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Abstract Recently an iterative method was proposed to
enhance the accuracy and efficiency of ligand-protein bind-
ing affinity prediction through linear interaction energy
(LIE) theory. For ligand binding to flexible Cytochrome
P450s (CYPs), this method was shown to decrease the root-
mean-square error and standard deviation of error prediction
by combining interaction energies of simulations starting
from different conformations. Thereby, different parts of
protein-ligand conformational space are sampled in paral-
lel simulations. The iterative LIE framework relies on the
assumption that separate simulations explore different local
parts of phase space, and do not show transitions to other
parts of configurational space that are already covered in
parallel simulations. In this work, a method is proposed
to (automatically) detect such transitions during the sim-
ulations that are performed to construct LIE models and
to predict binding affinities. Using noise-canceling tech-
niques and splines to fit time series of the raw data for the
interaction energies, transitions during simulation between
different parts of phase space are identified. Boolean selec-
tion criteria are then applied to determine which parts of the
interaction energy trajectories are to be used as input for the
LIE calculations. Here we show that this filtering approach
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benefits the predictive quality of our previous CYP 2D6-
aryloxypropanolamine LIE model. In addition, an analysis
is performed of the gain in computational efficiency that
can be obtained from monitoring simulations using the
proposed filtering method and by prematurely terminating
simulations accordingly.
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Introduction

Recently, we explored an iterative linear interaction energy
(LIE) method to efficiently predict binding affinities of
novel compounds to highly flexible proteins [1, 2]. The
framework makes use of the approach of Stjernschantz
and Oostenbrink [3] to sample different (relevant) parts
of conformational space in multiple (short and parallel)
molecular dynamics (MD) simulations. Thereby, the accu-
racy in computing free energies of binding (AGp;ng) Was
increased, while simultaneously reducing the computational
efforts needed to compute AGp;,g values. In addition, the
method was developed such that intermediate steps can be
performed in an automated fashion, making it suited for
industrial, (semi-)high-throughput use. The approach relies
on the LIE method [4], which has been chosen for its merits
to be fast thanks to a scoring component and to be able to
include protein flexibility through the underlying MD sim-
ulations. The latter is crucial when dealing with flexible and
promiscuous proteins such as Cytochrome P450 (CYPs),
which can oxidize a broad range of (apolar) compounds [5].
In addition, many CYPs are able to bind ligands in different
binding poses as demonstrated by the possibility of several
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CYPs to oxidize substrates at different atomic sites. In order
to account for multiple possible ligand-binding modes (and
because a priori information on dominant binding modes
is often lacking), the iterative LIE approach was used to
incorporate results from multiple parallel MD simulations
that start from different binding poses [1-3] and protein
conformations [1, 2].

The central LIE equation can be formulated as follows

[4]:

_ vdW vdW
AGeale = @ (<Vligsurr>bmmd - (Vlig‘mrr>free)

[ [
+8 <<Vl?g—surr>bwmd - <Vl?g—surr>free> . (D

where o and § are van der Waals and electrostatic scaling
parameters, respectively. Both « and j are treated as empir-
ical parameters here and have previously been reported to
adopt a range of values for human CYPs [1-3, 6, 7]. Note
that as in other recent LIE models from our group [1, 2,
7], we did not include an additional offset parameter y

ypdw > in Eq. 1 is the MD-averaged

lig—surr
van der Waals interaction energy between the ligand and

its surroundings (either when bound to the protein (bound)

for fitting here. <

or when freely present in the solvent (free)). <\Q§é_surr> in
Eq. 1 is the MD-averaged electrostatic interaction energy
between the ligand and its surroundings.

Equation 1 relies on the assumption that average inter-
action energies are calculated based on sufficient confor-
mational sampling of the complex, i.e., of the relevant
ligand-binding poses and protein conformations. However,
it is computationally demanding to achieve sufficient sam-
pling for a ligand that is bound to a flexible protein and/or
for which multiple binding poses are available.

Using iterative LIE, a set of protein-ligand conformations
can be used as starting points for parallel MD simulations.
Results from the various simulations of a given ligand-
protein complex are then combined by assigning weights W;
to the results from the individual simulations i [8]:

’AGcalc,i
e kBT

W; = @)

N _AGcalz:,i :

e 8T

i

W; depends on the free energy of binding calculated from
the corresponding simulation (AG 4 i), the temperature T
and the Boltzmann constant kg. N is the total number of
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simulations of the complex. Introducing the W;’s into the
LIE formula results in the following equation [3]:

N
AW dw
AGegic=a 2 : i ((Vlli)g‘mrr>bound,i _<Vlli)gsurr>free)
i
N
" [
+ﬂ E Wi (<Vl?g—surr>b0undj _<Vﬁg_‘mrr>free> - O
i

Every simulation i will cover a local part of conforma-
tional space, and the subsequent combination of results from
different simulations i using Eq. 3 is only valid when there
is no overlap in configurational space between the differ-
ent simulations [8]. Therefore, care should be taken even
when combining results from different protein-ligand sim-
ulations, because major conformational changes may occur
during a simulation. Such transitions should be dealt with
in an appropriate way, such that only MD energy trajecto-
ries corresponding to separate parts of configurational space
will be summed over in Eq. 3. Although the probability of
major conformational changes in short simulations is lim-
ited, when occurring they can result in inaccurate estimates
of (V[,-g_sur,): in that case, average nonbonded interaction
energies may significantly deviate from the averages for the
separate local parts of conformational space visited before
and after the configurational transition.

In the current work, an (automated) analysis tool was
designed to detect configurational changes during individ-
ual simulations. Based on a set of preoptimized presets,
the tool filters MD trajectories in order to include only
average interaction energies obtained for local parts of con-
formational space. The design of this method is presented
below, followed by an assessment of its effect on the effi-
ciency and prediction accuracy of the iterative LIE model
for aryloxypropanolamine binding to the flexible CYP 2D6
enzyme, as introduced in reference [2].

Methods
Simulation settings

Experimental AGyp;,q values for the training of LIE param-
eters o and B were derived from inhibition data reported by
Vaz et al. [9]. The aryloxypropanolamine ligand training set
from our previous work [2] was extended with ligands 1,
2,4,9, 11-18, 21, 23-25, 27, and 29-36 from Vaz [9]. The
ligands were docked into the two protein conformations of
Hritz et al. [10] used in the LIE model presented in refer-
ence [2]. Docking of the ligands into the protein structures
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was performed using PLANTS in combination with the
ChemPLP scoring function [11, 12]. Using heavy-atom
coordinate based principal component analysis (PCA) and
k-means clustering [13], up to eight different ligand poses
were selected per protein conformation to start MD simu-
lations using GROMACS 4.5.7 [14] in order to calculate
{Viig—surr); values in Eq. 3. The protein was described using
the Amber99SB force field, heme parameters were taken
from reference [15], and ligand parameters were generated
using ACPYPE and the General Amber Force Field [16—
18]. The system was solvated in a dodecahedrical box of
approximately 20,000 TIP3P water molecules [19] contain-
ing six sodium counterions. Hydrogens were converted to
heavy hydrogens (with a mass of 4.032 amu) and bonds
were constrained using the LINCS algorithm [20], allowing
a timestep of 4 fs. As previously [2], a Berendsen thermo-
stat [21] with a coupling time of 0.1 ps was employed to
maintain the temperature of the system close to its refer-
ence value, using separate temperature baths for the solvent
and solute degrees of freedom, and a Berendsen barostat
[21] was used to maintain the pressure close to its reference
value during NpT simulations with a coupling time of 0.5 ps
and an isothermal compressibility of 4.5 % 10 >bar~!. Van
der Waals and short-range electrostatic interactions were
explicitly evaluated every time step for pairs of atoms that
were within a 0.9 nm cut-off by using a grid-based neigh-
bor list that was updated every two time steps. Long-range
electrostatic interactions were included by using the smooth
particle mesh Ewald method [22] with a maximum fast
Fourier transform grid spacing of 0.125 nm for the recipro-
cal space sum. After steepest-descent energy minimization
and thermal equilibration, 0.5 ns equilibration was per-
formed, followed by 1.0 ns production. Note that interaction
energies were stored every 2 ps.

Interactions of the unbound ligand with the solvent
were evaluated from a single MD simulation per lig-
and using identical settings. Average interaction energies
(VH g_mrr> free WeTE calculated by averaging over the com-
plete production run. For this purpose, the unbound ligands
were solvated in dodecahedral boxes containing approxi-
mately 650 TIP3P water molecules, and no counter-ions
were introduced.

Calculating average interaction energies for local parts
of conformational space

The energy trajectories obtained from MD were used to
detect protein-ligand configurational changes during sim-
ulation. The first step aims at finding transitions between
conformations by identifying large and rapid changes in

. . . . . el
the protein-ligand interaction energies V; e—surr,bound and

UdW . . . .
lig—surr.bound during simulation. These changes are typi-

cally associated with a change of orientation of the ligand, a
change of shape of the active site, or a combination of both.
Because it is not always trivial to monitor the relevant ori-
entational changes during simulation, we follow changes in
interaction energies over time instead.

. . el
The raw data for the time series of V; e—surr,bound and

vdW : 1
Vlig—s wrrbound Aare first processed through a low-pass fil-

ter using Fourier transformation to remove high-frequency
fluctuations related to thermal fluctuations of the system.
Under the assumption that interaction energies fluctuate
around constant values between conformational changes,
splines are fitted to the Fourier-filtered data. After this
step, gradients of the splines are calculated. If the gradi-
ent exceeds a preset cut-off, a change in configuration is
recorded. Figure 1 illustrates these subsequent steps for an
example trajectory.

Once transitions are identified in this way, the average
protein—ligand interaction energies that enter (3) are calcu-
lated from the raw energy data within the time span that is
selected as follows:

(1) From the time windows between configurational tran-
sitions, the first window with a minimal length L is
selected. L has to be optimized for a given model with
respect to the typical frequency of transitions in the
individual simulations of the systems.

(2) From the selected window, the first time span that is
equal to L is used.

(3) If under (1) no window is found of length L or longer,
the longest available window is selected. A warning is
displayed.

Note that step (2) is introduced in order to investigate how
much the computational efficiency of iterative LIE affinity
predictions can be further improved. Applying the protocol
to typical simulation data as displayed in Fig. 1, two win-
dows are detected ranging from 0 — 230 ps and 500 — 1000
ps. With L set to 200 ps, interaction energies would be aver-
aged over the first 200 ps of the simulation. With L >
230 ps, interaction energy averages would be taken over the
according time span that starts at 500 ps.

Filtering settings
All steps towards detection of configurational transitions
from interaction-energy time series were performed using

standard Python libraries numpy and scipy. scipy.fft is used
to convert the energy data into Fourier space. In Fourier
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Fig. 1 The sequence of filtering
steps applied to the raw data for
the electrostatic (black) and van
der Waals (red) protein—ligand
interaction energies (thin
continuous lines in the lower
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panel). The data are first filtered
using a Fourier transform
(dashed lines, lower panel), then
splines are fitted to the filtered
data (thick lines, lower panel).

The gradients of the fitted 1)) A

splines are then calculated
(straight lines, upper panel). A
change in conformation is
considered to have occurred
when the absolute value of the
gradient exceeds a predefined
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ps*1 , dashed line, upper panel)
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space, only the first 15 elements of the Fourier array are
converted back to real space (the complex elements are
discarded).

scipy.interpolate. UnivariateSpline is used to fit splines,
with k (degree of smoothing) set to 1, and the posi-
tive smoothing factor s = 999. To obtain the gradient,
numpy.gradient is used. If the absolute value of the gradient
exceeds a cut-off value of 0.2 kJ mol ™! ps’l, a transition is
registered (Fig. 1, upper panel).

Results and discussion

Starting from the two CYP 2D6 structures of Hritz et al.
[10] used previously [2], MD simulations and LIE calcula-
tions were set up and performed according to the settings
described in the Methods section. This setup is optimized to
include a larger number of ligands and initial starting poses
of the ligand (up to eight per protein conformation in the
current work), when compared to the setup used in reference
[2]. Hence, an accordingly larger number of simulations is
introduced in Eq. 3, which enables optimal exploration of
the potential of the filtering methods presented here.

To study the efficiency and accuracy of the proposed fil-
tering method, the minimal length L of the time window
used to calculate average interaction energies was varied,
while values for the gradient cut-off and noise-filtering fre-
quency were maintained identical in all models. The filtered
(thermal) noise level and gradient cut-off were optimized
here based on visual inspection of the results of the fitting
for a small set of selected energy trajectories. In further
studies, a way to optimize values for the filtering settings
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through training, and the subsequent effect on the accu-
racy and efficiency of the resulting LIE models, could be
investigated.

LIE models calibrated using average interaction energies
that were obtained by subsequently following steps (1), (2),
and (3) as described in the Methods section (with L = 200,
400, or 600 ps) are presented as ‘filtered’ models in Tables 1
to 3. Root-mean-square errors (RMSEs) and standard devi-
ation of prediction errors (SDEPs) are shown in Table 1,
and o and B values in Table 2. SDEP values were calcu-
lated from a Leave-One-Out cross-validation test. The last
three columns in Table S1 of the Supplementary Material
show that for most compounds «, 8 and RMSE of the fil-
tered model with L set to 200 ps do not change substantially
when leaving out single compounds from the training set.

The properties of the filtered models were compared
with LIE models calibrated using interaction energies aver-
aged over the first 200, 400, and 600 ps of each simulation
(referred to as ‘unfiltered’ models in Tables 1 to 3). As a
reference, a LIE model is also presented using interaction
energies averaged over 1000 ps of the individual produc-
tion simulations (from hereon referred to as the ‘ns’ model,
last column in Tables 1 to 3). Note that the RMSD, SDEP,
o and B values for this model are different from the model
presented in reference [2], due to differences in the docking
and clustering algorithms used, in the set of training com-
pounds used, and in the force field employed during MD
simulations.

In addition to the filtered models, LIE models were cal-
ibrated in which step (2) of the protocol in the Methods
section was omitted and interaction energies were averaged
over the full time window selected under step (1) (or (3)) of
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Table 1 Root-mean-square error (RMSE) and standard deviation in error prediction (SDEP) values for LIE models with <V1f'i'*-wrr>h J s and
ound ,i
< Z?dfvmrr> ’s in Eq. 3 averaged over various time spans of simulations i
8 bound,,i
L 200 ps 400 ps 600 ps 1000 ps
RMSE SDEP RMSE SDEP RMSE SDEP RMSE SDEP
(kI mol~1) (kJ mol~1) (kJmol~1) (kJmol~1) (kJ mol~1) (kJ mol~1) (kJ mol~1) (kJ mol~1)
Unfiltered?® 6.35 8.69 6.05 8.56 6.14 8.50 6.03 8.46
Filtered® 5.76 8.41 5.63 8.02 5.69 8.05
Filter+ext® 5.89 8.52 5.68 8.08 5.65 8.05

4Ligand interaction energies in protein simulations averaged over the time span ranging from 0 ps to L

PTime spans selected according to the protocol in the Methods section
¢Same as °, but step (2) of the protocol is omitted

the protocol. In the typical example displayed in Fig. 1, this
would have as a consequence that for L set to 400 ps, inter-
action energy averages would be taken over the time span
ranging from 500 ps to 1000 ps (instead of to 900 ps). In
Tables 1 to 3, the models that make use of the extended time
window are referred to as ‘filter+ext’.

The first line in Table 1 shows that for the unfiltered LIE
models, longer sampling times lead to slightly more accu-
rate predictions. With increasing simulation time, RMSE
and SDEP values decrease, but the increase in accuracy is
limited (with a maximum decrease in RMSE and SDEP
values of less than 0.4kJmol™'). When considering the
filtered and ‘filter+ext’ models (Table 1), the RMSE and
SDEP decreased also slightly or adopted similar values with
increasing simulation time. Models calibrated using filtered
energy trajectories to calculate average interaction energies
perform at least as well as the ns model. This is not only
demonstrated by the differences in RMSE and SDEP val-
ues (Table 1) but also when comparing the correlations
between experimental and calculated AGp;,g values (cf.
Fig. 2 and Table S1 of the Supplementary Material, which
reports individual values for and errors in the calculated
AGyping values). This indicates that, as expected, the noise

due to possible conformational changes during simulation
is reduced. In general, the filtering has a positive impact on
the affinity prediction for individual compounds, as illus-
trated in Fig. 2 for the filtered model with L = 200 ps.
Although predictions for some ligands become less accurate
upon recalibration of the ns model, after filtering the energy
trajectories, several ligands for which the prediction by the
ns model deviates more than 5kJmol~! from experiment
are predicted with increased accuracy in the filtered models.

Table 2 shows that in terms of « and 8 value, the filtered
models are similar to the unfiltered ones: the filtered mod-
els have o and 8 values within 1-2 % of the ns model. In
addition, the similarity of the three filtered models (Table 2)
indicates that their @ and B values are less sensitive to
the length of the simulations used than for the unfiltered
models. The similarity between the filtered and ‘filter+ext’
models shows as well that once a time window is selected,
the length L (i.e., length of local sampling) is of limited
influence on model calibration. Upon filtering, only win-
dows are used during which interaction energies (thermally)
fluctuate around a relatively constant value. Therefore, the
average values for the energies are decoupled from the
degree of sampling during the individual simulations i in

Table 2 « and § values for LIE models with <Vl‘il o > ’s and <‘/]de > ’s in Eq. 3 averaged over various time spans of simulations i
tg—surr bound,i tg—surr bound,i
L 200 ps 400 ps 600 ps 1000 ps
o B a B a B o B
Unfiltered* 0.442 0.078 0.446 0.080 0.447 0.084 0.448 0.090
Filtered” 0.441 0.088 0.444 0.088 0.444 0.088
Dilter+ext® 0.442 0.087 0.445 0.091 0.445 0.090

4Ligand interaction energies in protein simulations averaged over the time span ranging from 0 ps to L

bTime spans selected according to the protocol in the Methods section

Same as °, but step (2) of the protocol is omitted

@ Springer
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Table 3 Average time per simulation i in Eq. 3 (sim.) needed to calibrate the models reported in Tables 1 and 2

L 200 ps 400 ps 600 ps 1000 ps

Average used? corr.® used? corr.® usedd COIT. usedd corr.®
sim. time (ps) (ps) (ps) (ps) (ps) (ps) (ps) (ps)
Unfiltered? 200 200 400 400 600 600 1000 1000
Filtered® 194 283 342 656 435 851

Filter+ext® 526 614 539 853 540 957

4Ligand interaction energies in protein simulations averaged over the time span ranging from 0 ps to L

>Time spans selected according to the protocol discussed in the Methods section

¢Same as °, but step (2) of the protocol is omitted

dSimulation times are counted from 0 ps until the end of the time span defined in ® or ©

eSame as 4, but for simulations for which the selected time span is shorter than L, 1000 ps was used in the calculation of the average time

Eq. 3. In conclusion, filtering allows to use shorter simula-
tions to calibrate iterative LIE models, without negatively
influencing the quality of the model.

In order to evaluate the gain in computational efficiency
by using our filtering approach, the simulation times needed
to develop the models are summarized in Table 3. For every
simulation i in Eq. 3, the average simulation time needed

dw
and <Vl-’ >
) bound,i lig—surr bound,i. .
the time before accessing the time span (over which inter-

actions are averaged) and the time span itself. In practice, in
the case that no window could be selected with a length >
L (step (3) in the protocol in the Methods section), it is only
possible to conclude that all time windows are shorter than
L once the time of simulation i reaches 1000 ps. For this

el :
to evaluate <V1 i g,s,m> includes
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Fig. 2 Comparison between the ‘ns’ model and the filtered model
with L set to 200 ps. The base of each arrow is located on the result
of the ‘ns’ model, while the arrow points at the result of the filtered
model
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reason, Table 3 also reports corrected average simulation
times (corr.) that include the full length of the simulation
in those cases. The corrected time is representative for the
average over individual simulation times needed to train the
filtered (or ‘filter+ext’) models. From Table 3, the average
simulation time needed to calibrate the filtered model with
L = 200 ps is only 28 % of the time needed for the ns
model, corresponding to a gain in efficiency of 72 %. For
L = 400 ps, a gain of 34 % was obtained. Note that for
the system studied here, this represents a reduced computa-
tional effort of 300 and 100 ns less simulation time in total,
respectively. Looking in detail at the number of simulations
for which a window of at least length L was found accord-
ing to the protocol in the Methods section, our data show
that for more than 90 % of the individual simulations a time
span with L = 200 ps could be found. For 57 % and 37 %
of the simulations, a time span of 400 ps or 600 ps was
found, respectively. This correlates with the probability of
finding a time span of a given length within a simulation
of fixed length, under the assumption of random transition
frequencies and occurrences. In addition, it demonstrates
that for the CYP 2D6-aryloxypropanolamine system, espe-
cially for relatively small L (200 ps), a significant gain in
computational efficiency could be obtained.

Conclusions

This study shows that through filtering of the interaction
energy trajectories used to develop an iterative LIE model,
it is possible to improve its predictive quality and efficiency.
For the considered system (a set of aryloxypropanolamines
binding to Cytochrome P450 (CYP) 2D6) the improvement
in accuracy is limited, with a decrease in root-mean-square
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error and standard deviation of error prediction of less
than 0.4kJmol~!. A key advantage of using the filtering
approach is the substantial decrease in (simulation) time
needed to calibrate an iterative LIE model and to pre-
dict affinities with the model. Implementing the proposed
filtering protocol to assess during simulation whether con-
figurational transitions are occurring (thereby allowing the
simulation to be terminated prematurely if sufficient sam-
pling is achieved) would make it possible to significantly
reduce the required simulation time.

For the CYP 2D6 protein and aryloxypropanolamine lig-
and set, it was shown that a model can be calibrated using
filtered energy trajectories with a prediction accuracy that is
similar to or slightly better than the unfiltered model based
on full-nanosecond simulations. Using a 400 ps window, a
model with slightly decreased SDEP and RMSE can be pro-
posed that has comparable « and 8 parameters, but only
carries 66 % of the original costs. Using a 200 ps window,
the quality improvement is slightly less, but a reduction of
computational cost of 72 % can even be achieved.

An additional gain in computational efficiency could be
achieved by applying the filtering protocol already during
the equilibration phase of the molecular dynamics (MD)
simulation. Currently, a 0.5 ns equilibration run is per-
formed before starting to collect interaction energies from
MD. In some cases, an equilibrated conformational state is
reached before the end of the equilibration phase, whereas
in other cases, parts of the production phase are also needed
in addition to reach this conformation. The filtering tool is
designed to detect converged parts of interaction energies,
which could be indiscriminately applied to the equilibration
or the production step of the simulation, thereby possibly
further decreasing simulation times needed for predictions
by and calibration of iterative LIE models.
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