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We represent proteins by amino acid interaction networks. This is a graph whose vertices are the proteins amino acids and whose
edges are the interactions between them. Once we have compared this type of graphs to the general model of scale-free networks,
we analyze the existence of nodes which highly interact, the hubs. We describe these nodes taking into account their position in
the primary structure to study their apparition frequency in the folded proteins. Finally, we observe that their interaction level is a
consequence of the general rules which govern the folding process.

1. Introduction

Proteins are biological macromolecules participating in the
large majority of processes which govern organisms. The
roles played by proteins are varied and complex. Certain
proteins, called enzymes, act as catalysts and increase several
orders of magnitude, with a remarkable specificity, and the
speed of multiple chemical reactions essential to the organ-
ism survival. Proteins are also used for storage and transport
of small molecules or ions, control the passage of molecules
through the cell membranes, and so forth. Hormones, which
transmit information and allow the regulation of complex
cellular processes, are also proteins.

Genome sequencing projects generate an ever increasing
number of protein sequences. For example, the Human
Genome Project has identified over 30,000 genes [3] which
may encode about 100,000 proteins. One of the first tasks
when annotating a new genome is to assign functions to
the proteins produced by the genes. To fully understand
the biological functions of proteins, the knowledge of their
structure is essential.

In their natural environment, proteins adopt a native
compact three-dimensional form. This process is called
folding and is not fully understood. The process is a result of
interactions between the protein’s amino acids which form
chemical bonds.

In this study, we treat proteins as networks of interacting
amino acid pairs [4]. In particular, we consider the subgraph
induced by the set of amino acids participating in the sec-
ondary structure also called Secondary Structure Elements
(SSE). We call this graph SSE interaction network (SSE-IN).
We carry out a study to identify the main properties that
the SSE-INs share with the scale-free model. Studying the
degree distributions, we are interested in the existence of
hubs which are nodes whose degree is big. Then, we describe
these specific nodes by their neighbourhood in the folded
proteins to find a correlation with their hydrophobicity or
their position in the primary structure.

In [5–8] the authors compare also similar models of
amino acid interaction networks to the scale-free model to
describe some of their properties. In particular, the authors
want to study the node degree distribution, the inner coreor
outer layer mean degrees. All those studies are led in order
to identify the general topological properties of amino acid
interaction networks. Here, we do the same since we want to
identify the topological criteria which imply that a node acts
as a hub.

1.1. Amino Acid Interaction Networks. The 3D structure of a
protein is represented by the coordinates of its atoms. This
information is available in Protein Data Bank (PDB) [9],
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Figure 1: Protein 1DTP (a) and its SSE-IN (b). From a pdb file, a
parser we have developed produces a new file which corresponds to
the SSE-IN graph displayed by the GraphStream library [1].

Table 1: Structural families studied for the scale-free properties. We
choose only families which count more than 100 proteins, for a total
of 18296 proteins. We select a protein only when all its domains are
the same. We have worked with the SCOP v1.73 classification.

Class Number of families Number of proteins

All α 12 2970

All β 17 6372

α/β 18 5197

α + β 16 3757

which regroups all experimentally solved protein structures.
Using the coordinates of two atoms, one can compute the
distance between them. We define the distance between
two amino acids as the distance between their Cα atoms.
Considering the Cα atom as a “center” of the amino acid is an
approximation, but it works well enough for our purposes.
Let us denote byN the number of amino acids in the protein.
A contact map matrix is anN×N 0-1 matrix, whose element
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Figure 2: Degree distribution for each the three models described
by Amaral [2]. The red line follows a power law, a function with
a relatively “fat tail” as for scale-free networks. The green line
corresponds to truncated scale-free networks because it describes
a power law regime followed by a sharp cut-off. The black curve
has a fast decaying tail, typically exponential, and corresponds to
single-scale networks.

(i, j) is one if there is a contact between amino acids i and
j and zero otherwise. It provides useful information about
the protein. For example, the secondary structure elements
can be identified using this matrix. Indeed, α-helices spread
along the main diagonal, while β-sheets appear as bands
parallel or perpendicular to the main diagonal [10]. There
are different ways to define the contact between two amino
acids. Our notion is based on spacial proximity, so that the
contact map can consider noncovalent interactions. We say
that two amino acids are in contact iff the distance between
them is below a given threshold. A commonly used threshold
is 7 Å [11] and this is the value we use.

Consider a graph with N vertices (each vertex corre-
sponds to an amino acid) and the contact map matrix as
incidence matrix. It is called contact map graph. The contact
map graph is an abstract description of the protein structure
taking into account only the interactions between the amino
acids. Now let us consider the subgraph induced by the
set of amino acids participating in SSE. We call this graph
SSE interaction network (SSE-IN) and this is the object
we study in the present paper. The reason of ignoring the
amino acids not participating in SSE is simple. Evolution
tends to preserve the structural core of proteins composed
from SSE. On the other hand, the loops (regions between
SSE) are not so important to the structure and hence, are
subject to more mutations. That is why homologous proteins
tend to have relatively preserved structural cores and variable
loop regions. Thus, the structure determining interactions
are those between amino acids belonging to the same SSE
on local level and between different SSEs on global level.
Figure 1 gives an example of a protein and its SSE-IN.

2. The Scale-Free Network

The most important property of scale-free systems is their
invariance to changes in scale. The term scale-free refers to
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a system defined by a functional form f (x) that remains
unchanged within a multiplicative factor under rescaling
of the independent variable x. Indeed, this means power-
law forms, since these are the only solutions to f (an) =
b f (n), where n is the number of vertices [12]. The scale-
invariance property means that any part of the scale-free
network is stochastically similar to the whole network and
parameters are assumed to be independent of the system
size [13].

One of the most important network properties is the
degree distribution of vertices. A degree of a vertex is the
number of edges incident to it. The mean degree of a network
is the mean of the degrees of all vertices. For a network with
n vertices and m edges, the mean degree is z = 2m/n. We
will note by pk the ratio of vertices having degree k (or the
probability that a vertex has a degree k). The values pk define
the degree distribution of a network. The cumulative degree
distribution Pk =

∑∞
i=k pk is the probability for a vertex to

have a degree at least k.
The random graphs of Erdõs and Rényi [14, 15] are

the most studied network model. They have Poisson degree
distribution. However, many real networks have different
degree distributions. Amaral et al. [2] have studied networks
that can be classified into three groups according to the shape
of their cumulative degree distribution; see Figure 2. First,
scale-free networks are those with power law distribution
pk ∼ k−α or Pk ∼ k−(α−1), a function which decreases
polynomially with k. The second class is single scale networks
with exponential degree distribution Pk ∼ e−k/α. This
distribution decreases exponentially, much faster than the
previous. The third class is broad-scale or truncated scale-
free networks with distribution

Pk ∼ k−(α−1)e−k/α. (1)

This distribution is somewhere between the previous
two, a power law regime followed by a sharp exponential
cutoff. The common feature of these classes is that most of
the vertices have low degree and there exist a small number
of high degree nodes. The last are called hubs and play an
important role for the connectivity of the whole network.

3. Experimental Results

3.1. Previous Works. In [16] we have studied the degree
distribution of amino acid interaction networks. We have
shown that the SSE-INs have a cumulative degree distribu-
tion which can be approximated by the function Pk:

Pk = 1.48347k0.962515exp−k/2.12615. (2)

Thus, protein SSE-INs are truncated scale-free networks;
this is also confirmed by previous studies [7, 8, 17].

As well, we have shown that the mean degree values
constitute a threshold for protein SSE-IN cumulative degree
distribution. For degrees lower than z, the cumulative
distribution decreases slowly and after this threshold its
decrease is fast compared to an exponential one; see Figure 3.

In the present paper, we continue to describe SSE-INs by
comparing them to the scale-free model. Since the SSE-INs
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Figure 3: Cumulative degree distribution for 1COY SSE-IN. The
curve decreases quickly for degrees superior to the mean degree z
which acts as a threshold.
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Figure 4: Degree of nodes in all studied SSE-IN as a function their
mean degree z. For each studied SSE-IN, we compare the degree of
each node to the SSE-IN mean degree z. Less than 5% of nodes are
hubs; they have a degree superior to (3/2)z.

are truncated scale-free networks, we are interested in the
identification of hubs. We begin our study by defining a hub,
and then we want to show that there exist specific criteria
which ensure that a node is a hub. Thus, we will present
specific topological measures form SSE-INs which describe
how a node acts as a hub.

The dataset we use is the same than the one exploited
in [16]; see Table 1. We have selected proteins relying on the
SCOP v1.73 classification and notably the fold families. Our
dataset is composed of proteins from families belonging to
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Figure 5: Each time a hub appears in an SSE-IN, we sum its degree according to the amino acid it represents. We repeat the process grouping
the SSE-IN by their family and also by their structural class. We normalization to obtain the cumulative connectivity by class. The amino
acid Ala acts more often as hub independently of the protein classifications.

the main four classes; they count more than 100 proteins.
We have selected a total of 18296 proteins. We use a broad
sample of proteins to guaranty more general results and
avoid fluctuations.

3.2. Hubs Identification. In [16], we have shown that the
degree distributions depend on the mean degree values.
Then, we compare for each node its degree to the mean
degree denoted z (see Figure 4) to illustrate how nodes
interact and in particular to highlight the weak fraction
of highly connected nodes, also called hubs. Further, we
consider a hub as a node whose degree khub satisfies: khub >
(3/2)z. The hubs represent less than 5% of the total node
number; see Figure 4.

An interesting study is to put in evidence the biological
properties of nodes whose connectivity is marginal. Thus,
we want to identify the hubs which highly interact with their
neighbours in the folded proteins.

To this end, we have proceeded by grouping the proteins
according to their secondary structures. Indeed, we have
already shown [18] that the protein SSE-IN topologies from
structural classifications are homogeneous and established
a parallel between structural and topological properties.
Based on the SCOP classification and more precisely on the
fold families, we have selected a total of 18296 proteins,
see Table 1, and studied their SSE-IN to describe the hub
specificities.

For each protein SSE-IN belonging to the same SCOP
structural family, we identify the nodes which are hubs; see
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Figure 6: Each time a hub interacts, we add one to its occurrence score and then deduce an occurrence probability for the amino acids to
act as a hub in an SSE-IN. We repeat the process grouping the SSE-INs by their family and also by their structural class. The probability of
an amino acid Ala being a hub is the stronger independently of the protein classifications.

Figure 4. Then, we group the hubs according to the amino
acids they represent and sum their degrees to obtain the
amino acid connectivity score by fold families. By repeating
this process at the SCOP class level, we calculate and
normalize the accumulated connectivity level of amino acids
playing the role of hubs; see Figure 5.

If we consider that the role played by an amino acid
inside a folded protein is equivalent to its interaction degree,
then these plots show that despite a functional diversity
between the four SCOP classes, there are globally the same
amino acids which interact most, namely, the Ala, Cys,
Gly, Leu, Val. Therefore, the amino acids having a high
connectivity interact independently of the protein biological
function.

From a biological viewpoint, these observations illus-
trate perfectly the general folded protein shape that is,
the hydrophobic side chains are packed into the inte-
rior of the protein creating a hydrophobic core and a
hydrophilic surface. Then, the first reason for which cer-
tain amino acids interact most is correlated with their
hydrophobicity.

We also compute the occurrence level of hubs, that is
their number of appearances on each protein SSE-IN. We
accumulated this score at the SCOP class level to obtain the
probability for each amino acid to be a hub in a protein SSE-
IN; see Figure 6. We can remark the existence of peaks which
show clearly a strong tendency of amino acids Ala, Cys, Gly,
Leu, and Val to have a high interactivity within the folded



6 Advances in Bioinformatics

0

20

40

60

80

100

O
cc

u
rr

en
ce

ra
te

0 20 40 60 80 100

Hub position

All α class

(a)

0

20

40

60

80

100

O
cc

u
rr

en
ce

ra
te

0 20 40 60 80 100

Hub position

All β class

(b)

0

20

40

60

80

100

O
cc

u
rr

en
ce

ra
te

0 20 40 60 80 100

Hub position

α/β class

(c)

0

20

40

60

80

100

O
cc

u
rr

en
ce

ra
te

0 20 40 60 80 100

Hub position

α + β class

(d)

Figure 7: We assign to each node a number so that the H extremity has the number 100. We sum the occurrence score of hubs according to
their positions and normalize. We observe favorable regions when the occurrence rate is high.

protein. Thus, there are the same amino acids which play the
role of hubs independently of structural families.

Now, we want to describe the way in which the hubs
appear in the folded protein. Then, we study the distribution
of hub positions as a function of the SSE-IN structural class
to identify variations dependent or not on the biological
function of proteins. To lead this study, we attribute to the
nodes an incremental position so that the H extremity has
a position 100. Then, each time a hub exists in an SSE-
IN, we increment its occurrence number by position and
finally normalize by the maximum to obtain the occurrence
ratio of hubs according to their positions in the SSE-IN; see
Figure 7. The results show the existence of favorable regions
in which the hub apparition is higher than somewhere else.
This favorable localization is strongly visible for the All α
class where the hubs have a tendency to interact around the

positions 20, 40, or 80. The distribution of hub positions
is the most homogeneous for the α/β class. It involves
dependence on the SSE-IN topology since it is not possible
to find more than one strong favorable area which appears
around the position 60.

To illustrate the existence of hubs favorable localization
in the SSE-IN, we rely on the rich-club phenomenon [19]
according to which the hubs have a tendency to be connected
to one another. We compute the rich-club connectivity
of a hub as the ratio of the number of links to the
maximum number of links between nodes belonging to the
rich-club.

It appears, see Figure 8, that certain hubs are isolated,
mainly when the rich-club connectivity is low (positions 0,
30, and 60 for the All α class) whereas the favorable hub
localizations correspond to a high coefficient.
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Figure 8: Rich-club connectivity according to the hub positions. When this measure is high, the hub neighbourhood is composed in majority
of other hubs.

The main observations about hubs behavior are the
following. First, there are five amino acids which have a
stronger probability to have a high connectivity. Second,
the hubs have a tendency to act in particular region in
the SSE-IN.

These two observations lead us to compute only the
occurrence rate of the most frequently encountered hub Ala
according to its position; see Figure 9. By comparing the
Figures 7 and 9, it appears clearly that the highest occurrence
rate for the four classes corresponds to the position of
the amino acid Ala. Therefore, we can establish a relation
between the amino acid position in the primary structure
and the hub apparition. Thus, the amino acids Ala, Cys,
Gly, Leu, and Val act as hub because they are localized in
the protein sequence in favorable regions which involve a
high interaction within the folded structure. This tendency
is actually a consequence of the amino acid hydrophobicity

and more globally it is a consequence of the formation of a
hydrophobic core in the folded proteins.

4. Conclusion

In this paper, we study the nodes whose connectivity is
marginal in amino acid interaction network. We want to
understand what the topological conditions which ensure
that a node acts as a hub are. The study of hubs shows
that there exist amino acids which play a central role
independently of the protein biological functions. The degree
of hubs depends before all on their hydrophobicity and
is also a consequence of the node position in the protein
sequence.

The study we present shows mainly that the amino acid
interaction networks are graphs whose topological properties
depend on the general folding rules.
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Figure 9: Occurrence rate of the hub Ala for each SCOP class level. Comparing these plots to Figure 7, it appears that the amino acid Ala
corresponds to the higher occurrence rate.

The characterization we propose constitutes a first step
of a new approach to the protein folding problem. The
properties identified here, but also other properties we
studied previosly, can give us an insight on the folding
process. They can be used to guide a folding simulation in
the topological pathway from unfolded to folded state.
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