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Abstract: A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes
encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells
obtained from laminopathy patients show aberrations in the localization of each lamin subtype,
which may represent only the minority of the lamina disorganization. To get a better insight into
more delicate and more abundant lamina abnormalities, the lamin network can be studied using
super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emis-
sion depletion (STED) microscopy in combination with different fluorescence labeling approaches for
the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining
approach when using STED microscopy, by determining the lamin layer thickness and the degree of
lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or
(co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining
of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influ-
ence the degree of colocalization of lamin A and B1, when compared to the transfection approach.
Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) con-
firmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the
need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin
A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts.
We conclude that super-resolution light microscopy combined with immunofluorescence protocols
provides a potential tool to detect structural lamina differences between normal and laminopathy
patient fibroblasts.

Keywords: nuclear lamins; laminopathy; confocal scanning laser microscopy; STED microscopy;
antibodies; transfection; resolution; lamin layer thickness; colocalization

1. Introduction

The nuclear lamins together with the nuclear lamin-associated proteins form the
nuclear lamina, which is part of the nuclear envelope (NE) [1–3]. Lamins are type V
intermediate filament (IF) proteins and are grouped into A- and B-type lamins, encoded by
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three different genes. LMNA, located on chromosome 1, encodes for the major isoforms
lamin A and lamin C, for the germ cell-specific isoform lamin C2, and for the isoform lamin
A∆10. LMNB1, located on chromosome 5, encodes for lamin B1, while LMNB2, located on
chromosome 19, encodes for lamin B2 and lamin B3, a germ cell-specific isoform that arises
by alternative RNA splicing. Lamins A and C are mainly expressed in differentiated cells,
while the B-type lamins show a more ubiquitous tissue and cell distribution [1,4,5].

Both A- and B-type lamins are composed of an N-terminal head domain, a long
α-helical coiled-coil central rod domain, and a globular C-terminal tail. The C-terminal
domain contains a nuclear localization signal and an immunoglobulin fold, including
a CaaX motif (C: cysteine, a: aliphatic residue, X: any residue). The latter is important
in their post-translational modifications [5,6]. The lamins form higher-order polymers,
the formation of which is initiated by homodimerization of the separate lamin subtype
monomers. Subsequently, heterotetramers are formed, which can be composed of both
A- and B-type lamins and are found to be about 3.5 nm in diameter [7,8]. This polymer
formation is followed by anti-parallel interaction of the polymers, leading to protofilaments.
These in turn further assemble into ~14 nm thick IF-like filaments [4,5,9].

A-and B-type lamins are not only localized in the NE, but also in the nucleoplasm,
where they assemble into different structures, such as distinct foci, intranuclear and trans-
nuclear channels, and nucleoplasmic veil-like structures [10]. The intra- and trans-nuclear
channels are thought to be part of the nucleoplasmic reticulum, a larger network of pene-
trating and branching invaginations of the NE [11,12].

Lamins can bind a wide variety of proteins, called lamin-binding proteins.
These include structural proteins, signaling molecules, and transcription factors [5]. The nu-
clear lamina is also connected to the cytoskeleton via the transmembrane linker of the
nucleoskeleton and cytoskeleton (LINC) complexes, which transmit the forces generated
by the cytoskeleton to the nucleoplasm [13]. As could be expected from the numerous
lamin-binding proteins and the classification of lamins as type V intermediate filament
proteins, lamins are involved in a broad range of functions such as providing structural
support to the cell [14–19], chromatin organization [18,20–24], apoptosis [25], and mito-
sis [9,26]. Furthermore, accumulating evidence points towards the role of the lamins in
mechano-sensing and the mechano-response of cells [27–31].

Mutations in the genes encoding nuclear lamins cause several diseases, for exam-
ple, Emery–Dreifuss muscular dystrophy (EDMD), type II Dunnigan-type familial partial
lipodystrophy, and the Hutchinson–Gilford progeria syndrome [32]. These rare diseases
are termed laminopathies and are mostly caused by LMNA mutations. Only a few mu-
tations in the genes encoding for B-type lamins or lamin-associated proteins have been
reported [32–35]. The laminopathies can be classified into those that affect striated muscle,
those that affect adipose tissue, those involving peripheral nerve systems, or those affecting
multiple systems with signs of accelerated aging (with some overlap between affected
organs and tissues) [1].

Cells obtained from these patients show aberrations in the localization of each lamin
subtype at the nuclear lamina, resulting in nuclear herniations, honeycomb-like structures,
and even donut-shaped nuclei [36–38]. However, only a minor fraction of diseased cells
shows these readily visible abnormalities. Up to 90% of laminopathy cells can have a
normal appearance by visual microscopy screening [36–38], making it difficult to classify
cultures based on nuclear abnormalities only [37]. Conclusively, these visible abnormalities
are most probably only the tip of the iceberg of lamina disorganization in laminopathy
cells. Moreover, the exact pathophysiology of the lamin mutations and how these can lead
to often tissue-specific disorders remains unclear. Furthermore, lamin protein expression is
often dysregulated in cancer and can possibly affect cancer progression [39–41]. In addition,
several viral infections result in a disrupted lamina in the viral entry and/or egress [42].

To better understand the mechanisms of how lamins contribute to disease it is im-
portant to study the lamin network in both healthy and diseased cells. This is tradition-
ally performed using (confocal) immunofluorescence microscopy or electron microscopy.
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Only a few studies so far have studied the lamin network in greater detail with super-
resolution microscopy techniques. Super-resolution microscopy is a collective term for
a range of imaging techniques that overcome the Abbe diffraction limit of conventional
light microscopy. Previous studies with super-resolution microscopy already indicated
that A- and B- type lamins form distinct, yet interacting filamentous networks [43–45].
Using three-dimensional structured illumination microscopy (3D-SIM) (resolution ~100 nm)
and computational image analysis Shimi et al. [45] demonstrated that lamin A, C, B1, and
B2 are present as (partially) distinct meshworks within the lamina of mouse embryonic
fibroblast (MEF) nuclei with a large degree of overlap between the networks. The distinct
networks for each lamin isoform showed similar physical characteristics, with only small
differences in the size of areas devoid of lamins. Xie et al. confirmed these results with
photoactivated localization microscopy (PALM)/direct stochastic optical reconstruction
microscopy (dSTORM) (resolution ~20 nm) and computational reconstruction, indicating
that the lamin filaments are organized as overlapping yet independent networks formed
by homo-oligomers of lamin A, C, and B1 [43]. Using two-colour STORM imaging Nmezi
et al. [44] found that lamin B1 forms an outer rim within the nuclear lamina, preferentially
localizing closest to the inner nuclear membrane (INM), while the lamin A/C network
localizes closer to the nucleoplasm. This shift was found to be ~15–20 nm. These findings
were confirmed with phasor-assisted Metal Induced Energy Transfer-Fluorescence Lifetime
Imaging Microscopy (MIET-FLIM), as reported by Figueiras et al. [46].

To study structures at the nanometer scale with super-resolution microscopy, different
labeling approaches can be used. In all the studies mentioned above immunofluorescence
staining was used, which has several disadvantages. The combination of both primary
and secondary antibodies could cause a decrease in resolution, since these complexes are
rather large (~30 nm), and linkage errors could occur, due to the distance between the fluo-
rescent dye (on the secondary antibody) and the actual localization of the protein [47–49].
It is obvious that both problems are less prominent when using transfection, since Green
Fluorescent Protein (GFP) (derived) molecules are only ~3–4 nm in size. However, the
major advantage of using antibodies is that staining laminopathy patient fibroblasts with
antibodies is much more convenient than using transfection, due to the low transfection
efficiency in these patient fibroblasts. Furthermore, while transfection in principle al-
lows imaging of living cells, one should be aware that adding a fluorescent protein could
modify the level of expression, activity, and localization of the protein of interest [48,50].
Notably, as described, most super-resolution microscopy studies on the nuclear lamina
network make use of the indirect immunofluorescence technique with primary-secondary
antibody labeling and still achieve a resolution that allows visualization of differences in
the A- and B-type lamin networks when imaging co-labeled cells [43–46,51,52].

In the underlying study, both Stimulated Emission Depletion (STED)
microscopy [53,54] and Confocal Scanning Laser Microscopy (CSLM) are used to study the
nuclear lamina of healthy and laminopathy fibroblasts. The advantages of STED over other
super-resolution microscopes used for studying the nuclear lamina are that it offers fast
acquisition, does not require extensive post-processing of the images, offers 3D sectioning
options, and can be combined with relatively easy staining protocols, avoiding the need
for specialized buffers which limit in vivo applications [54–56]. As a result, STED allows
live and fixed cell imaging at any level of the nucleus.

Using confocal and STED microscopy, the lamina layer thickness and the degree
of lamin A(/C) and lamin B1 colocalization were determined in mouse 3T3 fibroblasts
and normal human dermal fibroblasts (nHDF). For comparison of the effective resolution
differences between different labeling methods (immunofluorescence vs. (co-)transfection),
we have used mouse 3T3 fibroblasts. Since no obvious differences in resolution between
these methods were found in either confocal and STED microscopy, we used immunofluo-
rescence labeling for determining the colocalization between lamin A/C and lamin B1 in a
cell culture of laminopathy patient dermal fibroblasts.
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Because of the known abnormalities in the lamin A/C network in laminopathy patient
dermal fibroblasts, we predicted that even in apparently normal-looking laminopathy cells,
the lamin A/C and lamin B1 co-localization would be reduced compared to nHDF cells.
As expected these differences were more prominently detected using STED microscopy,
suggesting an additional value for STED microscopy to investigate lamina abnormalities
in laminopathy patient fibroblasts. Additional studies on a large patient sample cohort
should indicate the potential clinical value of this type of analysis.

2. Results
2.1. Comparison of CSLM and STED Microscopy: Resolution Differences

To demonstrate the resolution differences between CSLM and STED microscopy when
studying the lamin network, we plotted intensity profiles of lines drawn perpendicular
to the lamina in confocal and STED images acquired in the mid-level of the nucleus
(Figure 1A,B). Figure 1 displays a representative example of a confocal and STED image
of nHDF stained with antibodies against lamin B1, and the plot profile of a region of
interest (ROI) as described above. As expected, the plot profile of the image obtained with
confocal microscopy is much broader in comparison to that of the image obtained with
STED microscopy (Figure 1E). The intensity visible on the left side of the plot is originating
from the lamin signal in the nucleoplasm. The Full-Width Half Maximum (FWHM) (i.e.,
the width of the peak at half of its maximum value) of these kinds of plot profiles were
calculated. In this study, FWHM were determined following the above-described procedure
for both 3T3 cells (transfected with fluorescent EGFP- and/or YFP-lamin construct or (co-
)stained with antibodies ) and nHDF cells ((co-)stained with antibodies ) (see below) (for
every condition and cell type at least n = 7 cells).

Figure 1. Confocal laser scanning microscopy (A) and STED microscopy (B) images of nHDF stained
with antibodies against lamin B1. The region of interest (ROI) is used for the plot profile displayed
in (E). Scale bars: 5 µm. (C,D) Higher magnification (5×) of the region around ROIs in (A,B).
Scale bars: 1 µm. (E) Plot profile of lamin intensity, normalized to maximum value. The Full-Width
Half Maximum (FWHM) (i.e., the width of the peak at half of its maximum value) of STED (pink)
and confocal laser scanning microscopy (red) is indicated.
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The smallest measured FWHM was used as an indication for the resolution.
We found a clear difference in effective resolution between confocal and STED in all
labeling conditions and for both cell types. The smallest measured FWHM was 241 nm for
CSLM and 60 nm for STED microscopy.

2.2. Live and Fixed Cells Show Similar Laminopathy Network Structures

To exclude the introduction of artifacts upon cell fixation, 3T3 cells transfected with
lamin-B1-EGFP were imaged in both live and fixed conditions. Comparing the STED
microscopy images of the top of the nucleus demonstrates a similar lamin network in both
conditions (Figure 2A,B,D,E), suggesting that no artifacts have been introduced with cell
fixation. Next, the same types of images were compared for fixed transfected 3T3 cells
and fixed 3T3 cells stained with antibodies (Figure 2B,C,E,F). Apart from the absence of
lamin structures belonging to the nuclear reticulum (seen as more bright structures in
Figure 2A,B, indicated with an arrow in Figure 2B), a similar lamin network is visualized,
suggesting no introduction of artifacts by the transfection procedure.

Figure 2. STED microscopy images of the top of the nucleus from (A) non-fixed live lam-B1-EGFP transfected 3T3 cells,
(B) fixed lam-B1-EGFP transfected 3T3 cells, and (C) fixed 3T3 cells stained with antibodies against lamin B1. (D–F) Higher
magnification (2.9×) of ROIs (white rectangles) indicated in (A–C), respectively. Arrow in B indicates structures of the
nucleoplasmic reticulum. Scale bars: 5 µm.

These observations are based on judgment by eye. To obtain more quantitative
information about potential differences in lamin layer thickness and lamin A and B1
colocalization between transfection and antibody staining, determination of the lamina
FWHM and colocalization analysis was performed.

2.3. Transfection and Immunofluorescence Staining Leads to Comparable Layer Thickness

The details visible with immunofluorescence staining compared to those seen after
transfecting cells with a construct for a fluorescent protein could potentially be different.
These differences might influence the observed layer thickness of lamin A and lamin
B1, especially when using super-resolution techniques. For this reason, we determined
the lamina thickness of 3T3 cells transfected with either lamin-A-YFP or lamin-B1-EGFP
(Figure 3A–D,I and Figure S1) and compared those to the values found for 3T3 cells stained
with antibodies against either lamin A or B1 (Figure 3E–H,J and Figure S2). For all cells, we
additionally compared the lamin layer thickness found in confocal and STED imaging. All
results are summarized in Table 1.
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Figure 3. Comparison of confocal (A,C,E,G) and STED (B,D,F,H) microscopy images. (A,B) 3T3
lamin-A-YFP transfected. (C,D) 3T3 lamin-B1-EGFP transfected. (E,F) 3T3 cells stained with anti-
bodies against lamin A. (G,H) 3T3 cells stained with antibodies against lamin B1. Scale bars: 5 µm.
(I,J) Average FWHM (nm) of confocal and STED microscopy images of (I) transfected 3T3 cells and
(J) antibody-stained 3T3 cells. Bars, mean ± SD. **** p ≤ 0.0001.

Table 1. Average STED and confocal microscopy FWHM ± SD (nm) as a measure of the lamin layer thickness of lamin
A(/C) and B1 in transfected 3T3 cells, 3T3 cells stained with antibodies, and nHDF stained with antibodies, both in separate
transfection or immunostaining and co-transfection or co-staining. The layer thickness was determined at five different
positions in each cell.

Cell Type, Labelling Condition Lamin A(/C) STED Lamin A(/C)
Confocal Lamin B1 STED Lamin B1 Confocal

3T3, transfection 132 ± 15 (n = 7) 286 ± 20 (n = 7) 144 ± 37 (n = 7) 297 ± 18 (n = 7)
3T3, co-transfection 140 ± 26 (n = 10) 322 ± 22 (n = 10) 151 ± 26 (n = 10) 309 ± 22 (n = 10)

3T3, antibody staining 145 ± 20 (n = 7) 291 ± 19 (n = 7) 146 ± 21 (n = 9) 311 ± 13 (n = 9)
3T3, antibody co-staining 120 ± 27 (n = 7) 275 ± 16 (n = 7) 123 ± 19 (n = 7) 303 ± 24 (n = 7)
nHDF, antibody staining 132 ± 24 (n = 7) 290 ± 25 (n = 7) 138 ± 18 (n = 7) 307 ± 32 (n = 7)

nHDF, antibody co-staining 125 ± 28 (n = 7) 293 ± 20 (n = 7) 112 ± 22 (n = 7) 291 ± 23 (n = 7)

Analysis of transfected cells was only performed for 3T3 cells, not for nHDF, due
to well-known low transfection efficiencies in the latter cell culture. We compared layer
thicknesses of antibody-stained lamin A(/C) (note: in 3T3 cells antibody staining of lamin
A in nHDF of lamin A/C) and lamin B1 in nHDFs (Figure 4 and Figure S3) and 3T3 cells
(Figure 3E-H,J and Figure S1) to determine the effect of cell type on lamin layer thicknesses
(Table 1).
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Figure 4. Comparison of confocal (A,C) and STED (B,D) microscopy images. (A,B) nHDF stained
with antibodies against lamin A/C. (C,D) nHDF stained with antibodies against lamin B1. Scale bars:
5 µm. (E) Average FWHM (nm) of confocal and STED images of antibody-stained nHDF. Bars, mean
± SD. **** p ≤ 0.0001.

Lastly, the lamin layer thickness of lamin A(/C) and B1 in cells co-labeled with lamin
A(/C) and lamin B1 was determined and revealed similar values in the layer thickness of
lamin A and B1 with confocal and STED microscopy, independent of either the choice for
transfection or antibody staining, or cell type (Figure 5, Table 1).

Figure 5. (A–C) Merged STED microscopy images of lamin A(/C) (red) and lamin B1 (green). (A) 3T3
cells transfected with both lamin-A-YFP and lamin-B1-EGFP. (B) 3T3 cells stained with antibodies
against lamin A and lamin B1. (C) nHDF stained with antibodies against lamin A/C and lamin
B1. Scale bars: 5 µm. (D,E) Average FWHM (nm) of confocal and STED microscopy images of co-
transfected 3T3 cells and 3T3 cells co-stained with antibodies (D), and nHDF stained with antibodies
(E). Bars, mean ± SD. * p ≤ 0.05; **** p ≤ 0.0001.
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The most evident observation when comparing the CSLM and STED lamin layer
thickness is that the lamin layer thickness for STED microscopy images is significantly
decreased as compared to those in confocal microscopy. This is valid under all conditions
and in agreement with the difference in resolution between the two techniques.

When comparing the values found for transfection to those for antibody staining a
few significant differences can be found. The lamin layer thickness in STED images of 3T3
cells transfected with lamin A is significantly smaller (p = 0.004) compared to 3T3 cells
stained with antibodies against lamin A. This is also the case for confocal images of lamin
B (p = 0.001). In contrast, the lamin layer thickness of lamin A in co-stained 3T3 cells is
significantly lower in confocal (p ≤ 0.0001) and STED (p = 0.0003) images compared to
lamin A in the co-transfected cells. In STED images of these co-stained/co-transfected cells,
lamin B1 also demonstrates a significantly lower lamin layer thickness (p ≤ 0.0001) in the
antibody staining condition.

However, we want to stress that the differences, although statistically significant,
are minor in view of the standard deviation for the average thickness. Additionally, the
differences are not systematically in favor of one parameter. We thus conclude that there is
no consistent change in lamin layer thickness in either the transfection or antibody staining
condition, indicating that antibody staining does not influence the observed layer thickness
of lamin A and B1 when compared to the transfection approach.

2.4. Co-Transfection and Immunofluorencent Co-Staining Demonstrate a Similar Degree of Lamin
A and B1 Colocalization in 3T3 Cells

To obtain more information about the overlap and correlation between the lamin
A and B1 network, the degree of colocalization can be determined by Pearson’s correlation
coefficient, which measures the degree of correlative variation of two channels; the higher
the value, the more co-dependent both channels are, with a perfect correlation for a value
of +1 and perfect anti-correlation for −1 [57]. To determine if different labeling approaches
reveal different results for colocalization analysis, the Pearson’s correlation coefficient was
determined in both lamin A and lamin B1 co-transfected 3T3 cells and 3T3 cells co-stained
with antibodies against lamin A and B1.

The colocalization analysis is performed for STED images taken on top of the nucleus
(Figure 6) since this view shows more of the lamin network than images taken at the
mid-level of the nucleus. For the transfected 3T3 cells, an average Pearson’s correlation
coefficient of 0.74 ± 0.07 (n = 8) was found, while for the 3T3 cells stained with antibodies
an average of 0.76 ± 0.02 (n = 7) was found for this score. The difference between the two
labeling methods is not significant (p = 0.47).

In addition to Pearson’s correlation coefficient, plots of the fluorescence intensities
of lamin A and B1 were made by drawing straight lines (ROIs) through the STED images
of the top of the nucleus. These intensity plots of lamin A and B1 correspond to their
localization in the nuclear lamina. The intensity plots of transfected (Figure 7A) and
antibody-stained 3T3 cells (Figure 7B) show a similar profile for both lamin A and B1, with
zones of colocalization between lamin A and B1, but also zones with an absence of lamin
A or B1. These findings correlate well with the values found for the Pearson’s correlation
coefficient, since both do not show a complete colocalization. It is also in line with what can
be seen in the STED microscopy images of the top of the nucleus, where also overlapping
(yellow) and separate lamin A (red) or lamin B1 (green) spots are visible (Figure 6).
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Figure 6. Merged STED microscopy images of the top of the nucleus, visualizing the lamin A (red)
and lamin B1 (green) network. (A) 3T3 transfected with lamin-A-YFP/lamin-B1-EGFP. (B) 3T3
stained with antibodies against lamin A and B1. (C,D) Higher magnification (4.3x) of ROIs in (A,B).
Scale bars: 5 µm.

Figure 7. Plot profiles of lamins’ intensities in STED microscopy images, normalized to maximum value. Red curves show
the relative intensity of lamin A, green curves the relative intensity of lamin B1. (A) 3T3 transfected with lamin-A-YFP and
lamin-B1-EGFP. (B) 3T3 stained with antibodies against lamin A and B1.

These results, together with the lamin layer thickness analysis, indicate that there are no
major differences between transfected and antibody-stained cells. Consequently, the following
parts of this microscopy study were performed with the immunostaining approach.

2.5. CSLM and STED Colocalization Values

To determine the impact of the resolution difference between CSLM and STED mi-
croscopy on the detected degree of colocalization, both confocal and STED microscopy
images of the top of nHDF nuclei stained with antibodies against lamin A/C and B1 were
analyzed for the degree of colocalization (Figure 8). The average Pearson’s correlation
coefficient found for the confocal images is 0.97 ± 0.01 (n = 7) and for the STED images
this is 0.86 ± 0.03 (n = 7), demonstrating a significant difference (p ≤ 0.0001) between these
two microscopic techniques. This finding is not unexpected because a higher resolution
is more likely to visualize colocalization differences, as readily visible in the images in
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Figure 8. Intensity plots of the nHDF (Figure 11A, see below) show a similar course as the
intensity plots for 3T3 cells stained with antibodies (Figure 7B), again also supporting the
results of the colocalization analysis. The Pearson’s correlation coefficient found for nHDF
is increased as compared to 3T3 cells, which is caused by the use of a different primary
antibody directed against either lamin A or lamin A/C (133A2 or Jol2, respectively) and
possibly by species differences (mouse vs. human cells).

Figure 8. Merged images of the top of the nucleus, visualizing the lamin A/C (red) and lamin B1
(green) network in nHDF cells. (A) Confocal microscopy image of nHDF stained with antibodies
against lamin A/C and B1. (B) STED microscopy image of nHDF stained with antibodies against
lamin A/C and B1. (C,D) Higher magnification (4.3×) of ROIs in (A,B). Scale bars: 5 µm.

2.6. Differences between CSLM and STED Mircoscopy in Imaging Laminopathy Patient Cells

The results described above demonstrated the suitability of using an immunofluores-
cence protocol for CSLM and STED microscopy of lamin A(/C) and B1 in healthy cells, in
which STED microscopy is able to visualize more differences between the two different
lamins. To demonstrate the usefulness of the enhanced resolution of STED microscopy
in laminopathy patient cells, the lamin layer thickness differences between CSLM and
STED microscopy images were also determined for fibroblasts with an LMNA c.1130G>T
(p.(Arg377Leu)) variant stained with antibodies against lamin A/C and/or lamin B1
(Table 2).

Table 2. Average STED and confocal microscopy FWHM ± SD (nm) as a measure of the lamin layer
thickness of lamin A/C and B1 in laminopathy patient dermal fibroblasts with an LMNA c.1130G>T
(p.(Arg377Leu)) variant, stained with antibodies against lamin A/C and/or lamin B1. The layer
thickness was determined at 1–5 positions in each cell.

Staining Lamin A/C
STED

Lamin A/C
Confocal Lamin B1 STED Lamin B1

Confocal

Separate
staining 139 ± 29 (n = 7) 311 ± 31 (n = 7) 156 ± 16 (n = 4) 328 ± 28 (n = 4)

Co-staining 136 ± 23(n = 7) 306 ± 36 (n = 7) 150 ± 29 (n = 7) 315 ± 30 (n = 7)
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Importantly, we observed that the lamin layer is not always present as a “sharp line”,
but rather as a mesh network in the STED microscopy images, while this is not apparent
in confocal images (Figure 9). Due to this, it was not always possible to determine the
lamin layer thickness at five positions in each cell, as carried out with the 3T3 cells and
nHDF (i.e., the mesh network results in multiple small peaks in the intensity plot, with no
possibility of accurate FHWM determination), so sometimes less positions per cell have
been measured.

Figure 9. Comparison of confocal (A,C,I,K) and STED (B,D,J,L) microscopy images of laminopathy
patient dermal fibroblasts with an LMNA c.1130G>T (p.(Arg377Leu)) variant, stained with antibodies
against lamin A/C (A,B,I,J) and lamin B1 (C,D,K,L). (E–H) Higher magnification (3.1×) of ROIs in
(A–D). (M–P) Higher magnification (3.1×) of ROIs in (I–L). Scale bars: 5 µm.

Similar to what was found for the 3T3 cells and nHDFs, the lamin layer thickness
found in these laminopathy cells with STED microscopy images is much smaller compared
to those found in confocal images, in agreement with the significantly improved resolution
of STED. The lamin layer thickness in the laminopathy patient dermal fibroblasts reveals
a few small, but statistically significant, differences when compared to the thickness of
the nHDF lamina. In the separate staining, the lamin A thickness is found to be signif-
icantly (p ≤ 0.01) larger as compared to nHDF, but only in CSLM images. The lamin B
thickness is significantly larger in both CSLM (p ≤ 0.05) and STED (p ≤ 0.001) images.
However, the co-staining reveals no significant differences for lamin A thickness for both
CSLM and STED, while the lamin B thickness is found to be significantly larger in CSLM (p
≤ 0.01) and STED (p ≤ 0.0001) microscopy images, compared to nHDF.

To get an impression of whether or not the degree of colocalization between the A-
and B-type lamin network differs in laminopathy patient dermal fibroblasts and if this can
be quantified by both CSLM and STED microscopy, fibroblasts with an LMNA c.1130G>T
(p.(Arg377Leu)) variant stained with antibodies against lamin A/C and/or lamin B1 were
imaged with confocal and STED microscopy (Figure 10 and Figure S4). These images
already show some readily visible lamin aberrations typical for laminopathy cells, as
indicated by the white arrows.
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Figure 10. Laminopathy patient dermal fibroblasts with an LMNA c.1130G>T (p.(Arg377Leu)) variant,
stained with antibodies against lamin A/C and lamin B1, imaged with STED microscopy. (A–D)
Merged image of lamin A/C (red) and lamin B1 (green), mid-level of the nucleus. Arrows: typical
laminopathy cell aberrations. (E–H) Merged image of lamin A/C (red) and lamin B1 (green), top of
the nucleus. (I–M) Higher magnification (3×) of lamin aberrations in (E–H). Scale bars: 5 µm.

The Pearson’s correlation coefficient determined in confocal images is 0.91 ± 0.03
(n = 6). Compared to the Pearson’s correlation coefficient found in confocal images of
nHDF (0.97 ± 0.01), this represents a significant difference (p = 0.003), which is already
detectable with confocal microscopy. However, colocalization analysis of STED images
(e.g., Figure 10E–H) results in an average Pearson’s correlation coefficient of 0.75 ± 0.04
(n = 7). Compared to the Pearson’s correlation coefficient found in STED images of nHDF
(0.86 ± 0.03), this is again significantly lower (p = 0.00007). Note that the differences
between nHDF and the LMNA mutant variant found with STED are much larger than
those found with confocal microscopy, stressing the advantage of STED microscopy over
confocal microscopy for determining differences in lamin A/C and B1 colocalization.
Table 3 describes the differences in the Pearson’s correlation coefficient when using a
confocal or STED microscopy image.

Table 3. Comparison of the Pearson’s correlation coefficient, as a measure for lamin A/C and B1
colocalization, found in CSLM and STED images of the same laminopathy dermal patient fibroblasts
with an LMNA c.1130G>T (p.(Arg377Leu)) variant.

Pearson’s Correlation Coefficient CSLM Pearson’s Correlation Coefficient STED

0.925 0.758
0.887 0.707
0.873 0.724
0.900 0.761
0.951 0.816
0.908 0.763

In order to further zoom into pattern differences between the lamin A/C and B1
network in apparently normal regions of the nucleus, nuclei of normal and mutant cells,
both with the same antibodies, were compared by drawing a straight line (ROI) through
the STED image of the top of a nucleus and measuring the intensity (Figure 11A,C).
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Figure 11. Comparison of nuclear staining patterns between one nHDF (A) and a laminopathy patient
dermal fibroblast with an LMNA c.1130G>T (p.(Arg377Leu)) variant (C). Both nuclei were stained
with antibodies against lamin A/C and B1. The corresponding intensity plots of ROIs (straight white
lines) in (A,C) are displayed in (B,D), respectively. Scale bars: 5 µm. (B,D) Plot profile of lamins’
intensities in STED microscopy images, normalized to maximum value. Red curves show the relative
intensity of lamin A/C, green curves the relative intensity of lamin B1. Arrows in (D) indicate regions
with major segregations between the lamin A/C and lamin B1 network, that are found to a much less
extent in the nHDF nucleus (B).

The intensity plots demonstrate several additional differences between the distribution
of lamin A/C and B1 intensity (Figure 11D), compared to nHDF (Figure 11B). The arrows
in Figure 11D indicate zones with major differences in lamin A/C and B1 intensity, which
corresponds to their localization in the nuclear lamina. These differences were confirmed
by the decreased Pearson’s correlation coefficients. These findings indicate that there is
enhanced segregation between the A- and B-type lamin networks in this LMNA variant.
This enhanced segregation could aid in distinguishing normal from diseased nuclei of
laminopathy patients.

3. Discussion

To better understand the mechanisms of how lamins contribute to disease, it is im-
portant to study the lamin network in both healthy and diseased cells. The resolution
of ~60 nm of STED microscopy as used to study the nuclear lamina meshwork still lies
significantly above its actual thickness. According to cryo-electron tomography studies,
the lamina thickness is about 14 nm [7,8]. A recent study using MIET-FLIM confirmed
these findings, by proposing a model of the nuclear lamina in which the lamin B1 protein
layer has a thickness of ~5 nm and the lamin A/C layer of ~10 nm [46]. Even though
the resolution of STED is not as high as the, by other microscopy techniques, estimated
lamin thickness, it can still be used to obtain high-resolution information about for in-
stance changes in the lamin network in disease. We compared the differences of using a
transfection or immunofluorescence staining approach to study the lamin network with
STED microscopy.
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Antibody staining was not found to influence, within the resolution limit, the ob-
served lamin layer thickness when compared to transfection. Indirect immunofluorescence
labeling attaches a large complex to the structure of interest, but the fluorophore attached
to the secondary antibody is the fluorescent signal that is detected with the microscope.
Hence, with imaging, not the entire antibody complex is measured, but only the fluo-
rophore attached to the secondary antibody, which can be compared with the size of a
fluorescent protein. However, in immunofluorescence labeling multiple antibody com-
plexes are attached to the structure of interest. In the case of lamin labeling, it would,
in theory, be possible that one antibody complex is attached to one site of the lamin and
another antibody complex to the opposite site. The large distance between antigen and
fluorophore on both sides of the lamin would then lead to fluorescent signals quite far
apart from each other, visible as a broad lamin layer and a large FWHM. Transfection
constructs are incorporated into the original lamina and have a fluorescent protein attached
to the lamina, hence having the fluorescent probe located more closely to the lamina.
However, imaging the cross-section of fluorescently labeled lamins (when imaging at the
mid-level of the nucleus, e.g., Figures 3 and 4) demonstrated no difference in the lamin
layer thickness between co-stained and co-transfected cells, therefore suggesting that either
method is suitable for visualizing the lamin layer at this resolution level.

Comparison of colocalization analysis of confocal and STED images showed a much
higher average Pearson’s correlation coefficient for the confocal images, again demonstrat-
ing the potential of STED to distinguish lamin A and B1 networks separately in a co-stained
cell. For the 3T3 cells, no significant difference was found between the Pearson’s correlation
coefficient of the transfected cells and cells stained with antibodies. However, the standard
deviation is higher for the transfected cells. With transfection, the lamin construct is built
into the original lamina, which could probably lead to less homogenic signal, because the
lamin construct can only be incorporated at places that are accessible (i.e., if there is less
original lamina at a certain place more lamin transfection construct can be deposited and
vice versa). This could lead to a larger variety in the degree of colocalization. Indeed, the
plot profile of transfected 3T3 cells shows fewer overlapping peaks compared to the plot
profile of antibody-stained 3T3 cells (Figure 7A,B).

The found values for the Pearson’s correlation coefficient together with lamins’ inten-
sities plot profiles indicate that there is a quite large, but not complete, colocalization of
the A- and B-type lamin network within the current resolution limit. Other recent super-
resolution studies also investigated the correlation between lamin A and B networks [43–45].
Most of these studies did not express the degree of colocalization, but the study of Nmezi
et al. did [44]. They reported, by using dSTORM, that the lamin A and B networks are
mostly separated at the nuclear surface, with a colocalization of 18%. The reported percent-
age for colocalization does not correspond with the degree of colocalization found in this
study, but this was also determined with another program (Clus-Doc instead of Huygens
Professional) and is not expressed with the Pearson’s correlation coefficient, a different
microscopy technique was used, and different cells were studied (MEFs). Therefore, these
values cannot be accurately compared. Zhironkina et al. [58] showed plot profiles of lamins’
intensities in SIM images taken at the mid-level of the nucleus. These profiles visualize a
similar lamin A and B1 distribution, with zones of good colocalization along with gaps
and areas, similar as found in this current study. However, immunoelectron microscopy
indicated that there are likely no gaps in the lamina meshwork, but rather zones with much
lower concentrations of lamins. The authors explain the differences in lamin distribution
patterns visualized with different methods by the higher sensitivity of immunoelectron
microscopy and an enhanced axial resolution.

As described, the resolution that we used to study the nuclear lamina thickness is
above its actual thickness that was estimated between 5 and 10 nm [46]. The diameter
of lamin tetramers, which can be made up of distinct types of lamin molecules, is even
smaller (~3.5 nm) [7,8]. Nevertheless, studies using PALM and dSTORM, with a resolution
(~20 nm) slightly above the thickness of the lamina meshwork, or 3D-SIM, with an
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even worse resolution (~100 nm), demonstrated distinct networks of lamin A and B.
This suggests the formation of lamin homotetramers and not heterotetramers. The colocal-
ization found in the current study, therefore, also does not imply the presence of heterote-
tramers, but rather the localization of lamin A and B1 close to each other, possibly because
of interactions between the two lamin types.

Noteworthy, these above-mentioned super-resolution studies also applied immunoflu-
orescence staining, but do not show a comparison with other labeling strategies and the
impact of this on the resolution. One of these studies even demonstrated a localization
difference of lamin A/C and lamin B1 in the nuclear envelope, with lamin B1 localized
closer to the INM and lamin A/C closer to the nucleoplasm [44]. These results were con-
firmed by MIET-FLIM, a super-resolution technique that allows a 2.5 nm resolution within
a distance range of more than 100 nm, by tracking the fluorescence lifetime of dyes in the
near field of a metal film. The shorter the distance to the metal surface, the stronger the
reduction in fluorescence lifetime [46]. This provides additional evidence for the ability of
antibodies to visualize small localization differences and thereby its potential for super-
resolution techniques.

Taken together, we showed that the use of antibodies does not affect the lamina
thickness and degree of colocalization of A- and B-type lamins within the resolution of our
STED experiments. Using antibodies instead of transfection is especially very convenient
when studying laminopathy patient dermal fibroblasts.

Analyzing the colocalization in laminopathy patient fibroblasts, stained with antibod-
ies against lamin A/C and B1, revealed a significantly decreased colocalization of lamin
A/C and B1 in both confocal and STED images, compared to nHDF. However, this decrease
is more obvious when utilizing STED microscopy. These findings confirm the ability of
STED microscopy to visualize more differences between lamin A/C and B1 in comparison
to CSLM. The described findings suggest enhanced segregation between the A- and B-type
lamin networks in laminopathy. Future studies should reveal if the decreased lamin A/C
and B1 colocalization is common in different laminopathy patient fibroblasts. When future
studies in laminopathy patient fibroblasts indeed reveal a common decrease in lamin A/C
and B1 colocalization in multiple LMNA variants, this could contribute to the biopsy-based
diagnosis of laminopathy. Nowadays classification of laminopathy is performed based on
a significant number of abnormal nuclei in fibroblast. However, patients with an LMNA
mutation only show 10–25% dysmorphic nuclei, while a normal nuclear morphology does
not rule out pathogenicity of the LMNA variant [37,38].

The lamin B1 layer thickness in the laminopathy patient fibroblasts appeared to be
significantly larger in both confocal and STED images of separate and co-stained cells, while
for lamin A/C only in confocal images of separately stained cells a significant difference
was found. To determine if the thicker lamin B1 layer might be a sort of compensation
mechanism, future studies should also examine the lamin layer thickness of a multitude of
laminopathy patient fibroblasts.

In conclusion, this study revealed that super-resolution light microscopy in com-
bination with immunofluorescence protocols is an excellent tool for this novel research
approach to study laminopathy patient fibroblasts. In addition, the resolution that can
be accomplished with super-resolution light microscopy will continuously increase in the
coming years, leading to exciting new opportunities to obtain more information about,
amongst others, the nuclear lamina network.

4. Materials and Methods
4.1. Cell Culture

3T3 mouse fibroblasts, normal human dermal fibroblasts (nHDF), and laminopathy
patient dermal fibroblasts (see below) were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) containing 10% fetal
calf serum (FCS) (Gibco) and 50 µg/mL Gentamycin (Dechra, Northwich, UK). The cells
were incubated at 37 ◦C and 5% CO2 in a humidified incubator. At confluence, the cells
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were trypsinized using 0.05% Trypsin/0.02% EDTA/0.02% glucose solution in phosphate-
buffered saline (PBS) and passaged by splitting in a 1:5 or 1:10 ratio for 3T3 cells, 1:2 or
2:3 ratio for dermal fibroblasts. The dermal fibroblasts were fixed and stained at passage
number p11–p15.

The laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu))) were
obtained from a skin biopsy of a 40-year-old donor, who previously underwent heart
transplantation after several cardiac arrests resulting from heart failure due to Dilated
Cardiomyopathy (DCM). During his lifetime he had developed increasing arrhythmia
complaints. Several family members died of heart failure due to DCM. The DCM status
was confirmed by histological analysis of the removed heart. Screening of the fibroblast
culture by regular immunofluorescence microscopy revealed nuclear abnormalities, in-
cluding characteristic honeycomb structures, and herniations, in more than 10% of the
cells, confirming the pathologic status of these cells (for criteria see [37], (Veltrop et al.
in preparation).

For live cell imaging with STED, cells were cultured in a µ-Slide 2 Well (IbiTreat #1.5,
Ibidi GmbH, Gräfeling, Germany) in DMEM without phenol red (Gibco) containing 10%
FCS and 50 µg/mL Gentamycin.

4.2. Transfection and Subcloning

3T3 wildtype cells were transfected with lamin-A-YFP (Yellow Fluorescent Protein)
and/or lamin-B1-EGFP (Enhanced Green Fluorescent Protein) using FuGENE HD Transfec-
tion Reagent according to the manufacturer’s instructions. Lamin-A-YFP was obtained by
cloning the lamin A fragment from lamin-A-EGFP [14] into the YFP-C1 vector (Clon-
tech Laboratories Inc., Palo Alto, CA, USA). After 4 h, the culture medium was dis-
carded, and new medium was added. One day later, selection for stable transfectants
was started by adding Geneticin (50 mg/mL, Gibco) to the culture medium (500 µg/mL).
Approximately 10 days later, cells were subcloned to single-cell colonies by limited dilution.
GFP/YFP-expressing colonies were selected using a widefield fluorescence microscope
(ZEISS Axiovert 35M). At sufficient cell growth, selected colonies were transferred to a
6-wells plate and thereafter a T25 flask.

4.3. Cell Fixation and Immunofluorescence Staining

Cells were seeded onto glass coverslips (#1.5), grown for two days, and fixed with
formaldehyde (4% in PBS) at room temperature (RT) for 15 min or with methanol at−20 ◦C
for 10 min. Formaldehyde fixed cells were permeabilized in Triton X-100 (0.1% in PBS) for
15 min at RT prior to antibody staining. Primary antibodies were diluted in PBS containing
3% bovine serum albumin (BSA, Roche Diagnostics, Basel, Switzerland), applied onto the
coverslips, and incubated for 1 h at RT. The primary antibodies used were:

(1) mouse monoclonal IgG1 anti-lamin A/C culture supernatant (Jol2; 1:50; kindly
provided by Prof. C. Hutchison, Durham, UK),

(2) mouse monoclonal IgG3 anti-lamin A culture supernatant (133A2; 1:50; Nordic-
MUbio, Susteren, The Netherlands), and

(3) rabbit polyclonal IgG anti-lamin B1 (ab16048; 1:1000; 1 mg/mL; Abcam plc, Cam-
bridge, UK).

After washing in PBS, secondary antibodies (diluted in PBS containing 3% BSA) were
applied for 1 h at RT. The secondary antibodies used were:

(1) Goat anti-mouse IgG Abberior STAR GREEN (1:1000; 1 mg/mL; Abberior Instru-
ments GmbH, Göttingen, Germany), and

(2) Goat anti-rabbit IgG Abberior STAR 512 (1:500; 1 mg/mL; Abberior Instruments
GmbH, Göttingen, Germany).

A final washing step in PBS was performed before the coverslips were mounted on an
object glass with Tris-Glycerol DABCO mounting medium (90% glycerol, 20 mM Tris-HCl
pH 8.0, 2% 1,4-di-azobicyclo-2(2,2,2)-octane (Merck, Darmstadt, Germany), and sealed with
nail polish.
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The 3T3 cells transfected with lamin-A-YFP and/or lamin-B1-EGFP were directly
mounted on a cover glass after fixation with formaldehyde or methanol, as
described above.

4.4. CSLM and STED Microscopy

Both confocal and STED images of the fixed cell and live samples were obtained
with the Leica TSC SP8 STED microscope using LAS X software (version 3.5.5.19976,
Wetzlar, Germany). Live cell imaging was performed by incubation at 37 ◦C and 5% CO2.
All imaging was carried out with the HC PL APO 86x/1.20 W motCORR objective and the
HyD detector. The refractive index was adjusted with the correction collar; to that end,
the collar position was adjusted to the value that gives the brightest fluorescence signal.
Imaging was carried out in acquisition mode xyz, with a gating of 0.2–7.0 ns, format of
1024 × 1024 pixels, speed of 400 Hz, and pixel size of around 30 × 30 nm. Fixed cells
were imaged in photon counting mode, with a gain of 10%, frame average of 1, and line
accumulation of 8 for confocal images and 16 for STED images. Live cells were imaged
in standard mode, with a gain of 100%, frame average of 3, and line accumulation of
1 for confocal images and 2 for STED images. For all samples, 50% STED power was used.
Cells transfected with YFP were imaged with white light laser excitation at 513 nm and
detection of emission at 523–560 nm, cells transfected with EGFP with 483 nm and 489–525
nm respectively. Cells stained with the secondary antibody Abberior STAR GREEN were
imaged with excitation at 488 nm and emission detection at 493–545 nm, Abberior STAR
512 at 521 nm and 526–565 nm, respectively. In the case of two fluorophores per sample,
sequential imaging was applied. For all images, a small Z-stack of three slides (step size
0.10 µm) was generated.

4.5. Image Analysis

After image acquisition, all images were deconvoluted with Huygens Professional
version 19.10 (Scientific Volume Imaging, Hilversum, The Netherlands, https://svi.nl/
HowtoCiteHuygens (accessed on 13 September 2021)), using the classic maximum likeli-
hood estimation (CMLE) algorithm, with 40 maximum iterations and a calculated signal-to-
noise ratio (SNR) (SNR =

√
((maximum value histogram image)/(lowest value histogram

image)) ∗ 3). The other options were left at default settings.
The FWHM was measured using Fiji [59]. To estimate the lamin layer thickness, the

average FWHM of the lamina was determined at the mid-level of the nucleus. For the quan-
titative analysis, the layer thickness was determined at five positions in each cell. Intensity
curves were plotted through lines drawn perpendicular to the lamina and fitting this with
a Gaussian distribution. The formula 2

√
2(ln2σ), with σ as Gaussian width parameter, was

used to calculate the FWHM [60]. To validate that this method of layer thickness determi-
nation did not overestimate the effective layer thickness, which is described by Tortarolo
et al. as a possible disadvantage of this method, the FWHM determination was performed
by two different persons in an independent manner [46]. The second determination gave
comparable results, with the average FWHM value of the second determination within the
standard deviation of the average FWHM value of the first determination.

To determine the degree of colocalization of cells transfected with lamin-A-YFP and
lamin-B1-EGFP or stained for lamin A(/C) and B1, Pearson’s coefficient value was deter-
mined using the Colocalization Wizard in Huygens Professional (threshold settings: Costes
method). For statistical analysis of the found values, the Student’s t-test was performed
(two-sided, unequal variances). p-values ≤ 0.05 were considered statistically significant
(* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).

https://svi.nl/HowtoCiteHuygens
https://svi.nl/HowtoCiteHuygens
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duplications cause autosomal dominant leukodystrophy. Nat. Genet. 2006, 38, 1114–1123. [CrossRef]

34. Hegele, R.A.; Cao, H.; Liu, D.M.; Costain, G.A.; Charlton-Menys, V.; Wilson Rodger, N.; Durrington, P.N. Sequencing of the
reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet. 2006, 79,
383–389. [CrossRef]

35. Worman, H.J.; Bonne, G. “Laminopathies”: A wide spectrum of human diseases. Exp. Cell Res. 2007, 313, 2121–2133. [CrossRef]
[PubMed]

36. De Vos, W.H.; Houben, F.; Kamps, M.; Malhas, A.; Verheyen, F.; Cox, J.; Manders, E.M.M.; Verstraeten, V.L.R.M.; Van steensel,
M.A.M.; Marcelis, C.L.M.; et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmental-
ization in laminopathies. Hum. Mol. Genet. 2011, 20, 4175–4186. [CrossRef] [PubMed]

37. Van Tienen, F.H.J.; Lindsey, P.J.; Kamps, M.A.F.; Krapels, I.P.; Ramaekers, F.C.S.; Brunner, H.G.; van den Wijngaard, A.; Broers,
J.L.V. Assessment of fibroblast nuclear morphology aids interpretation of LMNA variants. Eur. J. Hum. Genet. 2018, 27, 389–399.
[CrossRef]

38. Decaudain, A.; Vantyghem, M.-C.; Guerci, B.; Hécart, A.-C.; Auclair, M.; Reznik, Y.; Narbonne, H.; Ducluzeau, P.-H.;
Donadille, B.; Lebbé, C.; et al. New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic
syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 4835–4844. [CrossRef]

39. Xia, Y.; Pfeifer, C.R.; Cho, S.; Discher, D.E.; Irianto, J. Nuclear mechanosensing. Emerg. Top. Life Sci. 2018, 2, 713–725. [CrossRef]
40. Davidson, P.M.; Lammerding, J. Broken nuclei–lamins, nuclear mechanics, and disease. Trends Cell Biol. 2014, 24, 247–256.

[CrossRef] [PubMed]
41. Ho, C.Y.; Lammerding, J. Lamins at a glance. J. Cell Sci. 2012, 125, 2087–2093. [CrossRef] [PubMed]
42. Mettenleiter, T.C. Breaching the barrier—The nuclear envelope in virus infection. J. Mol. Biol. 2016, 428, 1949–1961. [CrossRef]

[PubMed]
43. Xie, W.; Chojnowski, A.; Boudier, T.; Ser, Z.; Stewart, C.; Burke, B. A-type lamins form distinct filamentous networks with

differential nuclear pore complex associations. Curr. Biol. 2016, 26, 2651–2658. [CrossRef]
44. Nmezi, B.; Xu, J.; Fu, R.; Armiger, T.J.; Rodriguez-Bey, G.; Powell, J.S.; Ma, H.; Sullivan, M.; Tu, Y.; Chen, N.Y.; et al. Concentric

organization of A-and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina.
Proc. Natl. Acad. Sci. USA 2019, 116, 4307–4315. [CrossRef]

45. Shimi, T.; Kittisopikul, M.; Tran, J.; Goldman, A.E.; Adam, S.A.; Zheng, Y.; Jaqaman, K.; Goldman, R.D. Structural organization of
nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol. Biol. Cell 2015, 26, 4075–4086. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.0401424101
http://doi.org/10.1016/j.ejcb.2008.01.013
http://doi.org/10.1172/JCI200419448
http://www.ncbi.nlm.nih.gov/pubmed/14755333
http://doi.org/10.1002/(SICI)1097-4598(199907)22:7&lt;864::AID-MUS8&gt;3.0.CO;2-G
http://doi.org/10.1126/science.1127168
http://www.ncbi.nlm.nih.gov/pubmed/16645051
http://doi.org/10.1016/j.advenzreg.2008.12.003
http://doi.org/10.1083/jcb.135.6.1441
http://www.ncbi.nlm.nih.gov/pubmed/8978814
http://doi.org/10.1242/jcs.203430
http://doi.org/10.3390/cells9040816
http://www.ncbi.nlm.nih.gov/pubmed/32231000
http://doi.org/10.1016/j.ceb.2010.10.015
http://doi.org/10.1016/j.ejcb.2016.06.007
http://doi.org/10.1126/science.1240104
http://doi.org/10.1038/nmat4389
http://www.ncbi.nlm.nih.gov/pubmed/26301768
http://doi.org/10.1016/j.tcb.2017.08.004
http://doi.org/10.1038/ng1872
http://doi.org/10.1086/505885
http://doi.org/10.1016/j.yexcr.2007.03.028
http://www.ncbi.nlm.nih.gov/pubmed/17467691
http://doi.org/10.1093/hmg/ddr344
http://www.ncbi.nlm.nih.gov/pubmed/21831885
http://doi.org/10.1038/s41431-018-0294-0
http://doi.org/10.1210/jc.2007-0654
http://doi.org/10.1016/j.physbeh.2017.03.040
http://doi.org/10.1016/j.tcb.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24309562
http://doi.org/10.1242/jcs.087288
http://www.ncbi.nlm.nih.gov/pubmed/22669459
http://doi.org/10.1016/j.jmb.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26522933
http://doi.org/10.1016/j.cub.2016.07.049
http://doi.org/10.1073/pnas.1810070116
http://doi.org/10.1091/mbc.E15-07-0461
http://www.ncbi.nlm.nih.gov/pubmed/26310440


Int. J. Mol. Sci. 2021, 22, 10194 20 of 20

46. Figueiras, E.; Silvestre, O.F.; Ihalainen, T.O.; Nieder, J.B. Phasor-assisted nanoscopy reveals differences in the spatial organization
of major nuclear lamina proteins. Biochim. Biophys. Acta—Mol. Cell Res. 2019, 1866, 118530. [CrossRef] [PubMed]

47. Carrington, G.; Tomlinson, D.; Peckham, M. Exploiting nanobodies and Affimers for superresolution imaging in light microscopy.
Mol. Biol. Cell 2019, 30, 2737–2740. [CrossRef]

48. Blom, H.; Brismar, H. STED microscopy: Increased resolution for medical research? J. Intern. Med. 2014, 276, 560–578. [CrossRef]
49. De Meyer, T.; Muyldermans, S.; Depicker, A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014,

32, 263–270. [CrossRef]
50. Kittisopikul, M.; Virtanen, L.; Taimen, P.; Goldman, R.D. Quantitative Analysis of Nuclear Lamins Imaged by Super-Resolution

Light Microscopy. Cells 2019, 8, 361. [CrossRef]
51. Chen, Y.; Sun, Z.; He, Y.; Zhang, X.; Wang, J.; Li, W.; Xing, L.; Gao, F.; Shi, G. Automated nuclear lamina network recognition

and quantitative analysis in structured illumination super-resolution microscope images using a gaussian mixture model and
morphological processing. Photonics 2020, 7, 119. [CrossRef]

52. Kittisopikul, M.; Shimi, T.; Tatli, M.; Tran, J.R.; Zheng, Y.; Medalia, O.; Jaqaman, K.; Adam, S.A.; Goldman, R.D. Computational
analyses reveal spatial relationships between nuclear pore complexes and specific lamins. J. Cell Biol. 2021, 220, e202007082.
[CrossRef] [PubMed]

53. Bianchini, P.; Peres, C.; Oneto, M.; Galiani, S.; Vicidomini, G.; Diaspro, A. STED nanoscopy: A glimpse into the future. Cell Tissue
Res. 2015, 360, 143–150. [CrossRef]

54. Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [CrossRef] [PubMed]
55. Wang, C.; Taki, M.; Sato, Y.; Tamura, Y.; Yaginuma, H.; Okada, Y.; Yamaguchi, S. A photostable fluorescent marker for the

superresolution live imaging of the dynamic structure of the mitochondrial cristae. Proc. Natl. Acad. Sci. USA 2019, 116,
15817–15822. [CrossRef] [PubMed]

56. Müller, T.; Schumann, C.; Kraegeloh, A. STED microscopy and its applications: New insights into cellular processes on the
nanoscale. Chem. Phys. Chem. 2012, 13, 1986–2000. [CrossRef]

57. Scientific Volume Imaging. Understanding the Colocalization Coefficients. Available online: https://svi.nl/ColocalizationCoefficients
(accessed on 9 August 2019).

58. Zhironkina, O.A.; Kurchashova, S.Y.; Pozharskaia, V.A.; Cherepanynets, V.D.; Strelkova, O.S.; Hozak, P.; Kireev, I.I. Mechanisms
of nuclear lamina growth in interphase. Histochem. Cell Biol. 2016, 145, 419–432. [CrossRef]

59. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.;
Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [CrossRef] [PubMed]

60. Demmerle, J.; Wegel, E.; Schermelleh, L.; Dobbie, I.M. Assessing resolution in super-resolution imaging. Methods 2015, 88, 3–10.
[CrossRef]

http://doi.org/10.1016/j.bbamcr.2019.118530
http://www.ncbi.nlm.nih.gov/pubmed/31415840
http://doi.org/10.1091/mbc.E18-11-0694
http://doi.org/10.1111/joim.12278
http://doi.org/10.1016/j.tibtech.2014.03.001
http://doi.org/10.3390/cells8040361
http://doi.org/10.3390/photonics7040119
http://doi.org/10.1083/jcb.202007082
http://www.ncbi.nlm.nih.gov/pubmed/33570570
http://doi.org/10.1007/s00441-015-2146-3
http://doi.org/10.1038/nmeth.4593
http://www.ncbi.nlm.nih.gov/pubmed/29377014
http://doi.org/10.1073/pnas.1905924116
http://www.ncbi.nlm.nih.gov/pubmed/31337683
http://doi.org/10.1002/cphc.201100986
https://svi.nl/ColocalizationCoefficients
http://doi.org/10.1007/s00418-016-1419-6
http://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://doi.org/10.1016/j.ymeth.2015.07.001

	Introduction 
	Results 
	Comparison of CSLM and STED Microscopy: Resolution Differences 
	Live and Fixed Cells Show Similar Laminopathy Network Structures 
	Transfection and Immunofluorescence Staining Leads to Comparable Layer Thickness 
	Co-Transfection and Immunofluorencent Co-Staining Demonstrate a Similar Degree of Lamin A and B1 Colocalization in 3T3 Cells 
	CSLM and STED Colocalization Values 
	Differences between CSLM and STED Mircoscopy in Imaging Laminopathy Patient Cells 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Transfection and Subcloning 
	Cell Fixation and Immunofluorescence Staining 
	CSLM and STED Microscopy 
	Image Analysis 

	References

