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Distinguishing the relative roles of positive and negative selection along with demographic his-
tory in shaping genetic diversity has been a decades-long endeavor. Understanding the forces
structuring genetic variation informs us not only about the factors maintaining diversity but
also about the fundamental evolutionary parameters that influence natural populations,
including the rate and strength of positive selection, the deleterious genetic load experienced
by populations, and the factors driving genome evolution. Most attempts at modeling demog-
raphy, positive selection, or negative selection typically do so by ignoring the contribution of
the other forces. Because multiple forces are acting simultaneously, these inferences likely over-
estimate the role of single evolutionary forces and can lead to biased interpretations. In this
issue, Elyashiv et al. [1] make important advances towards addressing this problem by present-
ing a novel approach to simultaneously estimate the parameters of positive and negative
selection based on the spatial patterns of neutral genetic variation and apply this method to
Drosophila.

Elyashiv et al.’s [1] approach takes advantage of a long-held prediction that patterns of neu-
tral variation can reveal the action of selection at linked sites. Maynard Smith and Haigh first
recognized the potential impacts of linked selection in 1974 when they modeled the reduction
in neutral genetic diversity that would occur near a site under positive selection, often termed a
selective sweep, and argued that this process would reduce diversity genome-wide given suffi-
ciently high rates of positive selection [2]. Support for their theory was first obtained when
molecular population genetic data from Drosophila showed a correlation between diversity and
recombination rate, which was consistent with the idea that selective sweeps are common and
have a stronger impact on neutral diversity in regions of low recombination [3,4]. However,
Charlesworth and colleagues proposed an alternate explanation: negative selection against the
continuous influx of new deleterious mutations (background selection) will also reduce nearby
neutral diversity, causing a similar correlation between recombination and genetic diversity
[5]. This model has been used to show that many of the major patterns of variation in diversity
across the Drosophila genome are explainable by this process [6]. Since this alternative mecha-
nism was first proposed, understanding the relative importance of positive and negative selec-
tion on linked neutral diversity has been an ongoing challenge in population genetics [7].

Although evidence has continued to mount for the negative relationship between recombi-
nation and diversity due to linked selection [8], the expectation that both sweeps and back-
ground selection are strongest in regions of low recombination made it difficult to identify
what selective forces are responsible for lower diversity in low recombination regions. A num-
ber of proposed signals in the data have been thought to be unique predictions that could help
distinguish the models, including the allele frequency spectrum in regions of low recombina-
tion [3,9] and the exact shape of the relationship between recombination and diversity [10].
However, by broadening background selection predictions to include a class of slightly
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deleterious mutations, it became clear that many features thought to be unique to positive
selection could also be explained by background selection [11]. Until recently, there has been
little direct evidence that selective sweeps affect neutral diversity on a genome-wide scale.

A key step forward came from the insight that, because selective sweeps result from the fixa-
tion of new mutations, fixed substitutions at functional sites provide a unique indicator for the
presence of selective sweeps (Fig 1A and 1B) [12,13]. This approach is especially powerful if
background selection can be accounted for by comparing to neutral substitutions [14]. For
example, neutral diversity is lower around fixed nonsynonymous substitutions than fixed syn-
onymous substitutions in the Drosophila genome, providing important evidence that selective
sweeps have been common during Drosophila adaptation [14]. However, while these patterns
were used to infer rates of positive selection, fully quantifying the extent of selective sweeps
requires explicitly separating the effects of background selection from sweeps.

Elyashiv et al. [1] used the presence of fixed substitutions to distinguish between sweeps and
background selection in a joint modelling framework. Specifically, they model background
selection as a function of the density of sites expected to be under purifying selection, such as
those in exons and untranslated regions (UTRs). In contrast, they model selective sweeps as a
function of the density of fixed substitutions at functional sites. This approach then allows
them to estimate deleterious mutation rates directly from data instead of relying on experimen-
tally estimated rates, which often rely on many assumptions and can vary across genotypes
[15]. They can then, ultimately, estimate selection coefficients and mutation rates for positively
and negatively selected alleles. While Elyashiv et al. [1] are not the first to jointly model the
effects of selective sweeps and background selection [16], their approach allows them to gener-
ally separate out the effects of sweeps from those of background selection and to do so in a
manner that can be applied directly to genomic data.

Using their method, Elyashiv et al. [1] estimate that linked selection reduces diversity by
70%-90% across the genome and that both background selection and selective sweeps contrib-
ute in substantial ways to the structuring of genetic diversity. Their joint modeling approach
validates previous conclusions that Drosophila experiences a high rate of positive selection but
also highlights the important role of purifying selection in explaining large-scale patterns of
genetic diversity across the genome. These findings cement the view that linked selection is
crucial for shaping genomic diversity, so much so that it may be wise to begin including param-
eters of linked selection—essentially “genomic demography”—in basic population genomic
models the same way that standard demographic models are included. Beyond this, approaches
based on linked selection may open up new opportunities for investigating the distribution of
fitness effects (DFE) of new mutations by allowing us to estimate more precisely the DFE of
sites that are so rare they don’t segregate in population genomic samples but do have impacts
on linked neutral diversity.

Although Elyashiv et al. [1] have made significant progress in our understanding of linked
selection, there are still some avenues for improvement. Their method is dependent on knowl-
edge of functional sites that accurately predict where purifying and positive selection act in the
genome, and, as they note, selection outside of these regions will affect their predictions. Genes
and genomic regions also differ in their fraction of selectively constrained sites, and so explic-
itly incorporating information about cross-species divergence into models of purifying selec-
tion [17] may also help refine the model parameters.

More crucially, while conditioning their inference of selective sweeps compared to back-
ground selection on the presence of fixed substitutions, other forms of positive selection that
do not involve fixations, such as polygenic adaptation, are likely parameterized as background
selection (Fig 1C). If polygenic adaptation is common [18], this should incorrectly increase the
strength of background selection inferred in the model. Recent work in humans implies that
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Fig 1. An illustration of three linked selection scenarios. In (A), the removal of deleterious mutations in a
functional region, or background selection, reduces nearby linked diversity. In (B), the fixation of a new
beneficial mutation by positive selection reduces nearby linked diversity in a process called a selective
sweep. In (C), positive selection increases the frequency of two beneficial mutations, reducing diversity but
not involving the fixation of any selected mutations.

doi:10.1371/journal.pgen.1006240.g001

large fractions of the genome may in fact be subject to directional selection on quantitative
traits [19], further indicating that polygenic selection can have genome-wide effects. Indeed,
Elyashiv et al. [1] estimate a much higher deleterious mutation rate than appears plausible
given estimates from the literature, suggesting an important role for polygenic adaptation in
driving down diversity near functional sites. Developing techniques to properly account for
polygenic adaptation will not only improve accuracy for inferring selection parameters and the
effects of linked selection but also provide further insights into the extent to which positive
selection influences the structuring of genetic diversity genome-wide.

Beyond extending linked selection approaches to better deal with poor annotations and
polygenic adaptation, estimating the effects of linked selection in additional species beyond
Drosophila holds great promise. While patterns of linked selection generally differ between
Drosophila and other species, the causes of these differences remain uncertain [8]. The test
developed by Sattath and colleagues [14] to detect selective sweeps by comparing diversity
around functional substitutions to diversity around nonfunctional substitutions has since been
applied to additional species, including humans, mice, maize, and Capsella grandiflora [20-
23], with mixed evidence for recurrent sweeps. However, this method’s use of synonymous
substitutions as a neutral control may not be effective in larger genomes, in which nonsynon-
ymous substitutions may be more common in regions of low constraint, reduced background
selection, and higher neutral diversity, masking the signals of selective sweeps [24]. Because
Elyashiv et al.’s [1] method can use the distribution of selected sites present in the actual
genome under investigation, it may be more robust to variation in constraint across the
genome and be useful for investigating linked selection in large genomes.

Patterns of linked selection are also likely to differ among species of varying population
sizes. There is already evidence that the effects of linked selection on neutral diversity increase
with species census size [25], and Elyashiv et al.’s [1] joint modelling approach may help tease
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apart why these effects vary with effective population size (Ne). For example, joint modelling
approaches could help improve the parameterization of positive selection in species with
smaller Ne, in which signals may be weaker due to lower rates of positive selection. However,
we may also expect a larger proportion of adaptation in species with high Ne to involve multi-
ple alleles, altering our expectations of how linked selection will shape nearby neutral diversity
[26,27]. This further highlights the need to develop approaches that independently parameter-
ize polygenic adaptation, although this remains a difficult challenge.

Furthermore, the relative importance of linked selection on neutral diversity may vary with
mating system [5,28]. Reduced effective recombination rates in selfing species are expected
to play an important role in limiting both the removal of deleterious alleles by purifying selec-
tion [29,30] and the fixation of adaptive alleles due to positive selection [31,32], but this is diffi-
cult to accurately quantify. Intriguingly, there is evidence that there is a much larger drop in
genome-wide diversity in selfers than in outcrossers due to the strong effects of linked selection
[33]. However, the effects of linked selection may be especially difficult to investigate in selfers
because low recombination will mean that subsequent events of linked selection mask those
that occurred previously. Joint modelling approaches may help investigate these patterns and
possibly help quantify the extent to which positive and purifying selection are reduced in self-
ing lineages.

Opverall, the comprehensive model of linked selection developed by Elyashiv et al. [1] both
reinforces the growing consensus that linked selection is an important contributor to genetic
variation and provides a useful framework for investigating not only the specific impacts of
linked selection but also the general selective parameters that shape genomic variation. As we
have outlined above, their work opens up a number of further opportunities to investigate the
action of selection across a genome and provides an important step forward in the ongoing
challenge of quantifying the relative importance of different evolutionary forces.
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