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Abstract

Cyclopamine is a natural alkaloid that is known to act as an agonist when it binds

to the Cysteine Rich Domain (CRD) of the Smoothened receptor and as an antag-

onist when it binds to the Transmembrane Domain (TMD). To study the effect of

cyclopamine binding to each binding site experimentally, mutations in the other site

are required. Hence, simulations are critical for understanding the WT activity due to

binding at different sites. Additionally, there is a possibility that cyclopamine could

bind to both sites simultaneously especially at high concentration, the implications

of which remain unknown. We performed three independent sets of simulations to

observe the receptor activation with cyclopamine bound to each site independently
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(CRD, TMD) and bound to both sites simultaneously. Using multi-milliseconds long

aggregate MD simulations combined with Markov state models and machine learning,

we explored the dynamic behavior of cyclopamine’s interactions with different domains

of WT SMO. A higher population of the active state at equilibrium, a lower activa-

tion free energy barrier of ∼ 2 kcal/mol, and expansion of the hydrophobic tunnel to

facilitate cholesterol transport agrees with the cyclopamine’s agonistic behavior when

bound to the CRD of SMO. A higher population of the inactive state at equilibrium,

a higher free energy barrier of ∼ 4 kcal/mol and restricted the hydrophobic tunnel to

impede cholesterol transport showed cyclopamine’s antagonistic behavior when bound

to TMD. With cyclopamine bound to both sites, there was a slightly larger inactive

population at equilibrium and an increased free energy barrier (∼ 3.5 kcal/mol). The

tunnel was slightly larger than when solely bound to TMD, and showed a balance be-

tween agonism and antagonism with respect to residue movements exhibiting an overall

weak antagonistic effect.

Introduction

G-Protein Coupled Receptors (GPCRs) represent the largest family of human cell surface

receptors that transmits signals across the cellular membrane. Upon binding of a ligand

or through thermal fluctuations, the receptor undergoes a conformational change from an

inactive state to an active state. This leads to heterotrimeric G-Protein binding at the

intracellular membrane to initiate downstream signaling pathways.1 Due to their crucial

role in cellular signaling, GPCRs have become prime targets for drug development. In fact,

34% of all US Food and Drug Administration (FDA)-approved drugs target Class A and B

GPCRs.2

Smoothened (SMO) is a member of the Frizzled (Fz) (Class F) family of GPCRs. It is

composed of a heptahelical transmembrane domain (TMD), an extracellular cysteine-rich

domain (CRD), and a linker domain (LD) that connects CRD and TMD. Smoothened plays

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.08.579369doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.08.579369
http://creativecommons.org/licenses/by-nc-nd/4.0/


a vital role in maintaining the Hedgehog (Hh) signaling pathway. Activation of Hh pathway

begins with the binding of Hh ligands to the Patched (PTCH) receptor, causing the inhibition

of PTCH and subsequent activation of SMO.3,4 The Hh pathway is crucial in ensuring

stability during processes such as cell differentiation, regenerative responses in adults, and

embryonic development.5–8 The dysregulation of this Hh pathway can lead to a wide range

of diseases. Insufficient Hh activity is linked to birth defects such as holoprosencephaly and

brachydactyly, while hyperactive Hh activity is associated with cancers such as basal cell

carcinoma and medulloblastoma.9,10

Cyclopamine is a naturally occurring alkaloid found in corn lily (Veratrum californicum)

that gained attention due to its association with birth defects in lambs.11 It hinders the

separation of the embryonic brain into two lobes, resulting in a rare condition known as

cyclopia, or a single eye disease.12 This unique effect of cyclopamine on fetal development

led to its name, derived from the cycloptic lambs that were observed by Idaho lamb farm-

ers in 1950s.13 It was only until the 2000s that cyclopamine’s behavior was explained by

scientists, linking it to Hh inhibition.14 Cyclopamine gained significant attention due to its

unique ability to inhibit the Hh signaling pathway by targeting the Smoothened (SMO)

receptor.14–16 Its discovery has provided valuable insights into the mechanisms of Hh path-

way regulation and has paved the way for the development of novel therapeutic strategies

for Hh-dependent diseases, particularly cancer.17 Cyclopamine, through its inhibition of the

Hh signaling pathway, shows promise as a treatment for various cancers with dysregulated

Hh pathway activity.17 However, cyclopamine itself has toxic nature, and safer derivatives

of cyclopamine are needed.17 While Vismodegib, a synthetic derivative of cyclopamine, has

shown remarkable success with FDA approval in January 2012 for treating metastatic or

locally advanced basal cell carcinoma in adults,18–20 it is susceptible to chemoresistance,21

highlighting the need for continued research in this area.

Previous experiments have shown that cyclopamine can act as an antagonist by binding

to and inhibiting at TMD site in SMO lacking CRD (SMO∆CRD).14 On the other hand,
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recent experimental results have shown that cyclopamine can increase Hh pathway activity

by binding to CRD of mSmoD477G/E522K.22 The agonistic activity of cyclopamine in this

case, however, does not reach the same level as Shh-based activation, making it a partial

agonist. Determining the true effect of cyclopamine on wild-type hSMO is challenging, as

experimentally probing the activity of one site requires mutation or deletion on the other site.

Additionally, especially at saturated concentrations of cyclopamine, there is a possibility that

cyclopamine can bind to both domains simultaneously. However, the effect on the activity of

hSMO when both sites are occupied remains unclear. Based on these findings, we hypothesize

that, cyclopamine can act as an agonist by binding to CRD of WT hSMO (Fig. 1a) and an

antagonist by binding to TMD of WT hSMO (Fig. 1b). Additionally, we aim to discover

the behavior of WT hSMO when both sites are occupied simultaneously (Fig. 1c).

Molecular Dynamics simulations is a powerful tool for understanding the structure-

function relationship for macromolecules in atomistic detail. In a recent molecular dynamics

study, the activation mechanism of human Smoothened in its ligand-free form (Apo-SMO)

was explored, and the effects of the agonist SAG1 and the antagonist SANT1 on hSMO were

investigated.23 Specifically, they analyzed the free energy barrier for Apo-SMO to undergo

transition from inactive to active state. Additionally, simulations revealed that SAG1 in-

duces an expansion of the hydrophobic tunnel inside hSMO, consistent with its cholesterol

transport-like activity. Conversely, SANT1 was found to occlude the hydrophobic tunnel,

thereby inhibiting hSMO activity. This data could serve as a basis for comparing and clas-

sifying cyclopamine behavior when bound to different domains of SMO. Similarly, there is

another recent MD simulation study that has characterized the role of cholesterol when it

binds to TMD and/or CRD of SMO and analyzed the activity of SMO for each cases.24

In this study, to investigate the effect of cyclopamine binding onWT hSMO, we performed

MD simulations for WT hSMO bound with cyclopamine at different binding sites: at CRD,

TMD, and both sites. The following names are used to refer to the simulated systems -

CRD-CYC (cyclopamine bound to SMO’s CRD), TMD-CYC (cyclopamine bound to SMO’s
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TMD), and Dual-CYC (cyclopamine bound to SMO’s both sites). To explore the dynamics of

the system, we constructed inactive and active states for each bound system as starting points

for the simulations. However, long timescale associated with the activation of Smoothened

precludes the use of traditional single long time-scaled MD trajectories. To overcome this

limitation, we employed adaptive sampling,25,26 an accelerated sampling method that uses

least populated frames from clusters as new starting points for further simulations. This

approach facilitates efficient sampling of transitions between inactive and active states and

observe the complete activation process. We have performed ∼3 milliseconds of aggregate

simulations using Markov State Model (MSMs) based adaptive sampling. However, adaptive

sampling leads to statistical bias, since the methodology samples from the states to maximize

the exploration of the conformational free energy landscape. One way to overcome this bias

is by constructing Markov State Models,27,28 which divide the conformational ensemble into

microstates, and estimate the rates of transitions between the states, effectively reweighing

the entire ensemble. MSMs can offer precise insights into both kinetic and thermodynamic

properties related to the protein dynamics. MSMs have been used extensively to characterize

the conformational dynamics of GPCRs23,29–33 for understanding their activation mechanisms

and modulation of their activity by ligands and ions.

Our results show that when cyclopamine binds to CRD of SMO, it can act as an agonist,

as it showed higher active population compared to inactive at equilibrium (8% inactive, 80%

active). Among all four cases (CRD-CYC, Dual-CYC, TMD-CYC, Apo-SMO), CRD-CYC

showed the lowest activation barrier (2± 0.2 kcal/mol), which can facilitate SMO activation.

In addition, we found the tunnel to expand in the upper leaflet, to facilitate cholesterol

transport and activate SMO. On the other hand, when cyclopamine binds to TMD, we show

its role as an antagonist, as it showed higher inactive population compared to active at

equilibrium (54% inactive, 31% active). TMD-CYC showed the highest activation barrier

(4 ± 0.2 kcal/mol), hindering the activation process. The tunnel remained blocked, which

also demonstrates antagonistic behavior. In the case where cyclopamine binds to both sites,
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Figure 1: (a) Cyclopamine can bind to CRD of WT hSMO and show agonistic behavior.
(b) Cyclopamine can bind to TMD of WT hSMO and show antagonistic behavior. (c)
Cyclopamine can bind to both sites (CRD and TMD) simultaneously, and the net effect
remains unknown.

there was a slight imbalance with a higher inactive population at equilibrium (52% inactive,

41% active), suggesting weak antagonism. The activation barrier was relatively high, likely

hindering the activation process (3.5 ± 0.3 kcal/mol). Additionally, we demonstrate that

cyclopamine bound at TMD has a larger effect in shrinking the tunnel, but the size of the

tunnel was slightly larger than when it solely binds to TMD, which may leave a room for

cholesterol transport in rare cases. Detailed residue movements upon activation showed

differences in the agonistic (CRD-CYC) and antagonistic (TMD-CYC) effect of cyclopamine

on SMO.
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Results and Discussion

Binding position dependent modulation of the SMO activation pro-

cess by Cyclopamine

Analyzing the equilibrium populations for the TMD-CYC, Dual-CYC, and CRD-CYC sys-

tems can give insights into the binding position dependent agonistic, antagonistic or partial

agonistic behavior exhibited by cyclopamine. We employed simulation data from Apo-SMO23

as a reference point to discern the functional behavior of each system. To obtain equilibrium

active and inactive state populations for CRD-CYC, Dual-CYC, TMD-CYC, and Apo-SMO,

57 inter-residue distances used for adaptive sampling25 were used as input metrics for the

VampNet.34 VampNet uses an autoencoder architecture to perform dimensionality reduc-

tion from a set of input features. A macrostate model containing six metastable states was

built using VampNets. The output of the VampNet gives the probability of a simulation

frame belonging to each of the macrostates (see Methods section for details). Figure 2 shows

equilibrium populations of CRD-CYC, Apo-SMO, Dual-CYC, and TMD-CYC in both the

inactive and active states. The inactive to active population ratios reveal distinctive char-

acteristics for each system: CRD-CYC (8% inactive, 80% active), Apo-SMO (49 % inactive,

44% active), Dual-CYC (52% inactive, 41% active), and TMD-CYC (54% inactive, 31%

active). We find that binding of cyclopamine to SMO shifts equilibrium population in a

binding position dependent manner. As shown in Figure 2, CRD-CYC has a very low in-

active population as compared to active population. This suggests CRD-CYC’s agonistic

behavior, as the active state is favored at equilibrium. In contrast, higher ratio of inactive

to active population suggests antagonistic behavior for TMD-CYC, as it favors the inac-

tive state. Similarly, higher ratio of inactive to active population for Dual-CYC suggests

antagonism. However, its active population at equilibrium is slightly higher compared to

TMD-CYC. This suggests weak antagonism of Dual-CYC.

Breakage of E/DRY motif in Class A GPCRs, which is associated with the activation of
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Figure 2: Equilibrium populations of CRD-CYC, Apo-SMO, Dual-CYC, and TMD-CYC in
the inactive and active state. Inactive to active population ratio for CRD-CYC is 0.08:0.8,
Apo-SMO is 0.49:0.44, Dual-CYC is 0.52:0.41, and TMD-CYC is 0.54:0.31. Error bars were
computed by running the model 20 times with 80% of the data.

Class A GPCRs,1,29,35–37 is analogous to the conserved molecular switch (W-G-M motif) in

Class F receptor activation.23 Specifically, the outward translation of W3393.50f and M4496.30f

and the inward translation of G4225.65f have been posited to play an integral role in Class

F receptor activation to accommodate Gi at the intracellular end of SMO (to denote the

Class F GPCR TM residues, we used modified Ballesteros-Weinstein numbering system38).

The outward movement of M4496.30f serves as a reliable indicator for the outward movement

TM6,39,40 while W3393.50f and G4225.65f represent TM3 and TM5 rearrangements. To an-

alyze the TM3-5-6 rearrangement and the overall free energy barrier associated with this

rearrangement, we constructed free energy landscapes projected onto W3393.50f – G4225.65f

(TM3-TM5 distance) and W3393.50f – M4496.30f (TM3-TM6 distance) for all three cases:

CRD-CYC (Fig. 3a, b, Fig. S1a, Fig. S2a, b), Dual-CYC (Fig. 3c, d, Fig. S1b, Fig. S2c,

d), and TMD-CYC (Fig. 3e, f, Fig. S1c, Fig. S2e, f).

In all cases, TM6 first undergoes an outward shift of ∼ 4 Å (State 1 in Fig. 3b, d, f).

After this movement, in CRD-CYC, TM3 moves outward by ∼ 4 Å, followed by a subtle
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Figure 3: The WGM motif undergoes a rearrangement triggered by cyclopamine binding
at different sites of SMO. MSM-weighted free energy landscapes projected onto W3393.50f

– G4225.65f (TM3-TM5 distance) and W3393.50f – M4496.30f (TM3-TM6 distance) for (a, b)
CRD-CYC, (c, d) Dual-CYC, and (e, f) TMD-CYC.
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TM5 rearrangement (State 2 in Fig. 3b). In contrast, TMD-CYC and Dual-CYC showed

a slightly different behavior. In both cases, after the initial outward shift of TM6, TM3

experiences an outward shift of ∼ 2 Å along with a coordinated ∼ 4 Å outward shift of

TM6 (State 2 in Fig. 3d, f). We find from the free energy landscapes that the overall free

energy barrier for CRD-CYC is 2 ± 0.2 kcal/mol, for Dual-CYC is 3.5 ± 0.3 kcal/mol, and

for TMD-CYC is 4± 0.2 kcal/mol. The overall free energy barrier for this rearrangement in

Apo-SMO showed 2.5± 0.3 kcal/mol.23

The overall free energy barrier of CRD-CYC is lower than that of Apo-SMO. Thus,

when cyclopamine binds to the CRD site, it facilitates receptor activation by reducing the

activation barrier. On the other hand, the overall free energy barrier of TMD-CYC is

higher than that of Apo-SMO. This shows that when cyclopamine binds to TMD site, it

hinders receptor activation by increasing the activation barrier. The free energy barrier of

Dual-CYC falls between CRD-CYC and TMD-CYC, but is closer to that of TMD-CYC

(∼ 0.5 kcal/mol difference). Moreover, the movement of TM3, TM5, and TM6 in Dual-CYC

was similar to the movement in TMD-CYC (Fig. 3d, f). Therefore, in Dual-CYC, TMD-

bound cyclopamine has a more dominant effect in the rearrangement of WGM residues and

contributes to high activation barrier, to hinder the activation process.

D-R-E network breakage facilitates smoothened activation

SAG1.5, an agonist that is known to bind to SMO’s TMD, has been observed to exert its

agonistic effects through the D-R-E network, which involves residues D4736.54f, R4005.43f,

and E5187.38f located at the extracellular end of TMD. This network experiences disruption

upon SAG1.5 binding.41 To examine the influence of cyclopamine on the D-R-E network

during activation, especially when it binds to different domains of Smoothened (SMO),

we constructed free energy landscapes projected onto R4005.43f – E5187.38f and W3393.50f –

M4496.30f for CRD-CYC (Fig. 4a, b, Fig. S3a), Dual-CYC (Fig. 4c, d, Fig. S3b), and TMD-

CYC (Fig. 4e, f, Fig. S3c). In this representation, R-E distance indicates forming/breaking
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Figure 4: D-R-E network undergoes a rearrangement triggered by cyclopamine binding at
different sites of SMO. MSM-weighted free energy landscapes projected onto R4005.43f –
E5187.38f and W3393.50f – M4496.30f (TM3-TM6 distance) for (a, b) CRD-CYC, (c, d) Dual-
CYC, and (e, f) TMD-CYC.
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of the salt bridge between the basic residue arginine (R) and the acidic residue glutamic

acid (E). Furthermore, we focused on W3393.50f – M4496.30f as it reflects the intracellular

movement between TM3-TM6, the key indicator of the activation process of SMO (Fig.

S2b, d, f). Hence, constructing the free energy landscapes can help us analyze how the

D-R-E network undergoes changes in response to the activation of SMO.

In CRD-CYC, a clear D-R-E network breakage is observed upon SMO activation. Fol-

lowing the breakage of the salt bridge between R4005.43f and E5187.38f from ∼ 5 Å to ∼ 7

Å (State 1 in Fig. 4b), an increase in TM3 - TM6 distance is observed (State 2 in Fig.

4b). The Dual-CYC and TMD-CYC systems also follow the initial perturbation, where the

R4005.43f – E5187.38f distance extends from ∼ 5 Å to ∼ 7 Å (State 1 in 4d, f). Upon the

increase of TM3 - TM6 distance, in the active state, it could remain broken or close back

to its initial state (State 2 in Fig. 4d, f). This shows that the D-R-E network breakage

can facilitate SMO activation and is independent of the binding sites of cyclopamine. In

addition, Dual-CYC showed similar residue movements to that of TMD-CYC. This shows

that cyclopamine bound at TMD has a more dominant effect in D-R-E network movement

upon activation.

Structural dynamics and kinetic insights into cyclopamine-mediated

activation

We used time-lagged independent component analysis (tICA) method to identify the linear

combination of inter-residue distances that exhibit slowest decorrelation time. The first two

time-lagged independent components (tICs) represent the two slowest processes observed in

simulations. In our case, tIC1 correlates with the activation process from inactive state to

active state for all cases. We projected the simulation data along the first two tICs for CRD-

CYC (Fig. 5a), Dual-CYC (Fig. 5c), and TMD-CYC (Fig. 5e). In CRD-CYC, we identified

distinct minima corresponding to inactive and active states. However, we observed a spread

of density along tIC2 (Fig. 5a), which could be attributed to SMO’s CRD being decoupled
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from TMD upon CYC binding (Fig. S5a, b). This further explains the CRD’s role in SMO

activation, as previous studies have shown that SMO’s CRD suppresses its basal activity.42

Hence, when the decoupling happens in CRD-CYC, the suppressive effect of the CRD on

SMO is relieved and the activation barrier is reduced.

On the other hand, in Dual-CYC and TMD-CYC, we identified intermediate states (IDual

and ITMD) along with inactive and active states from each minima (Fig. 5c, e). To ascertain

the specificity of these intermediate states within their respective systems, we projected sim-

ulation data onto the tICA space of the other two systems (Fig. S6). When Dual-CYC data

was projected onto the tIC space of TMD-CYC, ITMD remained evident (Fig. S6f). This

indicates that ITMD is not exclusive and is present in both Dual-CYC and TMD-CYC. Con-

versely, when TMD-CYC data was projected onto the tIC space of Dual-CYC, IDual was not

observed (Fig. S6d). This highlights the distinctiveness of IDual. To quantify the uniqueness

of IDual, we computed the Kullback-Liebler Divergence (KL Divergence) for IDual with the

active and inactive states as a reference (explained in Methods). Conformational changes

occur in ECL1 and TM1 during the transition from the inactive state to IDual (Fig. S5c),

as these regions showed the highest K-L divergence. In addition, conformational changes

occur in CRD during the transition from IDual to the active state (Fig. S5d). The confor-

mational change in cyclopamine-bound CRD effectively explains Dual-CYC’s transition to

the active state, as the suppressive effect of CRD on SMO may partially be relieved due to

cyclopamine binding to CRD.42 In TMD-CYC, we found conformational changes occurring

in the loops surrounding G80CRD during both the transition from the inactive state to ITMD

(Fig. S5e) and the transition from ITMD to the active state (Fig. S5f). Overall, the con-

formational change in TMD-CYC is most restricted, indicating its preference to remain in

inactive conformation.

The Mean First Passage Time (MFPT) analysis is an important tool for assessing the time

required for a system to transition between different states within the MSM framework.43

We applied Transition Path Theory44,45 to our constructed MSM, to compute the transition
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Figure 5: tIC plots and the corresponding MFPT analysis for (a,b) CRD-CYC, (c,d) Dual-
CYC, and (e,f) TMD-CYC. Inactive (magenta) and active (green) states were identified in
all cases. Intermediate states (yellow) were identified in Dual-CYC (IDual) and TMD-CYC
(ITMD).
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fluxes between these states and establish timescales associated with the activation for CRD-

CYC (Fig. 5b), Dual-CYC (Fig. 5d), and TMD-CYC (Fig. 5f). The observed differences

in transition times between the inactive and active states in CRD-CYC, Dual-CYC, and

TMD-CYC are related to their respective kinetic properties.

In CRD-CYC, the transition from the inactive to active state occurs approximately 1.4

times faster than the reverse process (Fig. 5b). Additionally, the pathway from the inactive

state to the active state doesn’t show any additional metastable states. In contrast, Dual-

CYC and TMD-CYC show additional intermediate states, which lead to a higher kinetic

barrier. This increases the timescales to achieve activation in these cases, as the timescales

depend on the total flux between these states. The overall transition timescales are <100

µs for CRD-CYC, compared to >100 µs for TMD-CYC and Dual-CYC. MFPT analysis in

CRD-CYC suggests a favorable kinetic pathway for activation, likely attributed to a lower

activation energy barrier and more efficient conformational changes leading to the active

state. On the other hand, transition flux of Dual-CYC and TMD-CYC indicates a kinetic

preference towards the inactive state and imply a more complex or energetically demanding

process for activation, involving additional steps for structural rearrangements that require

a longer time for activation.

Cyclopamine at CRD expands SMO’s hydrophobic tunnel

A unique feature of SMO is the presence of an internal tunnel, which plays an important

role in facilitating the transfer of cholesterol from the cell membrane to the binding site

in CRD.39,40,42,46,47 Composed of hydrophobic residues, the tunnel starts from W3393.50f,

extends across approximately seven transmembrane helical turns, and terminates at the

D-R-E network (D4736.54f, R4005.43f, E5187.38f). SMO antagonists (SANT1, AntaXV, and

LY2940680) are known to bind deep within this tunnel and obstruct the tunnel within SMO.

On the other hand, SMO agonists (SAG) can bind outside of the tunnel and activate SMO

and expands its tunnel to transport cholesterol. MD simulation of Apo-SMO, SMO bound to
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Figure 6: Tunnel diameter plots for the SMO. (a) Free energy plot of the tunnel diameter
along the z-coordinate for CRD-CYC, (c) for Dual-CYC, and (e) TMD-CYC. (b), (d), (f) -
representative SMO with internal tunnels. CRD-CYC shows a clear expansion of the tunnel
in the upper leaflet compared to TMD-CYC and Dual-CYC.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.08.579369doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.08.579369
http://creativecommons.org/licenses/by-nc-nd/4.0/


SANT1 (antagonist), and SMO bound to SAG (agonist) further corroborate this hypothesis,

by demonstrating the clear expansion of the tunnel when SMO is bound to SAG.23

To investigate the effect of cyclopamine on tunnel expansion of SMO, we conducted the

tunnel analyses in CRD-CYC, Dual-CYC, and TMD-CYC using HOLE program.48 In CRD-

CYC, we observed an expansion of the tunnel between z = 0 and z = 20 Å, corresponding to

the upper leaflet of the membrane (Fig. 6a, b). We computed free energy difference between

the different systems to ascertain the cyclopamine’s binding position dependent effects on

tunnel expansion (Fig. S8). Compared to Dual-CYC and TMD-CYC, CRD-CYC clearly

showed the expansion in the upper leaflet of the membrane (Fig. S8a, b). This agrees with

the expansion of tunnel for SAG bound SMO at the upper leaflet of the membrane.23 This

suggests that the presence of cyclopamine bound at CRD induces a relative enlargement of

the tunnel. The exact location of the tunnel in the upper leaflet opening corresponded to

the region between TM5 and TM6 (Fig. S7a, b). This agrees with the a recent study that

observed hydrophobic tunnel opening of active SMO at TM5 and TM6.46

In TMD-CYC, the tunnel remained obstructed (Fig. 6e, f). This indicates that cy-

clopamine binds within the core of the SMO tunnel, effectively impeding the transport of

cholesterol and blocking SMO activity. In Dual-CYC, the tunnel is also majorly blocked

(Fig. 6c, d) but it is relatively larger as compared to TMD-CYC (Fig. S8c), though this

enlargement is not as significant as what was observed in CRD-CYC (Fig. S8a).

Identification of key residues that balance agonistic and antagonis-

tic behavior during SMO activation

To delineate specific residue movements for CRD-CYC, Dual-CYC, and TMD-CYC during

activation, a multi-class Random Forest Classifier was used. The goal of the classifier was to

identify features that distinguish the three ensembles. The input to the classifier consisted

of the 57 distances used for adaptive sampling,25 494 ψ backbone dihedrals to characterize

backbone movements, and 234 χ2 dihedrals to characterize sidechain movements. 5-fold
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cross-validation and hyperparameter optimization was applied to the model to identify the

top 20 differentiating features (explained in Methods). After identifying the unique residue

movements in CRD-CYC and TMD-CYC, we further classified Dual-CYC’s behavior based

on these distinct patterns. Our findings unveiled that Dual-CYC exhibited a heterogeneous

behavior in terms of residue movements, which lies between the agonistic and antagonistic

behavior of CRD-CYC and TMD-CYC.

In CRD-CYC, the χ2 dihedral angle at Y4726.53f, which is a conserved residue across all

Class F GPCRs, remained stable (Fig. 7a, b). In contrast, we observed a 180° rotation of this

angle in TMD-CYC (Fig. 7e, f). In Dual-CYC, we also observed a 180° rotation of this angle,

showing antagonistic behavior (Fig. 7c, d). This may be attributed to cyclopamine bound

at TMD exerting a dominant effect on rotating this angle movement. In CRD-CYC, we also

observed a 40 ° partial rotation of ψ dihedral angle between F5267.46f and G5277.46f (Fig.

S9a), which are partially conserved across Class F GPCRs. In contrast, this angle remained

stable in TMD-CYC (Fig. S9c). In Dual-CYC, this angle also remained stable (Fig. S9b).

This shows that cyclopamine bound at TMD exerts a dominant effect in restricting this

angle movement. These distinctive features characterize antagonism within Dual-CYC.

Agonistic attributes were also identified in Dual-CYC. We identified 180° rotation in the

ψ dihedral angle between T90CRD and L91CRD in CRD-CYC (Fig. S9d), contrasting with its

steady state in TMD-CYC (Fig. S9f). In Dual-CYC, we observed 180° rotation of this angle

(Fig. S9e), and this may be attributed to cyclopamine bound at CRD exerting a dominant

effect on this angle rotation. The ψ dihedral angle between the conserved residue C213CRD

and G214CRD remained stable in CRD-CYC (Fig. S9g), while a 220° rotation was observed

in TMD-CYC (Fig. S9i). In Dual-CYC, we observed this angle to also remain stable (Fig.

S9h). This may be attributed to cyclopamine bound at CRD exerting a dominant effect on

locking this angle movement. Lastly, we identified 180° rotation in the χ2 dihedral angle

at the conserved residue W5357.55f in CRD-CYC (Fig. S9j), leading to the breakage of the

π-cation interaction between W5357.55f and R4516.32f. In contrast, this angle remained static
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Figure 7: Snapshots and probability density plots of χ2 dihedral angle rotation at Y4726.53f

in (a,b) CRD-CYC, (c,d) Dual-CYC, (e,f) TMD-CYC.
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in TMD-CYC (Fig. S9l). In Dual-CYC, this angle was rotated by 180° leading to the

breakage of the π-cation interaction (Fig. S9k). These observations collectively suggest that

Dual-CYC exhibits a combination of both agonistic and antagonistic features in terms of

residue movements.

Conclusions

Our study provides a detailed understanding of hSMO activation when bound to cyclopamine

at distinct domains - CRD, TMD, and both domains. The simulation data from Apo-

SMO was employed as a reference point,23 to discern the relative behavior for each case.

Equilibrium population analysis showed that CRD-CYC favors the active state (8% inactive,

80% active), suggesting agonistic behavior. In contrast, TMD-CYC favors the inactive state

(54% inactive, 31% active), indicating antagonistic behavior. In the case of Dual-CYC,

there was a relative balance between the inactive and active populations at equilibrium

(52% inactive, 41% active). The slightly higher inactive population compared to active

population shows weak antagonism.

We found the breakage of the D-R-E network facilitates hSMO activation upon cy-

clopamine binding for all three cases. In addition, we demonstrated that all three cases can

undergo activation through the rearrangement of an intracellular structural motif known as

the W-G-M motif, a conserved feature in Class F GPCRs. Among all four cases (CRD-

CYC, Apo-SMO, Dual-CYC, and TMD-CYC), CRD-CYC showed the lowest overall free

energy barrier (activation barrier) for this rearrangement, with 2± 0.2 kcal/mol, which can

facilitate SMO activation. In contrast, TMD-CYC showed the highest overall free energy

barrier, with 4± 0.2 kcal/mol, hindering the activation process. Dual-CYC also showed high

overall free energy barrier, with 3.5± 0.3 kcal/mol, hindering the activation process. Along

with the analysis of activation energy barrier, we showed that the transition pathway theory

analysis demonstrates the kinetically favorable pathway in CRD-CYC, likely attributed to
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low activation energy barrier. In contrast, Dual-CYC and TMD-CYC indicated its kinetic

preference towards the inactive state, likely attributed to high activation energy barrier. The

tunneling analysis also provides clues to analyze the SMO activity for the three cases. CRD-

CYC shows agonistic character, as we observe the expansion of the hydrophobic tunnel in

CRD-CYC in the upper leaflet to facilitate the cholesterol transport, which can lead to the

activation of SMO. In contrast, in TMD-CYC, the tunnel remained obstructed, impeding

the cholesterol transport, inhibiting SMO. In Dual-CYC, the tunnel was slightly larger than

TMD-CYC but smaller than CRD-CYC. This could be due to cyclopamine bound at CRD

inducing a small enlargement on the tunnel to transport cholesterol on rare cases.

In CRD-CYC, we found the major conformation changes occurring in CRD during SMO

activation, which may be attributed to cyclopamine relieving the suppressive effect of CRD on

SMO.42 On the other hand, TMD-CYC shows the most restricted conformational changes

upon activation, occurring primarily in G80CRD. In Dual-CYC, we find conformational

changes occurring in TM1 and ECL1 during transition from inactive to IDaul, and in CRD

during the transition from IDaul to active state. This suggests that cyclopamine bound

at CRD can play a role and affect the latter transition in Dual-CYC. Remarkably, a more

detailed examination of residue movements in Dual-CYC showed a balance between agonistic

and antagonistic behaviors of CRD-CYC and TMD-CYC.

Throughout these analyses, we collectively demonstrate CRD-CYC’s agonistic behavior,

TMD-CYC’s antagonistic behavior, and Dual-CYC’s weak antagonistic behavior. Our study

provides crucial insights into the dynamics of hSMO activation with cyclopamine binding to

distinct domains. In particular, the identification of such unique residue movements within

Dual-CYC can open up new possibilities for drug development. These findings will hold

potential implications for targeted therapeutic interventions in disorders associated with Hh

signaling pathways.
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Methods

Molecular dynamics simulations

Simulation setup

To construct inactive CRD-CYC, we aligned xSMO (Xenopus Smoothened) bound with cy-

clopamine at both sites (PDB ID: 6D3247) and inactive hSMO (PDB ID: 5L7D42), and then

removed xSMO, cyclopamine bound at TMD, and stabilizing antibodies. To construct ac-

tive CRD-CYC, we aligned xSMO (Xenopus Smoothened) bound with cyclopamine at both

sites (PDB ID: 6D3247) and active hSMO (PDB ID: 6XBL40), and then removed xSMO,

cyclopamine bound at TMD, and stabilizing antibodies. To construct inactive TMD-CYC,

we aligned cyclopamine bound hSMO lacking CRD (hSMO∆CRD) (PDB ID: 409R49) and

inactive hSMO (PDB ID: 5L7D42), and then removed hSMO∆CRD and stabilizing anti-

bodies. To construct active TMD-CYC, we aligned cyclopamine bound hSMO lacking CRD

(hSMO∆CRD) (PDB ID: 409R49) and active hSMO (PDB ID: 6XBL40), and then removed

hSMO∆CRD and stabilizing antibodies. To construct inactive Dual-CYC, we aligned in-

active TMD-CYC and active CRD-CYC, and then removed active hSMO structure. To

construct active Dual-CYC, we aligned inactive TMD-CYC and active CRD-CYC, and then

removed inactive hSMO structure. Alignment, removal of ligands, and stabilizing antibodies

were performed using PYMOL.50 For each system, we used MODELLER51 to model miss-

ing residues (Table S1). In all SMO systems, E518 and H227 were protonated to match the

physiological conditions.23 We closed the terminal residues using neutral terminal caps acetyl

(ACE) for the N-terminus and methylamide (NME) for the C-terminus. The proteins were

embedded in a membrane bilayer using CHARMM-GUI.52 53 CHARMM36 force field was

used to characterize the atomic interactions.54 55 The membrane bilayer was formed using a

lipid composition inspired by the lipid makeup of the cerebellum in mice brain56 (75% 1-

Palymitoyl-2-oleoylphosphatidylcholine (POPC), 21% cholesterol, 4% sphingomyelin) (Table
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S2). The system was hydrated using TIP3P water57 and supplemented with 150mM NaCl.

The total number of atoms for inactive TMD-CYC, active TMD-CYC, inactive CRD-CYC,

active CRD-CYC, inactive Dual-CYC, active Dual-CYC were 106056 atoms, 104357 atoms,

105894 atoms, 104552 atoms, 105995 atoms, and 104434 atoms, with box sizes 86× 86× 154

Å
3
, 86×86×152 Å

3
, 86×86×154 Å

3
, 86×86×152 Å

3
, 86×86×154 Å

3
, and 86×86×152

Å
3
. The mass of non-protein hydrogens was repartitioned to 3.024 Da, to enable simulations

with a longer timestep of 4 femtoseconds (fs).

Pre-production MD

AMBER18 was used for biomolecular simulations.58 59 60 61 Pre-production MD involves mul-

tiple steps. Initially, the system was minimized for 1000 steps, using steepest descent method.

The system was further minimized for 14000 steps, constraining hydrogen-containing bonds,

using SHAKE algorithm.62 The system was then heated from 0 K to 310 K under NVT

ensemble for 5 ns. The system was then equilibrated for 310 K and 1 bar for 5 ns under

NPT ensemble. This was followed by equilibration for 40 ns.

Production MD

GPU-accelerated pmemd.cuda package from AMBER1858 was used for the production MD

simulations. The integrator timestep used in the production MD simulations was 4 fs.

Periodic boundary conditions were used. Langevin thermostat63 was used to maintain the

temperature to mimick a constant temperature environment. The pressure of the systems

was set to 1 bar and maintained using the Monte Carlo barostat. The particle mesh Ewald

(PME) method64 was used to compute long-range electrostatic interactions. The SHAKE

algorithm62 was used to restrain the hydrogen bonds. The cutoff for non-bonded interactions

(e.g., van der Waals interactions) was set to 10 Å. Frames of the simulation were saved every

25,000 steps, giving a frame rate of 100 ps between each frame.
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Adaptive Sampling and MSM construction

To overcome the limits of traditional MD simulation, least-count based adaptive sampling

method25,26 was performed using pyEMMA python library.65 Recently, a variety of ma-

chine learning techniques have been integrated with machine learning to develop improved

sampling schemes.66–69 However, the least count based sampling still provides the simplest

framework for adaptive sampling especially for the cases where reaction coordinates for the

conformational change are not available a priroi. The least sampled conformations generated

from adaptive sampling were used as starting points for subsequent rounds of simulations.

57 pairs of distances, which is calculated from ∆ residue-residue contact score (RRCS),23,36

were used as adaptive sampling metrics to simulate the full transitions from inactive to active

state (Table S3, S4, S5, S6). Prior to MSM construction, time-lagged Independent Compo-

nent Analysis (tICA) was performed to reduce the high dimensionality of data70 (Fig. S10,

S11, S12). To identify the optimal parameters for each system, including the number of clus-

ters and tICA components, the dimensionality of the data was reduced to five distinct tICA

dimensions (3, 5, 8, 11, 14). For each configuration, the data was clustered with varying

numbers of clusters using k-means clustering. VAMP2 scores were then computed for each

case, and the ideal number of clusters and tICA components were determined based on the

highest VAMP2 score and the convergence of the implied timescales concerning the MSM

lagtime. The resulting parameters for CRD-CYC were 150 clusters and 11 tICA components

(Fig. S13a, b), Dual-CYC were 400 clusters and 14 tICA components (Fig. S14a, b), and

TMD-CYC were 150 clusters with 11 tICA components (Fig. S15a, b). The chosen MSM

lagtime for all three systems was 30 ns. To validate the MSM, the Chapman-Kolmogorov

test was performed on five macrostates using the pyEMMA python library65 (Fig. S16, S17,

S18), and Raw counts versus MSM population were plotted for each system (Fig. S19).
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Analyzing the major structural changes of intermediate states

To analyze the major structural changes of intermediate states, closest heavy carbon atom

distances for each residue pair was calculated on 50000 frames extracted from each metastable

states. The distribution of distances between specific pairs of residues was then compared to

the corresponding distributions in different metastable states using Kullback-Leibler (K-L)

divergence analysis.33,71

Differentiating between the different ensembles using multi-class

Random Forest Classifier

To differentiate the residue movements in CRD-CYC, Dual-CYC, and TMD-CYC, we em-

ployed metrics that are agnostic to the choice of an expert and provide insights into the

biophysical reasons governing the different behavior of each system. We employed Random-

Forest classifier, which uses metrics calculated from the entire ensemble of systems, along

with the labels used to differentiate between the 3 ensembles. The input metrics used

were the 57 distances (Table S3), the 494 ψ dihedrals, and the 234 χ2 dihedrals. The

output label to be predicted by the model was either 1, 2 or 3 (denoting CRD-CYC, Dual-

CYC and TMD-CYC, respectively). 5-fold cross-validation was performed in addition to

a GridSearch to optimize the hyperparameters for the model (max depth=20 and n es-

timators=100) (Fig. S20). Top 20 features that were considered important for differen-

tiating each system were identified. The entire implementation was done using sklearn’s

sklearn.ensemble.RandomForestClassifier module.72

Identification of macrostates using VAMPnets for equilibrium pop-

ulation calculations

For estimating the population of the active and inactive states in each ensemble, VAMP-

nets,34 a deep learning-based method was used. VAMPnets consists of two lobes, each
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consisting of fully connected layers. One lobe takes the instantaneous dataset (xt) while

the other uses a time-lagged dataset (xt+τ ) to conduct a non-linear dimension reduction.

The features used for MSM construction were used as input dataset. The optimization is

achieved by maximizing the VAMP2-score. The lagtime (τ) is chosen to ensure complete

de-correlation between the chosen datapoints. The lagtime chosen for VAMPnet construc-

tion was the same as the MSM lagtime, 30 ns. The output of VAMPnets is the probability

of a particular frame belonging to a certain macrostate - which can then be used to assign

macrostate to each frame. The probabilities were also calculated for the inactive and active

starting frames, and all frames within the same macrostate as the inactive/active starting

frames were considered inactive/active. The populations of the inactive/active macrostates

were then calculated based on the number of frames present in that macrostate, and re-

weighed using the MSM probabilities. Accordingly, 6 macrostates were chosen for each

ensemble. To train the VAMPnets, the PyTorch deep learning library73 was used.

Trajectory analysis and visualization

Trajectory processing tasks were performed using cpptraj.74 Visualization and image render-

ing were carried out using VMD75 and PyMOL. MDTraj76 was utilized to compute distances,

ψ and χ2 dihedrals. Matplotlib77 was used for plot creation. Numerical computations were

aided with Numpy.78 Tunnel radii calculations for each z coordinate of all systems were

performed using HOLE program.48
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Supporting Information Available

Codes used for analysis are available at github: https://github.com/ShuklaGroup/SMO_

CYC. Trajectories and parameter files are available on Box: https://uofi.box.com/s/

4g3xmumfmesb68y7tb0fn8wvhvycylrf.
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