depicted in
Table 1. Clustering was performed using the k-means algorithm to
group homogeneous nodes based on the embeddings learned by
each method.

6.2.2 Experimental results

Supplementary Figure S2 indicates node-clustering results for node2-
vec, metapath2vec, JUST and RUST. node2vec, JUST and RUST
exhibited similar performance across all configurations, indicating
that these methods are less likely to extract semantic knowledge,
characterizing node domains, from MetaCyc. However, RUST per-
formed optimally better than node2vec and JUST in learning repre-
sentations. In the case of metapath2vec, the random walk follows a
predefined meta-path scheme, capturing the necessary relational
knowledge for defining node types. For example, nitrogenase (EC-
1.18.6.1), which reduces nitrogen gas into ammonium, is exclusively
linked to the nitrogen fixation I (ferredoxin) pathway (Eady, 1996).

Table 1. Different configurations of compound, enzyme (EC) and

pathway objects extracted from the MetaCyc database: (i) full con-

tent (MetaCyc), (ii) reduced content based on trimming nodes

below two links (MetaCyc r), (iii) links among enzymatic reactions

are removed, following graph independence assumption (MetaCyc

uec) and (iv) combination of unconnected enzymatic reactions and

trimmed nodes (MetaCyc uec þ r)

Database # EC # Compound # Pathway jVj jEj

MetaCyc 6378 13 689 2526 22 593 37 631

MetaCyc (r) 3606 6469 2467 12 542 37 631

MetaCyc (uec) 6378 13 689 2526 22 593 33 353

MetaCyc (uec þ r) 3229 6469 2467 12 165 33 353
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Without a predefined relation, a walker may explore more local/glo-
bal structure of G, hence, become less efficient in exploiting rela-
tions between these two nodes. Among the four walks, only
metapath2vec is able to accurately group those nodes, according
to their classes. Despite the advantages of metapath2vec, it is
biased to a scheme, as described in Hussein et al. (2018), which
is explicitly observed for the case of ‘uecþr’ (Supplementary Fig.
S2d). Under these conditions, both isolated nodes and links
among ECs are discarded, resulting in a reduced number of
nodes that are more easily traversed by a meta-path walker.
metapath2vecþþ exhibited trends similar to metapath2vec be-
cause they share the same walks. However, metapath2vecþþ is
trained using normalized Skip-Gram. Therefore, it is expected to
achieve good NMI scores, yielding over 0.41 on uecþfull con-
tent (in Supplementary Fig. S3), which is also similar to RUST-
norm NMI score (
0:38). This is interesting because RUST-
norm employs RUST-based walks, but the embeddings are learn-
ed using normalized Skip-Gram.

Taken together, these results indicate that node2vec, JUST and
RUST-based walks are effective for analyzing graph structure while
metapath2vec can learn good embeddings. However, RUST strikes a
balance between the two proprieties through proper adjustments of
m and the two unit-circle hyperparameters. Regarding the MetaCyc
type, we recommend ‘uec’ because the associations among ECs are
captured at the pathway level. The trimmed graph is contraindi-
cated, because it eliminates many isolated, but important pathways
and ECs.

6.3 Manifold visualization
6.3.1 Experimental setup

In this section, learned high dimensional embeddings were visualized
by projecting them onto a 2D space using two case studies. The first
case examines the quality of learned nodes embeddings according to
the generated random walks an approach commonly sought in most
graph-learning embedding techniques (Grover and Leskovec, 2016;
Wang et al., 2016). We posit that a good representational learning
method defines clear boundaries for nodes of the same type. For il-
lustrative purposes, nodes corresponding to nitrogen metabolism
were selected. The second case examines the limitations of meta-
path-based random walks, extending our discussions in Section 6.2.
For illustrative purposes, we focus on the pathway layer in Figure 2a
and consider representation of pathways having no enzymatic reac-
tions. For visualization, we use UMAP, a.k.a. uniform manifold ap-
proximation and projection (McInnes et al., 2018) using 1000
epochs with the remaining settings set to default values.

6.3.2 Experimental results

Figure 4 visualizes 2D UMAP projections of the 128-dimension
embeddings, trained under uecþfull setting depicting 185 nodes
related to nitrogen metabolism in MetaCyc. Each point denotes a
node in HIN and each color indicates the node type. node2vec
(Fig. 4a), JUST (Fig. 4c) and RUST (Fig. 4d) appear to be less than
optimal in extracting walks that preserve three layer relational
knowledge e.g. nodes belonging to different types form unclear
boundaries and diffuse clusters. In the cases of metapath2vec
(Fig. 4b), metapath2vecþþ (Fig. 4f) and RUST-norm (Fig. 4f),
nodes of the same color are more optimally portrayed. In the second
use case, 80 pathways were identified, having no enzymatic reac-
tions, with their 109 pathway neighbors, as shown in
Supplementary Figure S4a. From Supplementary Figure S4, we ob-
serve that, in contrast to node2vec, JUST, RUST and RUST-norm,
pathway nodes are skewed incorrectly in both metapath2vec and
metapath2vecþþ and with lesser degree. This demonstrates the ri-
gidness of meta-path-based methods that follow a defined scheme
that limits their capacity to exploit local structure in learning
embeddings. Interestingly, RUST-norm, based on RUST walks, is
the only method that combines structural and semantic information
as indicated in Supplementary Figure S4g and f, respectively. Taken
together, these results indicate that RUST-based walks with training
using Equation (3) provide efficient embeddings, consistent with
node-clustering observations.

6.4 Metabolic pathway prediction
6.4.1 Experimental setup

In this section, the effectiveness of the learned embeddings from
pathway2vec modules is determined across different pathway infer-
ence methods including MinPath v1.2 (Ye and Doak, 2009),
PathoLogic v21 (Karp et al., 2016) and mlLGPR-elastic net (EN)
(M.A.Basher et al., 2020). In contrast to previous multi-label classi-
fication methods (Grover and Leskovec, 2016; Hussein et al., 2018;

Fig. 4. The 2D UMAP projections of the 128-dimension embeddings, trained under

uecþfull setting depicting 185 nodes related to nitrogen metabolism. Node color

indicates the category of the node type, where red indicates enzymatic reactions,

green indicates compounds and blue is reserved for metabolic pathways

Table 2. Micro F1 scores of each comparing algorithm on six benchmark datasets

Methods Micro F1 score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447

MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511

mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768

mlLGPRþn2v 0.7614 0.3857 0.3938 0.4457 0.4780 0.4548

mlLGPRþm2v 0.7638 0.3883 0.3768 0.4642 0.4851 0.4293

mlLGPRþcm2v 0.7508 0.3783 0.3939 0.4598 0.4700 0.4697

mlLGPRþjt 0.7640 0.3783 0.3860 0.4726 0.4528 0.4515

mlLGPRþrt 0.7651 0.4076 0.3883 0.4633 0.4857 0.4680

mlLGPRþcrt 0.7682 0.3654 0.4052 0.4451 0.4585 0.4653
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Perozzi et al., 2014), where the goal is to predict the most probable
label set for nodes, we leverage the learned vectors and the multi-
label dataset, according to Equation (4). Pathway prediction with
mlLGPR-EN used the default hyperparameter settings, after concat-
enating features from each learning method, to train on BioCyc
[v20.5 tier (T) T2 & T3] (Caspi et al., 2016a) consisting of 9255
PGDBs with 1463 distinct pathway labels (see Supplementary
Section S5). Results are reported on T1 golden datasets including
EcoCyc, HumanCyc, AraCyc, YeastCyc, LeishCyc and
TrypanoCyc. Four evaluation metrics are used to report perform-
ance scores after three repeated trials: Hamming loss, micro preci-
sion, micro recall and micro F1 score.

6.4.2 Experimental results

Table 2 shows micro F1 scores for each pathway predictor.
Numbers in boldface represent the best performance score in each
column while the underlined text indicates the best performance
among the embedding methods. From the results, all variations of
embedding methods tended to perform better than MinPath across
the four T1 golden datasets (EcoCyc, YeastCyc, LeishCyc and
TrypanoCyc). With the exception of EcoCyc, the performance of
embeddings resulted in less optimal micro F1 scores than
PathoLogic or mlLGPR. In the case of mlLGPR, embeddings were
trained on <1470 pathways, potentially obscuring the actual bene-
fits of the learned features. Taken together, different pathway2vec
modules performed similar to one another indicating that embed-
dings are potential alternatives to the pathway and reaction evidence
features used in M.A.Basher et al. (2020). Since RUST-norm is based
on RUST walks that perform local and global graph structure ex-
ploration (Section 6.2) while generating meaningful semantic repre-
sentation (Section 6.3), we suggest that users adopt RUST-norm.
Full results are provided in Supplementary Section S6.

7 Conclusion

We have developed the pathway2vec package for learning features
relevant to metabolic pathway prediction from genomic sequence in-
formation. The software package consists of six representational
learning modules used to automatically generate features for path-
way inference. Metabolic feature representations were decomposed
into three interacting layers: compounds, enzymes and pathways,
where each layer consists of associated nodes. A Skip-Gram model
was applied to extract embeddings for each node encoding smooth
decision boundaries between groups of nodes in a graph resulting in
a multi-layer heterogeneous information network for metabolic
interactions within and between layers. Three extensive empirical
studies were conducted to benchmark pathway2vec, indicating that
the representational learning approach is a promising adjunct or al-
ternative to features engineering based on manual curation. At the
same time, we introduced RUST, a novel and flexible random walk
method that uses unit-circle and domain size hyperparameters to ex-
ploit local/global structure while absorbing semantic information
from both homogeneous and heterogeneous graphs. Looking for-
ward, we intend to leverage embeddings and graph structure on
more complex community-level metabolic pathway prediction prob-
lems. Because random walk-based methods depend on many hyper-
parameters (e.g. the length of a random walk) that must be tuned,
and many walks that must be generated, we are exploring alterna-
tive graph convolutional neural networks to reduce computational
complexity. Such methods aggregate feature information based on
node co-occurrences patterns automatically without dependence on
hyperparameter settings (Abu-El-Haija et al., 2018; Cohen et al.,
2019; Pei et al., 2020).
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