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Abstract: RL2 is a recombinant analogue of a human κ-casein fragment, capable of penetrating cells
and inducing apoptosis of cancer cells with no toxicity to normal cells. The exact mechanism of
RL2 penetration into cells remains unknown. In this study, we investigated the mechanism of RL2
penetration into human lung cancer A549 cells by a combination of electron paramagnetic resonance
(EPR) spectroscopy and confocal laser scanning microscopy. EPR spectra of A549 cells incubated
with RL2 (sRL2) spin-labeled by a highly stable 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl radical
were found to contain three components, with their contributions changing with time. The combined
EPR and confocal-microscopy data allowed us to assign these three forms of sRL2 to the spin-labeled
protein sticking to the membrane of the cell and endosomes, to the spin-labeled protein in the cell
interior, and to spin labeled short peptides formed in the cell because of protein digestion. EPR
spectroscopy enabled us to follow the kinetics of transformations between different forms of the spin-
labeled protein at a minimal spin concentration (3–16 µM) in the cell. The prospects of applications
of spin-labeled cell-penetrating peptides to EPR imaging, DNP, and magnetic resonance imaging are
discussed, as is possible research on an intrinsically disordered protein in the cell by pulsed dipolar
EPR spectroscopy.

Keywords: cell penetrating peptide; electron spin resonance spectroscopy; confocal microscopy

1. Introduction

RL2 is a recombinant analogue of a natural peptide, lactaptin, with a molecular weight
of 8.6 kDa, that has been isolated from human milk. It has been shown that this peptide is
a proteolytic fragment of human k-casein that induces apoptotic death of human breast
adenocarcinoma MCF-7 cells in culture [1]. Similarly to lactaptin, its recombinant analogue
RL2 (14 kDa) also induces apoptosis of MCF-7 cells as well as other cancer cell types,
including A549 cells and is not toxic to nonmalignant human adipose-tissue mesenchymal
stem cells (MSCs). It has been reported that RL2 can penetrate the cytoplasm of both MCF-7
cancer cells and nonmalignant adipose-tissue MSCs [2–4].

Electron paramagnetic resonance (EPR) spectroscopy has become a powerful tool for
studying the structure and dynamics of proteins and nucleic acids [5–7]. Continuous-wave
EPR spectroscopy at room temperature allows one to study dynamic behavior and molecu-
lar motion of a wide variety of biological systems. In electron nuclear double-resonance
spectroscopy, electron spin echo envelope modulation, and hyperfine sublevel correlation
spectroscopic techniques, electron spin is essentially used as a detector to probe nuclei that
are coupled to the unpaired electron spin. Pulsed electron double resonance (PELDOR) [8]
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or double electron electron resonance (DEER) [9,10] are the most widely used approaches
because they enable distance measurements at a nanometer scale between two electron
spins introduced into a biomolecule. All the above physical methods imply the use of para-
magnetic labels (stable free radicals or metal ions) and a technique of site-specific chemical
attachment to a biomolecule in the case when intrinsic paramagnetic centers could not be
used. Significant progress has been achieved in the development of these methods in recent
years owing to new approaches such as application of special sequences and improvements
in hardware—high power amplifiers and arbitrary waveform generators—allowing to
substantially increase sensitivity [11–15]. The synthesis of novel spin labels with improved
properties, such as long electron spin relaxation time and high stability in biological sam-
ples [16], has given an additional impetus to the development of EPR methods in structural
biology. Application of such spin labels has made pulsed EPR experiments possible at
physiologically relevant temperatures [17–20] and helped to follow conformational changes
in biomolecules inside a cell [21–23]. Spin labels based on nitroxides [24], triarylmethyl
radicals [18,25,26], and Gd complexes [27–31] have been successfully employed in cell
experiments. Nitroxides have clear advantages over alternative spin labels owing to much
smaller size (i.e., smaller distortion of a native conformation of a biomolecule) and lower
toxicity. Nonetheless, some vital biogenic molecules and enzymatic systems readily re-
duce nitroxides to diamagnetic compounds, and this situation creates serious obstacles
to applications of nitroxide spin labels in biological systems. Notably, high-stability spin
probes based on nitroxide radicals [32] are in demand in EPR imaging [33] and magnetic
resonance imaging (MRI) as contrast agents [34]. Recently, it has been shown that DEER
allows one to study protein structure in cell at nanomolar protein concentration [35].

Bulky substituents (larger than methyl) adjacent to a nitroxide group can retard ni-
troxide decay in biological systems [24,32,36,37]. So-called sterically shielded nitroxides
have much higher resistance to bioreduction as compared to conventional tetramethylni-
troxides. For instance, recently, 2,2,5,5-tetraethyl-2,5-dihydropyrrol-1-oxyls were suggested
as spin labels for in-cell applications [38]. In the present work, we used the 3-carboxy-
2,2,5,5-tetraethylpyrrolidine-1-oxyl N-hydroxysuccinimide ester (1) [39] (see Scheme 1)
as a promising spin label for in-cell EPR measurements and tested it on RL2, which can
penetrate cells.
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Scheme 1. Structural formulas of spin label 1, nitroxide 2, and spin label 1 attached to RL2 (sRL2).

A number of cell-penetrating peptides (CPPs) are known for their effective penetration
and their ability to deliver cargo molecules into a cell. The mechanism of cellular uptake
of CPPs is still not well understood, although it is a subject of many studies [40,41].
It is assumed that this uptake can occur via either endocytosis or direct penetration
(Scheme 2) [42–44]. The main pathway of macromolecule penetration into a cell is en-
docytosis: adenosine triphosphate (ATP)-dependent transport of macromolecules. It
enables recirculation of receptors and lipids, destruction of foreign substances, and uptake
of nutrients that cannot passively diffuse through pores in the plasma membrane into a cell.
Taken up molecules are internalized by the cell via vesicles. Endocytosis includes phago-
cytosis (which is more specific for immune cells, e.g., phagocytes), macropinocytosis [45]
(uptake of large amounts of fluids driven by rearrangements of filamentous actin), and



Molecules 2021, 26, 5442 3 of 20

receptor-mediated pinocytosis [46,47] (e.g., clathrin-dependent or caveolin-dependent),
which differ in endosome morphology and the proteins involved in the uptake process
(Scheme 2).
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Various factors influence the penetration of peptides: extracellular concentration of the
peptide, the cell line, a combination of the CPP with a high/low molecular weight of the
delivered molecule, or a lack thereof. At the same time, all CPP penetration mechanisms,
in one way or another, are connected and occur simultaneously, and there may be negative
feedback between them.

The mechanism of penetration could be strongly affected by the structure of a peptide.
To elucidate the structure–activity relations of RL2, recently we have studied the structural
and aggregation features of RL2 by a combination of physicochemical methods: NMR,
paramagnetic relaxation enhancement (PRE), EPR, circular dichroism, dynamic light scat-
tering, atomic force microscopy, and a cytotoxic activity assay [48]. It has been shown that
RL2 is intrinsically disordered and consists of a mixture of a disulfide-bonded homodimer
(RL22) and a conjugate of RL2 with β-mercaptoethanol (BME) via the S–S bond (BME-RL2).
The BME conjugate of RL2 is a by-product formed in the process of preparation of the
recombinant peptide. RL2 is prone to assembly into large aggregates, and the aggregation
increases with ionic strength and pH.

Recently, it has been demonstrated that RL2 labeled by a fluorescent dye penetrates
the cell partly by lipid raft–mediated pinocytosis and partly via a pathway alternative to
endocytosis [49]. We believe that this nonendocytic pathway may be direct penetration
through the plasma membrane. Thus, studying the mechanism of RL2 penetration into
the cell may help to elucidate the functions of RL2 and will be useful for the development
of new more effective antitumor drugs based on it. Investigation of the behavior of the
spin-labeled peptide inside cells can provide more information on the mechanism of RL2
penetration into the cell and on the stability of reduction-resistant nitroxides in the cell. It
should be noted that conjugates of nitroxides with biopolymers are considered potential
contrast agents for MRI [50,51] or delivery systems for spin probes in EPR imaging or
Overhauser enhanced MRI experiments [52,53]. A combination of confocal microscopy
and EPR methods may shed light on the mechanism of RL2 penetration because confocal
microscopy allows for tracing of the RL2 location in the cell, whereas EPR makes it possible
to follow the conversions of RL2 carrying spin label 1 (sRL2) and to detect in real time the
moment of protein digestion and detachment of the label.

Here, on the one hand, we studied applicability of spin label 1 to in-cell EPR experi-
ments, and on the other hand, investigated RL2 penetration into human lung cancer A549
cells by EPR spectroscopy and confocal microscopy.

2. Materials and Methods
2.1. Cell Culture

A549 human lung carcinoma cells (ATCC CCL-185) were grown at 37 ◦C and 5%
CO2 in DMEM supplemented with 10% of FBS, 2 mM L-glutamine, 100 U/mL peni-
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cillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B, all from Gibco BRL Co.
(Bleiswijk, The Netherlands).

During the analysis of spin label 1 and sRL2 internalization, A549 cells were incubated
in DMEM (Gibco BRL Co., USA) supplemented with 2 mM L-glutamine, 100 U/mL
penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B without FBS. The
cells were detached using trypsin for culture procedures (Gibco BRL Co., Bleiswijk, The
Netherlands).

2.2. Methods
2.2.1. RL2 Expression and Chromatographic Separation of RL2 Dimers and Monomers

RL2 was expressed in the E. coli BL21(DE3). RL2 was purified by affinity and ion-
exchange chromatography. All buffers contained β-mercaptoethanol. Then RL2 was
dialyzed against water. SDS-PAGE analysis showed that RL2 sample consists of a covalent
disulfide-bonded homodimer and monomeric peptide (which turned out to be the BME-
RL2 adduct) [48].

The RL22 were separated from BME-RL2 by gel-filtration on Superdex 200 (GE Health-
care, Uppsala, Sweden) in running buffer consisting of 0.15 M NaCl, 50 mM NaAc pH
5. Then, low-molecular-weight components were removed using an Amicon Ultra 15
concentrator with a 10 kDa cutoff (Millipore, Burlington, MA, USA).

2.2.2. The Synthesis of the Conjugate of Spin Label 1 with the Recombinant Lactaptin
Analogue (sRL2)

A reaction mixture containing the solutions of 1 mM RL22, 5 mM spin label 1, 55 mM
Tris-HCl pH 7, and 15% DMSO was incubated at 25 ◦C for 7 h (DMSO was added not only
because of limited solubility of the spin label in water but also to prevent RL22 aggregation).
Considering the propensity of RL2 to aggregate and hydrophobicity of spin label 1, we
extracted spin label 1 from RL2 aggregates by means of guanidine chloride and then
dialyzed sRL2 against water. The concentration of the spin label in sRL2 was quantified by
EPR spectroscopy, and the concentration of the protein was determined by the Bradford
assay. The scheme of labeling of lysine residue using spin label 1 is shown in SI (Figure S1).

2.2.3. Analysis of the Internalization of Spin Label 1 and sRL2 into Cells

Cells were seeded at a density of 8× 105 cells per culture flask at 24 h prior to the
experiment. The culture medium was removed from wells, cells were washed with PBS,
and the DMEM medium supplemented with penicillin, streptomycin, amphotericin, L-
glutamine, and sRL2 (either 0.5 × 10−6 M RL22 and 2 × 10−6 M 1 or 0.55 × 10−5 M RL22
and 2.2 × 10−5 M 1) dissolved in DMEM was added to the cells and incubated for 1 h at
37 ◦C. The culture medium was collected for EPR analysis, and the cells were washed twice
with PBS and incubated at 37 ◦C with 300 µL of trypsin to remove the sRL2 localized on
the surface of the cell and detach cells from culture flask. The detachment of cells was
monitored under a microscope. For trypsin inactivation, DMEM containing 10% of FBS as
well as penicillin, streptomycin, amphotericin, and glutamine was added to the cells. The
cell suspension was centrifuged for 4 min at 900× g. The supernatant was removed, and
the cells were washed with PBS and centrifuged under the same conditions; the procedure
was carried out twice. After that, 4 µL of the cell pellet was accurately transferred into an
EPR capillary tube for measurement.

In the case of the experiment with sodium azide, cells were seeded, incubated for 24 h,
and washed with PBS. Then, the DMEM medium with 1% NaN3 was added to the cells.
After 30 min incubation, the medium was replaced with the DMEM medium supplemented
with 1% NaN3 and sRL2 (1.34 × 10−6 M RL22 and 4.69 × 10−6 M 1). The procedure that
followed was performed as described above.

In the experiments with EDTA detachment, cells were seeded as described above,
incubated with sRL2 (1.34 × 10−6 M RL22 and 4.69 × 10−6 M 1) in DMEM for 10 min
and washed with PBS. Then cells were treated with 5 mM EDTA in DMEM for 5 min and
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gently pipetted. The cells detachment was visually inspected under the microscope. The
cell suspension was centrifuged for 4 min at 900× g. The cell pellet was washed with PBS
twice. After that, 7 µL of the cell pellet was accurately transferred into an EPR capillary
tube. The control cells after EDTA detachment were washed with PBS and incubated with
500 µL trypsin to remove the sRL2 from cell surface. After 30 min incubation trypsin was
inactivation with DMEM containing 10% FBS, cells were washed and transferred into an
EPR capillary tube.

2.2.4. EPR Measurements

X-band EPR spectra were acquired on a commercial Bruker EMX EPR spectrometer
(9 GHz, Bruker Spectrospin, Karlsrue, Germany) with a high-sensitivity resonator, Bruker
ER4119HS. In experiments at room temperature, the samples were placed into EPR capillary
tubes (inner diameter = 0.8 mm, outer diameter = 1 mm). In experiments at 35 ◦C, the
EPR capillary tubes containing the samples were placed into a quartz tube with an inner
diameter of 2.0 mm and an outer diameter of 3.0 mm. The temperature was stabilized by a
Bruker digital temperature control system, ER 4131VT accessory.

Simulation of the EPR spectra was carried out by means of software package Easy
Spin (www.easyspin.org, version 5.2.28) in the slow-motional regime [54,55].

2.2.5. Confocal Microscopy

To determine the intracellular localization of RL2, A549 cells were plated in an µ-dish
35 mm, high (ibiTreat, USA) 18 h prior to the experiment. The cells were washed with
PBS and incubated with the DMEM medium supplemented with L-glutamine, antibiotics,
and 10−6 M fluorescent RL22. After 30 min incubation, the cells were washed twice
with PBS and stained for 20 min with LysoSensor Green DND-189, then washed twice
and treated with live-cell fluorescent dye Hoechst 33342 in DMEM. In 15 min, it was
replaced with DMEM supplemented with 10% of FBS as well as L-glutamine, penicillin,
streptomycin, and amphotericin B. The cells were analyzed using the Carl Zeiss LSM
710 laser scanning microscope equipped with a sample-heating module (Carl Zeiss, Jena,
Germany). Observations were done using an oil 63× objective. ZEN black edition software
(Carl Zeiss, Germany) and CellProfiler software were used in the confocal microscope to
visualize images [56].

3. Results
3.1. The Synthesis of a Conjugate of Spin Label 1 with the Recombinant Lactaptin Analogue (sRL2)

Reaction of 1 with Lys side chains leads to covalent attachment of the nitroxide
(Figure S1). The amino acid sequence of RL2 is shown in Table S1. RL2 contains five
Lys residues (Figure 1); two of them (amino acid positions 101 and 102) are adjacent.
In this study, the samples of RL22 labeled with spin label 1 are denoted as sRL2. The
retention of intact Cys and the presence of only the dimers in the samples was confirmed
by nonreducing SDS-PAGE analysis of sRL2 (SI, Figure S2).
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second integral of its EPR spectrum with that of a sample of spin label 1 in an aqueous
solution of the same volume and known spin concentration. The average number of spin
labels per protein molecule can be regulated by means of an appropriate concentration of
spin labels and duration of the spin-labeling procedure. In the case of a large number of
spin labels per RL22 molecule (up to 10), the part of the EPR signal corresponding to the
obtained sample was strongly broadened (SI, Figures S3 and S4). We assume that this is
probably due to the attachment of spin labels to adjacent lysine residues (these spin labels
can interact by exchange and dipole–dipole mechanisms); this broadening may complicate
subsequent measurements of EPR kinetics. The experimental EPR spectra showed that
the broadening was negligible for the ratios of spin labels/RL22 molecules less than 4,
because in this case, the probability that both adjacent lysine residues would be labeled
simultaneously is much lower (SI Figures S3 and S4).

Proper simulation of experimental EPR spectra of sRL2 was achieved using the same
g- tensor and similar values of N-hyperfine splitting constants (Ahfs) as those observed for
radical 2 (Scheme 1) but with rotation correlation time τc an order of magnitude higher
(Figure 2). Simulation parameter, rotation correlation time τc, determines the rate of
rotational diffusion of the electron spin in a paramagnetic molecule [57]. Higher τc for sRL2
(τc = 0.277 ns) reflects lower spin label mobility compared to radical 2 (τc = 0.041 ns) owing
to covalent binding of the small nitroxide molecule to the large RL22 molecule. Tetraethyl
nitroxide radicals are known to feature an additional hyperfine splitting constant (hfs)
about 0.22 mT on a proton of one of the four ethyl groups and small hfs less than 0.05 mT
on other protons [58,59]. For our experimental spectra we compared the simulation with
and without this hfs (SI, Figures S5 and S6) and found no substantial difference between
them. The only difference was the parameters of linewidth. Thus, in all our simulations, 9
this additional hfs was taken into account as increased line width.
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were done in the slow-motional regime [54,55], and parameters of the simulations are given here.
g = (2.0091 2.0059 2.0018) (a,b); hyperfine splitting constants: (a) AN = (0.30 0.30 4.00) (mT), and
(b) AN = (0.30 0.30 4.08) (mT); line width: (a) (Gaussian 0.346, Lorentzian 0.0019), (b) (Gaussian 0.318,
Lorentzian 0.042); Correlation times: (a) τc = 2.77 × 10−1 ns, (b) τc = 4.1 × 10−2 ns.

3.2. Penetration of Nitroxide 2 into A549 Cells

A549 cells were incubated for 1 h in the culture medium containing 2 µM nitroxide 2
and washed as described in Methods. The cell suspension and all solutions (the culture
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medium, PBS, and trypsin solutions) were studied by EPR (SI, Figure S7). No significant
changes in the concentration of 2 in the culture medium were observed after the incubation
of the cells. No traces of nitroxide 2 were detectable in the cell pellet and in the solutions
applied to wash the cells, clearly indicating that nitroxide 2 does not penetrate the cells.

3.3. Penetration of sRL2 into A549 Cells

In two independent experiments, A549 cells were incubated in the culture medium
containing sRL2 (molar ratio of spin label 1 to RL22: 4) either at 5.5 µM (nitroxide concen-
tration 22 µM) or at 0.5 µM (nitroxide concentration 2 µM). In both cases, after 1 h of cell
incubation, the cells were washed according to the procedure described in Methods, and
4 µL of the cell suspension was placed into an EPR capillary tube. EPR spectra of all the
solutions applied to wash the cells and the culture medium with dissolved sRL2 before and
after the cell incubation are presented in SI, Figures S8–S10. We could not detect an EPR
signal in the medium either before or after the cell incubation. Considering that pH of the
medium is ~8.5–9.0 (proved by litmus paper), we assume that this finding is related to the
aggregation of RL2, which is completely aggregated at pH 7, or to its binding to negatively
charged components of the medium, thus resulting in the presence of large particles that
are invisible in EPR spectroscopy just as in NMR spectroscopy [48]. To test our assumption
and to disrupt the sRL2 aggregates, we added a large excess of HCl into the sample of the
medium used for the cell incubation and noticed an EPR signal (SI, Figure S11).

EPR spectra of A549 cells at different time points after the cell incubation with 5.5 µM
and 0.5 µM sRL2 are presented in Figure 3a,b, respectively. One can see that the shape
of the EPR spectra is changing substantially with time. It is clear that the spectra consist
of different EPR spectral components characteristic of different mobility of the spin label,
and that the contributions of these components vary with time. At initial time points, the
main contribution to the EPR spectra is made by spin labels characterized by a very slow
motion, whereas at 15 h, the shape of the EPR spectra is typical for a free nitroxide in an
aqueous solution (fast motion). The ratio of different contributions and its dependence on
time strongly correlate with the sRL2 initial concentration in the culture medium in which
the cells were incubated (see Discussion).
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Figure 3. EPR spectra of A549 cells after their 1 h incubation with (a) 5.5 µM and (b) 0.5 µM sRL2
(molar ratio of spin label 1 to RL22: 4) acquired at different time points after the incubation. The zero
time point corresponds to the start of EPR spectra acquisition. Initial spin concentrations observed
by EPR at the zero time point for these two samples were 730 µM (a) and 60 µM (b). The spectra
were acquired at 35 ◦C with the following parameters: microwave frequency (a) 9.236816 GHz,
(b) 9.233912 GHz; (a,b) microwave power 2.0 mW; conversion time (a) 30.89 ms, (b) 19.54 ms; sweep
time (a) 15.82 s, (b) 10.00 s; time constant (a) 40.96 ms, (b) 20.48 ms; (a,b) 512 points; the number of
scans (a) 16 or (b) 64. In both cases, the external magnetic field was modulated at frequency 100 kHz
and modulation amplitude 0.2 mT.
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3.4. Simulation of EPR Spectra

First, we simulated the experimental spectra by two EPR spectral components (low
mobile component 1* and highly mobile component 2*). We can get good agreement
between the simulation and the experiment only if we include the decrease of the rotation
correlation time for component 2* with the course of the experiment. Such a continuous
decrease of the rotation correlation time simultaneously with increase of the weight of the
component 2* is hard to explain in the context of penetration of sRL2 into the cell. Therefore,
we believe that a more reasonable model is in which the highly mobile spin labels observed
in EPR spectra is correspondent to the labels attached to the protein (sRL2) and have similar
rotational correlation time as for sRL2 in water or attached to short peptides formed after
the protein digestion in lysosomes or proteasomes and have rotational correlation time
close to free spin label.

We performed simulation of the obtained EPR spectra of A549 cells after their incu-
bation with sRL2 using simulation parameters obtained for the EPR spectra of sRL2 and
radical 2 in aqueous solutions (Figure 4a). We found that all the experimental spectra
can be well reproduced by a superposition of three EPR spectral components with dif-
ferent contributions (Figure 4). These three spectral components (Figure 4a) have almost
the same anisotropic g-factors and hfs constants: g1 = g2 = g3 = [2.0091 2.0059 2.0018];
A1 [AN = (0.30 0.30 3.90) (mT), A2 [AN = (0.30 0.30 4.00) (mT), and A3 [AN = (0.30 0.30 4.08)
(mT)], but different rotational correlation times: τc1 = 4.77 ns, τc2 = 2.95 × 10−1 ns, and
τc3 = 4.1 × 10−2 ns, respectively. One can see that component 2 and component 3 have
almost the same simulation parameters (including rotation correlation times) as those of
sRL2 and radical 2 (see Figure 2), respectively, in aqueous solutions at the same temperature.
Thus, we can assign component 2 to sRL2, which has mobility similar to that found in the
aqueous solution, and component 3 to spin labeled short peptides formed in cells because
of protein digestion.

Component 1 has the largest contribution to the experimental EPR spectra at initial
time points after the cell incubation with sRL2 and refers to spin labels characterized by
very slow mobility. It is noteworthy that Azz (3.90 mT) of AN for component 1 is less
than Azz (4.00 mT) of AN for component 2, meaning the localization of the spin labels for
component 1 in the area with lower polarity in comparison with component 2 [60]. Thus,
we can assume that component 1 matches the sRL2 that is localized on the surface of the
membrane (endosomal, plasma, or membrane of organelles).

3.5. Localization of the Fluorescent RL22 Conjugate in A549 Cells

To refine the nature of the three EPR spectral components, we synthesized fluorescently
labeled RL22 and studied its distribution in A549 cells. Briefly, the cells were incubated
for 30 min with 10−6 M fluorescent RL22 conjugate (fRL2). Then, the cells were treated
with blue dye Hoechst 33342, which stains cell nuclei, and LysoSensor Green DND-189: a
lipophilic pH indicator that accumulates in acidic organelles with pH below 5.5, e.g., late
endosomes and lysosomes. Confocal microscopy was performed on live cells to avoid
fixation artifacts such as lysis of endosomes and fRL2 leakage from them. The analysis of
confocal microscopy images was performed using the CellProfiler software to quantify the
localization of fRL2.

Representative confocal images of fRL2 in A549 cells and the processing of the images
are shown in Figure 5. The red objects outside the cells are fRL2 attached to the dish surface;
they could not be washed off with PBS. As one can see, the red objects inside the cells vary
considerably in size. The calculation results on the fRL2 particle number are presented
in Table S2. Red signals overlapped with green ones in less than half of the cases. We
believe that in the first hours after the cell incubation, a significant portion of fRL2 can
be found in early endosomes, which are invisible because of their neutral pH because
LysoSensor Green DND-189 accumulates only in acidic organelles. Nonetheless, even at 6
and 24 h from the end of the cell incubation, when endosomes have had enough time to
mature, some fRL2 molecules are not in endosomes. This result might be due to endosomal
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leakage or direct penetration of RL2 bypassing endosomes. This finding is consistent with
our earlier study on the influence of different endocytosis inhibitors on fRL2 penetration
into cells: RL2 penetrates cells mostly by lipid raft-mediated endocytosis, but none of the
endocytosis inhibitors completely suppress its penetration, indicating that RL2 can also
penetrate the cells by a mechanism that is an alternative to endocytosis [49]. Thus, we can
conclude that RL2 is localized in endosomes and in the cytoplasm of A549 cells after their
incubation with RL2.
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Figure 4. (a) Calculated EPR spectral components that were employed to simulate the experi-
mental spectra. The spectra presented are normalized to their central signal height. Spectrum (1)
represents the EPR spectral component 1 with calculated rotation correlation time τc1 = 4.77 ns,
spectrum (2)—the component 2 with τc2 = 2.95 × 10−1 ns and spectrum (3)—the component 3 with
τc3 = 4.1 × 10−2 ns. Parameters of simulations for all three spectra: g1 = g2 = g3 = [2.0091 2.0059
2.0018]; A1 = [0.30 0.30 3.9], mT, A2 = [0.30 0.30 4.00], mT, A3 = [0.30 0.30 4.08], mT. (b) Black: ex-
perimental EPR spectra of A549 cells after their incubation with (I) 5.5 µM and (II) 0.5 µM sRL2
(molar ratio of spin label 1 to RL22: 4) acquired at 2.16 h (I) and 0.96 h (II) from the end of the cell
incubation. Solid red: simulation of the experimental spectra, which was done by applying the
three EPR spectral components with their second integral weight ratios (1):(2):(3) at 0.88:0.07:0.05 (I)
and 0.80:0.15:0.05 (II). Short dot blue: simulation of the experimental spectra by only two compo-
nents (low mobile component 1* and highly mobile component 2*) with the following simulation
parameters: g1* = g2* = [2.0091 2.0059 2.0018]; A1* = [0.30 0.30 3.9], mT, A2* = [0.30 0.30 4.05], mT; (I)
τc1* = 4.52 ns, τc2* = 1.35 × 10−1 ns; (II) τc1* = 4.53 ns, τc2* = 2.65 × 10−1 ns; second integral weight
ratios: (1*):(2*) = 0.89:0.11 (I) and (1*):(2*) = 0.85:0.15 (II).

3.6. The Influence of Sodium Azide on the Penetration of sRL2 into A549 Cells

Sodium azide (NaN3) is known to inhibit ATP synthesis and thus inhibit endocytosis
because endocytosis is an ATP-dependent process [61]. We studied the influence of sodium
azide on the penetration of sRL2 into A549 cells. In two independent experiments, cells
were incubated in the culture medium containing sRL2 at 1.34 µM (nitroxide concentration
4.69 µM) with and without the addition of 1% NaN3. In both cases, after 1 h of cell
incubation, the cells were washed according to the procedure described in Methods. EPR
spectra of all the solutions that were used to wash out the cells and the culture medium
with dissolved sRL2 before and after the cells’ incubation are presented in Figures S12–S14.
In the two experiments with and without the addition of NaN3, the samples contained
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either 3 µL of a cell suspension with 8 µL of the medium or 10 µL of a cell suspension with
9 µL of the medium, respectively, to increase the cell viability during the EPR experiments
(see Section 3.8).
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the addition of sodium azide to the cells incubated with sRL2 leads to a ~5-fold decrease of
the total spin concentration and, therefore, to a ~5-fold decrease of the sRL2 concentration
in the cells. The spectra in both experiments can be well reproduced by the three EPR
spectral components discussed above (for example, see Figure 7).
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Figure 6. EPR spectra of A549 cells after their 1 h incubation with 1.34 µM sRL2 (molar ratio of spin
label 1 to RL22: 3.5) without (a) and with (b) the addition of 1% NaN3, recorded at different time
points after the incubation. The zero time point corresponds to the start of EPR spectra acquisition.
Initial spin concentrations observed by EPR at the zero time point for these two samples were 87 µM
(a) and 16 µM (b). The spectra were acquired at 35 ◦C with the following parameters: microwave
frequency (a) 9.230945 GHz, (b) 9.234907 GHz; (a,b) microwave power 2.0 mW; conversion time (a,b)
19.56 ms; sweep time (a,b) 10.01 s; time constant (a,b) 20.48 ms; (a,b) 512 points; number of scans
(a) 32 or (b) 64. In both cases, the external magnetic field was modulated at frequency 100 kHz and
modulation amplitude 0.2 mT.
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Figure 7. Black: Experimental EPR spectra of A549 cells after their incubation with 1.34 µM sRL2
(molar ratio of spin label 1 to RL22: 3.5) with and without the addition of 1% NaN3. (a) The compar-
ison of the two experimental spectra acquired at 1.02 h (correspondent to no NaN3) and at 0.97 h
(correspondent to 1% NaN3) from the end of the cell incubation with the same sRL2 concentration.
(b) The same spectrum correspondent to 1% NaN3 presented on (a) with a magnification of 5.25 times.
Red and Blue: Simulation of the experimental spectra that is carried out by means of the three
EPR spectral components discussed above with their second integral weight ratios (1):(2):(3) at
0.69:0.28:0.03 (Red, no NaN3) and 0.72:0.23:0.05 (Blue, 1% NaN3).
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We detected the presence of component 1 in the experiment with NaN3; however,
we propose that in this case, endosomes are not formed. We assume that in this case,
component 1 can be assigned to sRL2 that is localized on the inner layer of cell membrane.
RL2 tends to interact with cell membrane; therefore, it may get into cells through direct
penetration (for example, via inverted micelles: a model that is suggested for CPPs) and
remain for some time on the inner layer of the cell membrane. Another determination
scenario of component 1 is sRL2 that is localized on surfaces of organelles.

3.7. Verification of Trypsin Effectivity to Remove sRL2 from Membrane Surface

To prove that trypsin effectively removes sRL2 from the membrane surface we used
EDTA to detach cells from the culture flask and performed EPR measurements with
and without trypsin incubation (see Section 2.2.3). EPR spectrum obtained after trypsin
incubation clearly shows the decrease of immobile fraction in comparison with the same
without trypsin incubation (Figure S15). The experiment confirmed that the immobile
component 1 detected in our experiments belongs to sRL2 bound to the plasma membrane
when cell incubation is short.

3.8. Viability of the Cells during the EPR Measurements

We evaluated the viability of A549 cells during all the EPR experiments. The cells
incubated with 5.5 or 0.5 µM sRL2 were partially sampled to evaluate their viability in
parallel with the EPR experiments. We incubated the cell samples at 37 ◦C and stained
them with trypan blue: a dye that stains dead cells selectively. Counting of dead and live
cells revealed that in both cases, ~95% of the cells were alive after 6.5 h (after the end of
incubation with sRL2), but 100% were dead after 24 h. Nevertheless, we have previously
shown that a half-maximal inhibitory concentration (IC50) of RL2 toward A549 cells is
0.39 mg/mL [48]. This means that 48 h incubation of A549 cells with 2.8 × 10−5 M RL2 kills
50% of the cells. Consequently, the cell death in the EPR experiments is not a consequence
of sRL2 cytotoxicity but rather is due to experimental conditions: the samples for the EPR
experiments were cell pellets with a minimal amount of PBS. By contrast, 99.3% of the cells
were alive after 10 h and 26.5% after 24 h in the case when PBS was added to the cell pellets
after the incubation with 1.34 µM sRL2 and DMEM. In this case, the sample contained 50%
volume of the medium. The results were identical in the experiments with and without
sodium azide.

4. Discussion

In this work, we investigated RL2 penetration into human lung cancer A549 cells by
EPR and confocal microscopy and demonstrated the applicability of spin label 1 to in-cell
EPR experiments at physiological temperatures. Our data showed that the synthesized
spin label 1 can be successfully applied to in-cell EPR experiments with biomolecules
which are conducted at 35 ◦C during more than 15 h. at micromole spin concentrations
(Figures 3 and 6). We assume that spin label 1 can also be utilized in EPR imaging, DNP,
and MRI.

We found that all the experimental spectra of the A549 cells incubated with sRL2 can
be well reproduced by a superposition of easier two or three EPR spectral components
(Figure 4b) with different contributions. We identified these EPR spectral components,
corresponding to different spin label mobility. In the case of two components, we have to
propose that rotational correlation time correspondent to mobile component (component
2* Figure 8b) is decreasing with time which can be assigned to spin label attached to short
oligopeptides formed after digestion of sRL2. The kinetics of the second integral decay of
the EPR spectra for low (1*) and highly mobile (2*) components are shown in Figure 8a. As
was already mentioned above, it is hard to explain such a continuous decrease of rotational
correlation time simultaneously with increasing the weight of component 2* in the context
of penetration of sRL2 into the cell.
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the samples of A549 cells incubated with sRL2 in the four EPR experiments discussed 
above. The spin concentration in the cells in all the cases was determined by a compari-

Figure 8. Second-integral decay kinetics and individual-component kinetics of the EPR spectra of
A549 cells incubated with (a,c) 5.5 µM, (d) 0.5 µM sRL2 (molar ratio of spin label 1 to RL22: 4) or with
1.34 µM sRL2 (molar ratio of spin label 1 to RL22: 3.5) without (e) or with (f) the addition of 1% of
NaN3. (b) Time-dependent change of rotational correlation times for EPR spectral components in the
case when simulations involve only two components. The time is counted from the end of the cell
incubation with sRL2. Black: the total second integral of EPR spectra. (a,b) Red triangles and blue
squares correspond to EPR spectral component 1* and component 2*. (c–f) Orange inverted triangles,
blue triangles, and red circles correspond to EPR spectral component 1, component 2, and component
3, respectively. When the total spin concentration was low, the simulations were performed on the
average set of the experimental EPR spectra to attain a better signal/noise ratio and hence better
simulation. (d) Starting from the 7th point, the simulation was performed on the set of 3, 5, and 7
EPR spectra. (e) Starting from the 12th point, the simulation was performed on the set of 3, 5, 7, 9, 15,
and 19 EPR spectra. (f) Starting from the 1st point, the simulation was performed on the set of 3, 5, 7,
13, and 17 EPR spectra.
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On the other side our data allows us to assign these three components to sRL2 with
mobility similar to that of sRL2 in an aqueous solution (component 2); to spin labeled short
peptides or spin labeled amino acid formed in cells due to protein digestion (component 3);
to sRL2 that is localized on the surface of some large objects (component 1). As we have
previously reported [48] and demonstrated in this work, spin labels in aggregated sRL2
are invisible to EPR. Nonetheless, we can see a low-mobility EPR spectrum (component
1). Therefore, we assigned the low-mobility spectrum to sRL2 bound to some organelles
or/and the membrane. In order to refine the origin of component 1 we incubated cells
for a short time (10 min) to decrease sRL2 inside cells. Then cells were detached from
flask by EDTA which did not remove sRL2 from the cell surface. EPR spectrum of this
sample was compared with cells incubated with trypsin for 30 min after EDTA detachment.
We showed that sRL2 concentration and share of component 1 are higher in the cells
which have not been trypsinized. It means that trypsin digested sRL2 localized on the
cell surface. Moreover, sRL2 binding with the cell surface is characterized by very slow
mobility (component 1 of EPR spectra).

Therefore, we suppose that in all the EPR experiments, when A549 cells are detached
from the flask by trypsin the vast majority of sRL2 is removed from the plasma membrane
and the remaining sRL2 with slow mobility of spin labels is located on the inner membrane
layer of endosomes. It is in line with confocal microscopy results, some fRL2 signals
are colocalized with late endosomes and lysosomes (Figure 5). By contrast, in the EPR
experiment with the addition of sodium azide where new endosomes cannot form, we also
observed the low-mobility EPR spectrum. We suppose that in this case, the low-mobility
component refers to the sRL2 rather situated on surfaces of organelles, which we suppose,
are mitochondria, because earlier it was shown that RL2 interact with mitochondrial
receptor TOM70 [62] than in the inner membrane layer.

Figure 8 illustrates the second-integral decay kinetics of the EPR spectra obtained
for the samples of A549 cells incubated with sRL2 in the four EPR experiments discussed
above. The spin concentration in the cells in all the cases was determined by a comparison
of the second integral of EPR spectra with that of calibrated samples of spin label 1 in an
aqueous solution with the same volumes and temperature. Considering the cell viability
assessment during the EPR experiments (see above), EPR experiments were conducted for
≤15 h after the cell incubation. The addition of the culture medium to the cell sample can
reduce the signal-to-noise ratio in EPR spectra but improve cell viability, consistently with
the data obtained by staining the cells with trypan blue.

We found that the incubation of the cells with RL2 causes protein accumulation in
the cells. It is obvious (Figure 8c,d) that EPR measurements of A549 cells incubated with
0.5 or 5.5 µM sRL2 (spin concentrations 2 and 22 µM, respectively) at initial time points
showed a spin concentration of 50 and 700 µM, respectively, in the cells; these numbers
are ~25- and 30-fold greater than those in the medium used for the cell incubation. On
the other hand, the spin concentration observed in A549 cells incubated with 1.34 µM
sRL2 (spin concentration 4.69 µM) is 87 µM at an initial time point (see Figure 8e), that is,
~19-fold higher than that in the medium. Thus, A549 cell incubation with micromolar RL2
concentrations leads to RL2 concentrations in the cells two to three dozen times as high as
those in the medium.

For the experiment with the highest sRL2 concentration in cells (Figure 8a,c), we
observed a plateau in the first 10 h followed by decay during the next 5 h. We believe
that the observed plateau is a result of a combination of the spin label reduction in cells
and emergence of additional sRL2 from its aggregates, which are not visible to EPR
spectroscopy. It is important to note that the higher RL2 concentration in cells leads to
greater RL2 aggregation. Accordingly, the plateau is observed only in the EPR experiment
with the high sRL2 concentration.

It is known that during endosome maturation, endosomal ATPases pump protons
from the cytosol into the endosomes. RL2 contains 10 histidine residues, which themselves
can take on pumped protons; thus, a high concentration of RL2 can buffer endosomes.
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This process is named the “effect of proton sponge” and has been described for histidine-
rich CPPs [63]. Such an effect can extend the period of endosome maturation and may
sometimes cause osmotic rupture of endosomes. Consequently, the second-integral decay
kinetics is slow in the case of the high sRL2 concentration owing to the long maturation of
endosomes and fusion with lysosomes. Moreover, the accessibility of the spin label to lyso-
somal enzymes is low because RL2 is located on a membrane. We assume that the plateau
duration during the spin signal decay depends on sRL2 concentration in endosomes.

We noticed that the addition of the endocytosis inhibitor (NaN3) leads to a ~5-fold
decrease in the total spin concentration (see Figure 8e,f) and hence to a ~5-fold decrease
in sRL2 content in the cells. Thus, the main pathway of RL2 penetration into A549 cells is
endocytosis, and the main endocytosis pathway is lipid raft–mediated endocytosis, as we
have reported earlier [49].

At the first stage of endocytosis, an invagination forms on the surface of the plasma
membrane, its curvature increases, and an endosome is formed (Scheme 3A). Then, the
neck connecting the plasma membrane with the endosome is pinched off (Scheme 3B), and
the early endosome separates from the plasma membrane (Scheme 3C). Cytosolic protons
are pumped into early endosomes and they mature to multivesicular bodies. Many smaller
vesicles, which are necessary for the sorting of various loads, form inside multivesicular
bodies. Some of these small vesicles may bud from the endosomal membrane and deliver
the contents directly into the cytosol. Other cargo molecules may be transferred to lyso-
somes for degradation of the cargo molecules or can be returned to the trans-Golgi network
for recycling of the cargo molecules back to the plasma membrane.
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Scheme 3. Possible pathways of sRL2 trafficking inside the cell. A—an invagination of the surface of
plasma membrane, B—endosome formation, C—formed endosome. Component 1—sRL2 localized
on the surface of cell or endosomes, component 2—sRL2 localized inside in the cytoplasm, component
3—spin labeled amino acid formed after protein digestion.

Spin labeled amino acid molecules, which represent component 3 of the EPR spectra,
could be a consequence of proteasomal degradation of sRL2 molecules in the cytoplasm:
lysosomal or autophagosomal digestion of sRL2 (Scheme 3). It has been shown that both
intrinsically disordered and aggregated proteins located in the cytoplasm are degraded
by proteasomes and autophagosomes [64–66]. We observed RL2 inside double-membrane
vesicles, which we believe are autophagosomes after 6 h of incubation (Figure S16). Earlier,
we have shown that RL2 induces autophagy in cancer cells [67,68].

It is more likely that the component 2 corresponds to monomolecular sRL2 molecules
inside endosomes or mainly in the cytoplasm. sRL2 could reach the cytoplasm by direct
penetration through the plasma membrane, through lysosomal escape, or via a release from
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multivesicular bodies. The direct penetration is a rapid process, whereas the release from
endosomes takes some time. Consequently, the most probable origin of the component 2 in
the cytoplasm at the very first moment of EPR spectroscopy (Figure 8) is direct penetration
into the cell. The share of component 2 is lower in the cells exposed to the high initial
sRL2 concentration (Figure 8c,d). Probably, it is caused by endocytosis stimulation at
the high concentration of sRL2, which accumulates on the cell surface. Another possible
reason is strong aggregation in the culture medium, thereby leading to the absence of
stand-alone sRL2 molecules in endosomes. The weight ratio of component 2 to component
1 is very low and equals 15:80 for the cells incubated with 2 × 10−6 M spin label equivalent;
therefore, component 2 includes not only the protein that penetrate the cells directly but
also stand-alone molecules in endosomes. We should also note that the second form of
component 2 could be sRL2 bound on one end to organelles and poses high mobility.

The EPR method alone is not enough to distinguish the localization inside endosomes
from the localization inside the cytoplasm. This problem could be solved by means of a
pH-sensitive spin label. Unfortunately, until recently, pH-sensitive spin probes have not
been very resistant to reduction and could not be used for in-cell EPR experiments; the
design of suitable spin probes is underway.

The combination of confocal microscopy and EPR spectroscopy is useful for the
research on peptide penetration for the following reasons. On the one hand, EPR allows
us to trace in real time the kinetics of a single protein state transformation but does not
show the location of the protein in cells. On the other hand, confocal microscopy makes it
possible to trace RL2 locations in the cell, but we cannot distinguish the signal of the labeled
protein from the residual fluorescent dye label after protein digestion. Taken together, these
methods help us to shed light on the complete picture of RL2 penetration.

5. Conclusions

In this study, we employed reduction-resistant spin label 1 based on 3-carboxy-2,2,5,5-
tetraethylpyrrolidine-1-oxyl (2). It is shown that stable spin probe 2 cannot penetrate into
the cell, whereas the attachment of this spin label to a human kappa casein fragment, RL2,
capable of penetrating the cell allows us to study its stability in human lung adenocar-
cinoma A549 cells and to follow its transformation inside the cells by EPR spectroscopy.
The stability of spin label molecules is very high and makes it possible to investigate the
kinetics and changes in the EPR spectra for more than 15 h. It is demonstrated that the
shape of the EPR spectra is affected by three contributions: the spin-labeled protein with
very low mobility (which mostly sticks to the membrane of endosomes), the spin-labeled
protein with mobility similar to that of sRL2 in an aqueous solution, and the spin labeled
short peptides formed in the cells owing to protein digestion. EPR helps us to follow the
kinetics of different forms of sRL2 and its transformation at micromolar sRL2 concentration
in cells.

The results indicate that the EPR approach may be used to investigate the kinetics
and mechanisms of penetration of a non-aggregating protein into the cell. CPPs are
known for their effective penetration of the cell via direct passage through the plasma
membrane or endocytosis and for their ability to deliver cargo molecules into the cell.
Unlike electroporation and microinjection, intracellular delivery of cargo molecules using
CPP is suitable for in vivo applications. It is possible to increase the spin label-to-protein
ratio in order to raise the concentration of the spin label in the cell. We noticed that after
the penetration of the spin-labeled protein into the cell, the label gets detached and features
narrow lines in the EPR spectrum. This approach can be utilized for gentle and efficient
delivery of spin probes during EPR imaging and for the design of a DNP agent. To increase
sensitivity, the deuteration of the ethyl group in spin label 1 can ensure narrow lines of free
nitroxides and increase EPR imaging sensitivity.

Supplementary Materials: The following are available online, Figure S1: Labeling of lysine residue
using spin label 1; Figure S2: SDS-PAGE: first column—marker 4–20% TRIS-glycine SDS-PAGE;
second column clean RL2 dimer (RL22); Figure S3: EPR spectra of the samples of sRL2 in aqueous
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solution with different molar ratios of spin label 1 to RL22; Figure S4: EPR spectra of A549 cells
incubated with sRL2 samples with molar ratios of spin label 1 to RL22; Figure S5: Experimental
EPR spectra of radical 2 in phosphate-buffered saline and sRL2 in an aqueous solution; Figure S6:
Experimental EPR spectrum of A549 cells after their incubation with sRL2; Figure S7: EPR spectra of
cell medium with dissolved nitroxide 2 before and after cells incubation; Figure S8: CW EPR spectra
of the cell medium with dissolved sRL2; Figure S9: CW EPR spectra of trypsin solutions after their
application to wash the cells incubated with high, and low sRL2 concentrations; Figure S10: CW EPR
spectra of PBS solutions after their application to wash the cells before and after cells washing by
trypsin; Figure S11: CW EPR spectrum of the cell medium with dissolved sRL2 after addition of large
excess of HCl; Figure S12: CW EPR spectra of the cell medium with dissolved sRL2; Figure S13: CW
EPR spectra of trypsin solutions after their application to wash the cells incubated in the medium
with dissolved sRL2; Figure S14: CW EPR spectra of PBS solutions after their application to wash the
cells incubated with sRL2; Figure S15: Brief cells incubation with sRL2. Exposure to trypsin; Figure
S16: Localization of the fluorescent RL2 conjugate in A549 cells in 6 h after their incubation; Figure
S17: Simulation of experimental spectra by two components. Table S1. RL2 sequence in single letter
designation. Highlighted letters: (green)—lysine, (blue)—cysteine. Table S2: Colocalization analysis
of green and red signals inside A549 cells.
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