
RESEARCH ARTICLE

Spatially resolved characterization of tissue

metabolic compartments in fasted and high-

fat diet livers

Sylwia A. StopkaID
1,2, Jiska van der ReestID

1,3, Walid M. Abdelmoula1, Daniela F. Ruiz1,4,

Shakchhi Joshi3, Alison E. Ringel3, Marcia C. HaigisID
3*, Nathalie Y. R. AgarID

1,2,5*

1 Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,

United Statees of America, 2 Department of Radiology, Brigham and Women’s Hospital, Harvard Medical

School, Boston, MA, United Statees of America, 3 Department of Cell Biology, Blavatnik Institute, Ludwig

Center, Harvard Medical School, Boston, MA, United Statees of America, 4 Bouvé College of Health
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Abstract

Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists

between cell types, within tissues, and subcellular compartments. The liver plays an essen-

tial role in maintaining whole-body metabolic homeostasis and is structurally defined by met-

abolic zones. These zones are well-understood on the transcriptomic level, but have not

been comprehensively characterized on the metabolomic level. Mass spectrometry imaging

(MSI) can be used to map hundreds of metabolites directly from a tissue section, offering an

important advance to investigate metabolic heterogeneity in tissues compared to extraction-

based metabolomics methods that analyze tissue metabolite profiles in bulk. We estab-

lished a workflow for the preparation of tissue specimens for matrix-assisted laser desorp-

tion/ionization (MALDI) MSI that can be implemented to achieve broad coverage of central

carbon, nucleotide, and lipid metabolism pathways. Herein, we used this approach to visual-

ize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly

organized metabolic tissue compartmentalization in livers, which becomes disrupted under

high fat diet. Fasting caused changes in the abundance of several metabolites, including

increased levels of fatty acids and TCA intermediates while fatty livers had higher levels of

purine and pentose phosphate-related metabolites, which generate reducing equivalents to

counteract oxidative stress. This spatially conserved approach allowed the visualization of

liver metabolic compartmentalization at 30 μm pixel resolution and can be applied more

broadly to yield new insights into metabolic heterogeneity in vivo.

Introduction

Advances in single-cell analysis approaches have revealed that cells within tissues can be meta-

bolically distinct and have unique contributions to physiology and pathology [1]. Metabolic
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compartmentalization between cellular organelles, within organs, and at the whole-body level

is essential to meet the bioenergetic and anabolic demands of organisms. Additionally, meta-

bolically distinct microenvironments develop within tissues based on physiological factors

such as proximity to the vasculature, which supplies nutrients and oxygen while removing

metabolic waste products.

The liver is organized by regions of functional and spatial heterogeneity. Hepatocytes are

structured in neat rows along the liver lobule axis from the portal vein that receives venous

blood from the gut towards the central vein, which returns the blood into circulation [2]. As

such, the oxygen gradient is highest for periportal hepatocytes and decreases towards the peri-

central area [3]. Opposing gradients of oxygen and Wnt signaling along with the radial lobule

axis drive differential gene expression signatures[4]: approximately half of all genes in mouse

hepatocytes are expressed in a zonated fashion in both space and time [5–7]. This organization

drives profound differences in metabolism: periportal hepatocytes rely on the oxidation of

fatty acids for energy and perform metabolic functions such as gluconeogenesis, the urea cycle,

and biosynthesis of cholesterol and proteins [8]. In contrast, pericentral hepatocytes display

glycolytic energy metabolism and synthesize lipids, bile, and glutamine.

The liver plays an essential role in maintaining whole-body metabolic homeostasis in

response to nutrient abundance and restriction [9]. In a satiated state, hepatocytes oxidize glu-

cose to generate energy and synthesize fatty acids [10]. Fatty acids are then esterified into tria-

cylglycerols (TAGs) and transported to the adipose tissue for storage. In fasted conditions, the

adipose tissue releases fatty acids for oxidation by the liver to yield ketone bodies that can fuel

distant organs [11]. Additionally, the liver performs glycogenolysis and gluconeogenesis to

restore circulating glucose levels upon fasting. In contrast, upon prolonged nutrient excess

conditions, the liver acts as an overflow depot for lipids when the endocrine and storage func-

tions of the adipose tissue become compromised [12]. With rising rates of obesity, nonalco-

holic fatty liver disease (NAFLD) is an increasing cause of morbidity and mortality.

Despite the liver’s central role in metabolic homeostasis, liver metabolism is characterized

mostly on the gene, protein, and signaling levels. However, as hepatocytes make up over 80%

of liver mass [13], metabolite profiles obtained with conventional extraction-based metabolo-

mic methods skew towards hepatocellular metabolism at the expense of other resident cell

types. Hepatic heterogeneity can be investigated by mapping many key enzymes using immu-

nohistochemistry. For example, higher levels of glucose-6-phosphatase, succinate dehydroge-

nase, and phosphoenolpyruvate carboxykinase were expressed in the periportal compared to

the centrilobular cells where lactate dehydrogenase, glutamate dehydrogenase are highly

expressed [14,15]. Spatially resolved metabolite profiling could yield new insights into meta-

bolic heterogeneity and functionally specialized regions within the liver.

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is

a label-free technique that allows for in situ spatial mapping and quantification of hundreds of

metabolites from a single tissue section [16–18]. Recent mass spectrometric advances have led

to an increasingly higher spatial resolution that now approximates single-cell and sub-cellular

analytic capability [19,20]. However, several outstanding challenges in sample preparation and

data acquisition needs to be addressed to ensure the robustness of metabolome-scale analyses

[21,22]. Unique adaptations are required to yield reproducible and biologically relevant data

for small metabolite analyses, including quenching metabolic activity, metabolite stabilization,

matrix optimization, and data acquisition [16]. Several studies investigating some aspects of

liver metabolism using MALDI MSI have been published, including lipid analysis, bile acid

metabolism, N-glycans, drug metabolism and protein distributions [14,23–25].

In this study, we implemented MALDI MSI to spatially map the distribution of small

metabolites to recapitulate key bioenergetic activities. We interrogated the liver metabolic

PLOS ONE Characterization of metabolic compartmentalization in the liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0261803 September 6, 2022 2 / 19

by an NIH T32 (award number: T32EB025823)

fellowship. D.R. is supported by the NCI CaNCURE

grant (award number: R25 CA174650). A.E.R is

supported by postdoctoral fellowships from the

American Cancer Society (United States; 130373-

PF-17-132-01-CCG) and Cell Biology Education

and Fellowship Fund (United States; Harvard

Medical School). M.C.H. is supported by the

Ludwig Center at Harvard Medical School, the Paul

F. Glenn Foundation for Medical Research, and NIH

grant R01DK127278. This work was funded in part

by the Pediatric Low-Grade Astrocytoma Program

(award #9616692) at PBTF (N.Y.R.A.). The work

was also funded by NIH U54 CA210180 MIT/Mayo

Physical Science Oncology Center for Drug

Distribution and Drug Efficacy in Brain Tumors (N.

Y.R.A.) and the Ferenc Jolesz Advanced

Technologies National Center for Image Guided

Therapy NIH P41 EB028741.

Competing interests: NYRA is key opinion leader

for Bruker Daltonics, scientific advisor to Invicro,

and receives support from Thermo Finnegan and

EMD Serono; M.C.H. has received funding from

Roche. This does not alter our adherence to PLOS

ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0261803


response to nutrient stress and excess conditions with a spatial resolution of identified patterns

of metabolic specialization within liver tissues. We observed that fasting induced metabolic

shifts in central carbon metabolism in the liver in a spatial manner, while in conditions of pro-

longed nutrient excess induced by a high-fat diet, mice develop fatty livers that remodel central

carbon metabolism towards increased pentose phosphate pathway and purine metabolism.

Taken together, we show that introducing spatiality into metabolomic analyses reveals an addi-

tional layer of metabolic complexity and that our workflow can be applied broadly to yield

new insights into metabolic heterogeneity in vivo.

Materials and methods

Mouse studies

C57BL/6J (000664) and BALB/cJ (000651) mice were obtained from The Jackson Laboratory.

Mice were housed at 20–22˚C on a 12 h light/dark cycle with ad libitum access to food (Pico-

Lab Rodent Diet 5053) and water. All animal studies were performed in accordance with Hai-

gis lab protocols approved by the Standing Committee on Animals, the Institutional Animal

Care and Use Committee at Harvard Medical School. For heat inactivation studies, 3 mice

were used (C57BL/6J, female, 7 weeks old) and kidneys, brain halves, and liver lobes from the

same individual animal were subjected to the different heat inactivation treatments (overview

in S1A and S1E Fig). For desiccation experiments, 2 mice were used (C57BL/6J, male, 7 weeks

old). For fasting experiments, two independent cohorts of 5 mice were used per treatment

group (BALB/cJ, female, 10–11 weeks old) and mice were subjected to a 16 hour overnight

fast. For HFD experiments, two independent cohorts of 4 mice were used per treatment group

(C57BL/6J, female). Mice were assigned at 5 weeks old to the control diet (PicoLab Rodent

Diet 5053) or HFD (Research Diets, Inc. #12492) and maintained on this diet for 4.5 months.

The control diet is 4.07 Gross Energy Kcal/g. The HFD is 5.21 Kcal/g. for 8–10 weeks. Com-

parative MALDI MSI and LC-MS analyses of tissues were always performed on the same tissue

specimens.

Tissue isolation

Mice were anesthetized with isoflurane and sacrificed by cervical dislocation. The gall bladder

was removed before livers, kidneys, and brains were harvested and carefully positioned into 15

mL flat bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen in liquid nitrogen, and

stored at -80˚C until further processing. The right liver lobe was used for all analyses.

Tissue heat inactivation

Freshly resected or snap-frozen tissues were placed in sealed Maintainor1 tissue cards and

placed in the Stabilizor™ system (Denator AB, Gothenburg, Sweden). Sample state was speci-

fied (frozen or fresh) and the instrument determined durations of heat treatment based on

sample volume for consistent and reproducible heat treatment, according to the manufacturers

instructions. Next, tissues were carefully positioned into 15 mL flat bottom specimen vials

(Nalgene, Millipore Sigma), snap-frozen in liquid nitrogen, and stored at -80˚C until further

processing.

Tissue preparation for MALDI MSI

Frozen tissues were placed at -20˚C before sectioning in a Microm HM550 cryostat (Thermo

Scientific™). Tissues were sectioned at 10 μm thickness and thaw mounted onto indium-tin-

oxide (ITO)-coated slides (Bruker Daltonics) for MALDI MSI analysis with serial sections
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mounted onto glass slides for histological analyses. The microtome chamber and specimen

holder were maintained between -15˚C and -20˚C. Slides were stored at -80˚C until further

processing. For desiccation experiments, slides were subjected to desiccation in a tabletop vac-

uum desiccator before freezing.

Matrix deposition

A 1,5-Diaminonaphthalene(DAN)-HCl matrix solution was used for all experiments. To gen-

erate the hydrochloride derivative of 1,5-DAN, 39.5 mg of 1,5-DAN was dissolved in 500 μL of

1 mol/L hydrochloride solution with 4 mL HPLC-grade water. The solution was sonicated for

20 minutes to dissolve 1,5-DAN, after which 4.5 mL ethanol was added to yield the matrix

solution. Matrices were deposited on slides and tissues using a TM-sprayer (HTX imaging,

Carrboro, NC). DAN-HCl matrix spray conditions used where: a flow rate of 0.09 mL/min,

spray nozzle temperature of 75˚C, and spray nozzle velocity of 1200 mm/min. A four-pass

cycle was used with 2 mm track spacing and the nitrogen gas pressure was maintained at 10

psi.

MALDI MSI data acquisition

A timsTOF fleX mass spectrometer (Bruker Daltonics) was used for data collection, and data

was acquired using FlexImaging 5.1 software (Bruker Daltonics). The instrument was operated

in negative ion mode covering the m/z range of 100–1350 for heat inactivation experiments

and 100–1250 for desiccation experiments; a spatial resolution of 50 μm was used to define a

pixel. The mass resolution of the MALDI MSI method was 35,500 at m/z 346 and 34,000 at m/
z 505. For measurements of metabolites in tissue from fasting experiments, the instrument was

operated in negative ion mode covering the m/z range of 50–1000; a spatial resolution of

30 μm was used to define a pixel. Each pixel consisted of 800 laser shots, in which the laser fre-

quency was set to 10,000 Hz. A mixture of 15N5-ATP (10 μM), 15N5-AMP (1 μM), and 15N-glu-

tamate (100 μM) was spiked into the matrix and used to calibrate the mass range.

MALDI MSI data analysis

MSI data were analyzed and visualized using SCiLS Lab 2021a software (Bruker Daltonics).

Imported peaks were converted to local max (centroid data) using the mean spectra with a

minimal interval width of 5 mDa. Peaks were normalized to total ion current (TIC). Ion

images for metabolites of interest were generated based on peak lists containing theoretical m/
z and an experimental tolerance threshold < 5 ppm from the theoretical values. To generate

segmentation maps showing regions of spectral similarity, bisecting k-means clustering was

applied to all individual peaks in the dataset using the correlation distance metric in SCiLS Lab

2021a software. Intravascular and extravascular ROIs were selected within a tissue boundary

limit of 180 μm to avoid edge artifact signal effects. Vascular regions were defined based on the

distribution of heme B, and tissue regions based on the segmentation maps, and regions of

interest (ROIs) were drawn by hand. For feature annotations and statistical analyses; ROIs

defined in SCiLS lab were exported to MetaboScape 6.0 (Bruker Daltonics). The Bucket Tables

were normalized for the Sum of Buckets and a two-sided student’s t-test was performed using

a significance threshold of p<0.05 and a fold change >1.5. For extravascular tissue compari-

sons in fasting experiments, one ROI was used per biological replicate (n = 5 per group). For

intravascular comparisons, one ROI was used per biological replicate (n = 3 per group), where

the 3 replicates were selected based on which tissue cross-sections contained vascular regions

of comparable size. For other comparisons, ROIs encapsulated the full tissue section.
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Heatmaps were constructed in OriginPro using a Ward clustering method and a Euclidean

distance type for the dendrograms.

Peak annotations

Spectral features were annotated by comparing experimental measurements to an in-house

metabolite library within MetaboScape consisting of 114,008 compounds curated from the

Human Metabolome Database (HMDB) version 4.0. The tolerance threshold was set

to< 5ppm for tentative assignments. Using SCiLS Lab software, a total of ~1500 spectral

peaks were processed from each MALDI MS image, and using a targeted approach, 68 com-

pounds (S1 Table) were considered for analysis. On-tissue tandem MS measurements were

performed to confirm peak annotations. The precursor mass was first selected by applying

minimal collision energy to ensure the isolation window (3 mDa) was appropriate. Using colli-

sion-induced dissociation (CID), the energy was ramped from 5–50 eV and the collected spec-

trum was compared to spectra from the MSMS Metlin database. The Metabolomics Standards

Initiative guidelines were used to classify the annotation confidence [26]. A level three charac-

terization was based solely on accurate mass comparisons with reference databases. A level two

characterization was based on both accurate mass and tandem MS measurements and com-

pared with external databases for putative assignment. Using these guidelines, 37 metabolites

were characterized as level three, and 31 were putatively assigned as level 2 (S1 Table).

Dimensionality reduction and data visualization

Dimensionality reduction was used to enable interpretable visualization of the high dimen-

sional spectra using Uniform Manifold Approximation and Projection (UMAP) [27]. The

UMAP learns similarities of the mass spectra in the high-dimensional space and then projects

it into a lower dimensional space of two dimensions, where similar spectra are projected close

to each other, and dissimilar ones are projected further away. UMAP [27] was performed in an

unsupervised manner and the reduced data was then colored based on the treatment (for heat

inactivation experiments) or treatment, mouse ID, or metabolite of interest (for fasting experi-

ments). The analysis was performed in R software (version 4.0.3) using the publicly available

UMAP library and visualized using ggplot2 [27].

Pathway enrichment analysis

Pathway analysis was performed using MetaboAnalyst 4.0 [28]. Metabolite features identified

as significantly increased after fasting in Metaboscape were exported to MetaboAnalyst using

the associated HMDB ID. The enrichment method used was a hypergeometric test and the

topology analysis used was relative-betweenness centrality, with the KEGG reference library.

Pathway visualization

Pathways of interest were constructed in PathVisio 3.3.0 [29] and imported into MetaboScape

6.0 (Bruker Daltonics) using the “Pathway Mapping” tool to visualize the relative changes in

metabolite levels.

Metabolite colocalization analysis

To determine colocalization of DHA and ARA, signal intensity plots for each metabolite were

generated in Fiji (ImageJ 1.53c) (43). Ion images for DHA and ARA were exported from

SCiLS Lab and converted to 16-bit in Fiji. Windows were synchronized and freehand lines

were drawn between adjacent vessels. The intensity plots for each metabolite were then
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generated along this line, with metabolite signal intensity (gray value) as a function of distance

between vessels (in pixels). Data were exported and visualized using GraphPad Prism 8.2.1

software (GraphPad Software).

Metabolite extraction from tissue

Frozen tissues were maintained under dry ice vapor to remain frozen until extraction, and 10–

20 mg was excised with a razor blade and samples were transferred to pre-chilled Eppendorf

tubes. Extraction solution consisted of a pre-chilled (-20˚C) solution of 2:2:1 HPLC-grade ace-

tonitrile:methanol:water with 0.1 mol/L formic acid. Pre-chilled stainless-steel beads were

added to Eppendorf tubes containing tissue samples, before extraction solution was added to

achieve a concentration of 20 mg/mL before immediate lysis in a benchtop TissueLyser LT

(Qiagen) operated at 50 Hz for 3 minutes. Next, 15% ammonium bicarbonate solution (fil-

tered, room temperature) was added to achieve an 8% (v/v) solution and samples were lysed

for another 3 minutes at 50 Hz. Samples were transferred to a benchtop shaker and vortexed at

4˚C for 15 minutes. Beads were removed and samples were centrifuged at 16,000 × g at 4˚C for

20 minutes. Clear supernatant was transferred to glass HPLC vials for immediate HPLC-MS

analysis.

HPLC-MS analysis

An iHILIC column (HILICON) was used with SII UPLC system (Thermo Fisher Scientific)

coupled to a Q-Exactive HF-X orbitrap mass spectrometer (Thermo Fisher Scientific) operated

with electrospray (ESI) ionization in negative ion mode at scan range m/z 75–1000 and a reso-

lution of 60,000 at m/z 200. Buffer conditions used were: 20mM ammonium carbonate with

0.1% ammonium hydroxide in water (buffer A) and acetonitrile (buffer B). A flow rate of

0.150 mL/min was used with the following linear gradients: 0–20 min gradient from 80% to

20% B; 20–20.5 min gradient from 20% to 80% B; 20.5–28 min hold at 80% B; 28–30 min hold

to waste at 80% B. Data were acquired using Xcalibur software (Thermo Fisher Scientific) and

peak areas of metabolites were determined using TraceFinder 4.1 software (Thermo Fisher Sci-

entific). Metabolites were identified by matching mass and retention time of features to com-

mercial metabolite standards acquired previously on our instrument. Metabolite levels were

normalized to tissue weight.

Histology

Serial sections (10 μm) were fixed and stained using hematoxylin and eosin (H&E) immedi-

ately after sectioning and imaged using a bright field microscope (Zeiss Observer Z.1, Oberko-

chen, Germany) equipped with a Plan-APOCHROMAT lens and AxioCam MR3 camera,

using a 20× or 40× magnification. High-resolution images of whole stained tissue sections

were obtained using the stitching algorithm in Zeiss ZEN imaging software.

Results

Heat inactivation and desiccation treatments to reduce enzymatic

breakdown of metabolites

Several experimental parameters needed to be assessed to faithfully recapitulate tissue metabo-

lism in situ to visualize regions of metabolism in the liver. As major concerns are residual

enzyme activity and non-enzymatic breakdown of labile metabolites, we evaluated whether

enzyme inactivation through heat inactivation or desiccation treatments would stabilize tissue

metabolites for MALDI MSI sample preparation. Heat inactivation was investigated as an
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alternative strategy to desiccation using kidney and brain tissues in addition to livers, as these

organs have distinct anatomical features and metabolic compositions (S1A Fig). Control

mouse tissues were resected and snap-frozen in liquid nitrogen before sectioning (Freeze,

treatmentF) and compared to fresh tissues subjected to heat inactivation to denature enzymes

before freezing and sectioning (Heat-Freeze, treatmentHF). The third group of tissues was

snap-frozen to preserve the metabolic state immediately upon resection and then heat-treated

to denature enzymes before re-freezing and sectioning (Freeze-Heat-Freeze, treatmentFHF).

Using a commercial device (Denator, Gothenburg, Sweden), conductive heating was

applied to the whole tissue specimens using the predefined frozen or fresh settings. Histologi-

cal evaluation of the three tissues showed that heat treatment disrupted tissue architecture,

whereas this was preserved in frozen control tissues (S1B–S1D Fig). After the different heat

treatments, LC-MS and MALDI-MSI were implemented to monitor the intensities and ion

distributions of ATP, ADP, and AMP. Both the LC-MS data (Fig 1A) and MALDI MSI (S2

Fig) of the same tissue showed a relatively stable distribution upon treatmentHF as compared

to control tissues, but a loss of overall ATP levels upon treatmentFHF. As ATP use by enzymes

will lead to increased levels of AMP and ADP, successful heat stabilization of enzymes should

lead to stable levels of ATP, ADP, and AMP. This comparison showed that although heat stabi-

lization of fresh tissue seemed to maintain the spatial distribution of adenosine phosphate

metabolites seen in control tissues, intensity levels of ATP decreased.

MSI ion images were used to visualize the relative spatial distribution of metabolite levels

based on peak intensities and revealed the overall loss of tissue morphology (S2C and S2D

Fig). Since whole tissues were processed, the heating profiles needed to be optimized to pro-

vide uniform heating throughout the tissue; however, this was not possible due to the tissue’s

thickness. Although regional clusters of metabolites in heat-treated brains were largely main-

tained, they could not be accurately mapped to anatomical brain regions due to the loss of tis-

sue morphology. Together, these results indicate that the heat treatment applied to the whole

tissue prior to sectioning led to disruption of tissue structure and compromised the integrity of

anatomical regions. Further optimization of the heating profile for the denaturation of

enzymes and the preservation of metabolites is needed for uniform stabilization that would be

compatible with spatial metabolomics workflows.

Since enzymatic breakdown occurs at physiological conditions, it is critical that the storage

and handling of tissues are managed with such consideration. In the MALDI MSI workflow,

thaw-mounting a tissue section onto a slide can introduce higher temperatures within the tis-

sue and introduce the breakdown of labile compounds. Thus, we focused on two potential

anatomy-preserving methods to reduce enzymatic breakdown by comparing procedures of

storing cryosectioned tissue on slides at -80˚C and thawing them in a vacuum desiccator to

minimize rehydration due to condensation (treatmentF), as well as desiccation immediately

after tissue sectioning before storage (treatmentDF) (Fig 1B). To assess the stability of labile

compounds from control and HFD liver tissues during the cryosectioning step, a thick tissue

section was collected from the specimens at the beginning and at the end for comparison and

processed for LC-MS. There was no indication of further ATP conversion to AMP over the

time required to cryosection all specimens, allowing for the comparison of metabolite levels

under different biological conditions (Fig 1C). To probe the tissue integrity based on treat-

mentF and treatmentDF, serial liver sections were H&E stained for histological analysis imme-

diately after sectioning to evaluate the effects of freezing and desiccation. Minimal gross tissue

morphology differences were observed between the two treatments (Fig 1D). We used ATP

stability as an indicator of postmortem enzymatic activity and labile metabolite stability, as it is

used by many enzymes and is liable to degradation. Using both methods, the ATP, ADP, and

AMP ion images showed comparable spatial distributions and metabolite levels (Fig 1E).
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Fig 1. Evaluation of MALDI MSI sample preparation for small metabolites analysis. (A) Using a commercial heat stabilizing device,

kidney, brain and liver tissues were subjected to freezing (treatmentF), heat treatment followed by freezing (treatmentHF, top) or

treatmentFHF.LC-MS relative quantification of total ATP, ADP, and AMP levels in the three tissues underwent varied heat treatments. (B)
Schematic overview of treatments where serial tissue sections were either frozen at -80˚C (treatmentF), desiccated before freezing

(treatmentDF), or subjected to H&E staining directly after sectioning (H&E). (C) LC-MS relative quantification of total ATP, ADP, and
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When comparing the two methods, similar metabolite coverage was observed however, treat-

mentF showed higher signal intensity from several small compounds (Fig 1F), supporting the

adoption of treatmentF for all subsequent sample preparation. Together, these results suggest

that optimized MALDI MSI sample preparation and data acquisition workflow are needed to

achieve broad coverage of small metabolites to generate reproducible spatial profiles of biologi-

cally relevant metabolic pathways.

Distinct spatially-resolved metabolic signatures were observed in fed and

fasted livers

Regions of metabolism were investigated in the liver in response to fasting by generating spa-

tially-resolved metabolic profiles. Livers from fasted mice showed marked histological differ-

ences in hepatocyte shape due to the expected depletion of glycogen (Fig 2A). Using MSI, we

observed that fasting led to a decrease in liver ATP content with a concomitant increase in

AMP, indicative of cellular nutrient stress (Figs 2B, S3C and S3D). Furthermore, by plotting

the ion intensities of these purines for both control and fasted livers (n = 5), we observed that

ATP was significantly elevated in control, while ADP and AMP were significantly higher in

abundance in the fasted tissues (Fig 2C). Group clustering of control and fasted spectral ions

were observed based on a pixel point UMAP analysis, in which plotting the AMP signal inten-

sity over the UMAP map revealed high correlation with the fasted group (Fig 2D). A compari-

son of mean spectra revealed marked differences in several other metabolite signal intensities

between control and fasted mice (S3A and S3B Fig). Thus taking a targeted approach, a heat-

map was constructed for metabolites related to the TCA, purine, glycolysis, fatty acid, and glu-

tathione pathways (Fig 2E and S1 Table), revealing a higher abundance of unsaturated fatty

acids and purine compounds associated with fasting, while several TCA metabolites were

higher in abundance in the control livers.

Visualization of fasted liver metabolism shows disruption of metabolism

and fuel switching

To visualize these differences in an unbiased manner, we constructed a segmentation map (Fig

3A). This visualization showed distinct metabolic clusters within different anatomical regions

of the liver and between control and fasted mice, while all biological replicates within each

group clustered together (S4 Fig). Metabolite clusters were observed for the vasculature, hepa-

tocytes, and bile acids. These clusters corresponded to co-registered ion images of heme B, a

cofactor of hemoglobin that is enriched within the vasculature, and taurocholate, the most

abundant bile acid (Fig 4A) [30,31].

The liver acts as a metabolic rheostat to maintain whole-body energy homeostasis in times

of nutrient stress and excess. As MSI adds a spatial dimension to metabolomic analyses, we

dissected the metabolic compartmentalization in the fasting liver. We identified metabolic dif-

ferences using the unbiased UMAP approach, which showed separation of data clusters from

fasted compared to control livers (Figs 2D and S4). Additional clusters were observed within

treatment groups, visualized by coloring UMAP distributions per individual mouse (S4C and

S4D Fig). The distribution of heme over the UMAP graphs indicated that these clusters could

AMP levels in liver tissues from control and fasted mice, before and after cryosectioning of serial sections for MALDI MSI analyses. (D)
Histological images (20x magnification) of two mouse livers subjected to the treatments indicated in (B). (E) Spatial mapping (30 μm pixel)

of ATP, ADP, and AMP from the two liver tissue sections that underwent the treatments indicated in (B). MSI ion images showing the

relative distribution of ATP, ADP, and AMP individually or in relation to the vasculature indicated by heme B. (F) Bar graphs of annotated

peak intensities using treatmentF and treatmentDF.

https://doi.org/10.1371/journal.pone.0261803.g001
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Fig 2. Spatially-resolved metabolic signatures in fed and fasted livers. (A) Histological images (40x magnification) of a representative liver section from ad
lib fed mice and those subjected to overnight fasting; n = 5 per group. (B) H&E optical and MALDI MSI ion images (30 μm pixel) of representative serial tissue

sections from control and fasted mice. MSI ion images show the relative distribution of ATP, ADP, and AMP. (C) Box-and-whisker plots of ATP, ADP, and

AMP levels of the whole liver ROI from control and fasted mice. �P< 0.05, ��P<0.01, ���P< 0.001, ����P< 0.0001 (Student’s t-test) (D) UMAP non-linear

dimensionality reduction of MALDI MSI data from liver tissues from ad lib fed mice or those subjected to an overnight fast showed distinct group clustering.

The AMP ion intensity plotted onto the UMAP revealed higher abundance in fasted conditions. (E) Heatmap of 46 metabolite levels plotted according to fasted

and control states, indicating a metabolic response based on treatment.

https://doi.org/10.1371/journal.pone.0261803.g002
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Fig 3. Liver metabolism and fuel switching. (A) Segmentation map of the MALDI MSI data based on bisecting k-means clustering (k = 8), where each

cluster is represented as an individual color, and MALDI MSI ion images of heme B as a marker of the vasculature corresponding to the red segment and

taurocholate as a marker of the bile acids corresponding to the purple segment. Intravascular regions were defined based on the intensity of heme B. (B)
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represent distinct anatomical regions within tissues (S4C Fig). To explore differences between

liver and systemic metabolism, we extracted metabolite spectra from MSI data on a pixel-by-

pixel basis. We used a segmentation map (Figs 3A, S5A and S5B) to select regions-of-interest

enriched for hepatocytes (extravascular tissue) or heme B (intravascular tissue, circulating

metabolites). Examining a volcano plot revealed ATP to be significantly decreased and AMP

significantly increased in extravascular tissue upon fasting in accordance with our previous

observations (Fig 3B, left). We also observed an increase in the fatty acid docosahexaenoic acid

(DHA). This was recapitulated in the UMAP distributions, where AMP and DHA were more

abundant in fasted mice (S4D Fig). The metabolite profiles from intravascular regions did not

show differences in adenosine phosphate metabolites, but several fatty acids were significantly

enriched in the circulation upon fasting (Fig 3B, right and Fig 3C) whereas they were not sig-

nificantly changed within extravascular regions of the tissue (S5C Fig). It is well-understood

that the adipose tissue releases fatty acids for oxidation by the liver to yield ketone bodies that

can fuel distant organs, which is corroborated by these results and indicates that spatially-

resolved metabolomics can inform on metabolic compartmentalization within tissues.

Indeed, pathway analysis of the intravascular regions showed that several lipid metabolic

pathways were enriched (Fig 3D and S2 Table). Interestingly, comparing the spatial distribu-

tion of fatty acids showed that the abundance of DHA and ARA follow a specific and compart-

mentalization pattern in fed livers (Figs 3E and S5B). DHA is a 22-carbon polyunsaturated

omega-3 fatty acid (22:6), whereas arachidonic acid (ARA) is a 20-carbon polyunsaturated

omega-6 fatty acid (20:4). Both can be synthesized from alpha-linolenic acid, which in turn is

produced from the essential fatty acid linoleic acid. These fatty acids can also be released from

complex lipids through lipolysis. Plotting a line profile of the metabolite intensity as a function

of the distance between blood vessels confirmed that DHA is enriched in proximity to the vas-

culature while ARA displayed the opposite enrichment pattern (Figs 3F and S5D). Upon fast-

ing, this distinct spatial compartmentalization within the extravascular regions is lost. In

contrast to the increase in DHA within liver cells, the levels of glycolytic intermediates

decreased within liver tissue, indicating a fuel switch upon fasting that decreases liver glucose

use in favor of lipid metabolism (Fig 3G). Together, these results indicate that spatially dissect-

ing metabolite profiles can yield new insights into metabolic compartmentalization within tis-

sues and between the local tissue environment and the circulation.

Fatty livers show a metabolic signature indicative of oxidative stress in

response to prolonged nutrient excess

We also investigated how the liver’s response to nutrient excess might impact region specific

metabolism by subjecting mice to a high-fat diet (HFD). Livers of HFD mice showed marked

Volcano scatterplot displaying log 2 metabolite intensity ratios vs. significance value in fasted compared to control mouse liver extravascular (left) and

intravascular tissue (right). Every point represents a unique metabolite; dark grey circles indicate metabolites depleted after fasting and magenta circles

indicate metabolites enriched after fasting, that showed a fold change>1.5 between treatments and reached statistical significance (p-value<0.05).

Highlighted green circles are statistically significantly changed metabolites indicating cellular energy status (AMP/ATP) and fatty acids with their

corresponding names. Corresponding metabolites that were not statistically significantly changed are highlighted in blue. (C) MALDI MSI relative

quantification of selected metabolites in the extravascular versus intravascular tissue regions. �P< 0.05, ��P<0.01, ���P< 0.001, ����P< 0.0001 (Student’s t-

test) (D) Pathway enrichment scatterplot displaying pathway impact scores vs. significance value in fasted compared to control mouse vasculature. Increased

circle size indicates pathway coverage of the identified metabolites in the dataset. Pathways identified as enriched are displayed by name. (E) H&E and MALDI

MSI ion images (30 μm pixel) of serial tissue sections from representative control and fasted mouse livers. MSI ion images show the relative distribution of

DHA and ARA in relation to heme B in red, with indicated intensity scale. (F) Quantification of metabolite spatial distribution for DHA and ARA from blood

vessel to an adjacent blood vessel, where the metabolite intensity is shown as a function of distance between two vessels. The vasculature position is indicated

in red. (G) H&E and MALDI MSI ion images (30 μm pixel) of tissue serial sections from a representative control and fasted mouse liver. MSI ion images show

relative distribution of DHA, HP, and PG, with indicated intensity scale.

https://doi.org/10.1371/journal.pone.0261803.g003
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histological differences, with hypertrophy and accumulation of lipid droplets that displayed in

unique patterns where lipid droplets were deposited away from the vasculature (Fig 4A). In

human, it has been established that macrovesicular steatosis, where hepatocytes become dis-

placed by lipid droplets, is associated with advanced fatty liver disease, inflammation, fibrosis,

and poor clinical outcomes [32,33]. We evaluated the changes in metabolite levels, and subse-

quent pathway analysis showed that several metabolic pathways were significantly enriched

upon HFD feeding, including the pentose phosphate pathway and purine metabolism (Fig

4B). Cells increase PPP activity in response to oxidative stress to generate NADPH, a reducing

factor that is essential to maintain reduced pools of glutathione, the main antioxidant in cells,

and antioxidant enzymes that help maintain cellular redox balance (Fig 4C). That HFD livers

experience increased redox stress is suggested by the observed increase in glutathione in the

extravascular tissue regions (GSH; Fig 4C and 4D). Interestingly, although the PPP intermedi-

ates pentose phosphate (PP) and sedoheptulose phosphate (SP) are increased in extravascular

tissue regions of fatty livers and not changed in the intravascular regions, levels of NADPH are

decreased in both the intravascular and extravascular tissue regions (Fig 4C). This finding sug-

gests that despite the cellular reprogramming towards an antioxidant response that occurs in

fatty livers, cells have lower NADPH levels.

Pathway enrichment analysis showed that in addition to the PPP, purine metabolism was

significantly enriched in fatty livers (Fig 4B and S3 Table). Purines are essential for supplying

the building blocks for nucleotides, thereby DNA/RNA synthesis, and nucleotide cofactors

such as NAD and the major energy carriers in cells (Figs 4E and S6). Increases in redox stress

are known to increase DNA damage and might trigger purine metabolism to aid DNA repair,

whereas the disruption of cellular energy status may converge upon the purine and pyrimidine

pathways due to their important roles as cellular energy carriers to maintain cellular homeosta-

sis. Together, these results suggest that spatially dissecting metabolite profiles and multiplexing

tissue anatomical information with metabolic characterization can promote our understand-

ing of metabolic compartmentalization in physiology and pathology.

Discussion

Metabolic heterogeneity within tissues and metabolic crosstalk between cells are essential con-

tributors to functional specialization in multicellular organisms. This emphasizes the need to

introduce spatiality into metabolomic analyses to better understand the role of metabolic het-

erogeneity in physiology and disease. MALDI MSI has been used to study protein, drug and

metabolite distribution in tissues from model organisms and humans to yield new biological

insights. Spatially mapping endogenous metabolites can be applied to delineate metabolic

properties of distinct anatomical structures [34], inform on their biological functions [35],

identify abnormal or pathological regions within tissues [36], and their metabolic properties

[37], and aid in surgical decision-making [38]. Advances in instrumentation and application

have produced increased molecular complexity and spatial resolution analyses leading to new

Fig 4. Fatty livers demonstrate oxidative stress and increased purine metabolites in response to prolonged nutrient excess. (A) Histological images of a

representative liver section from ad lib fed mice on a control or high-fat diet for 4.5 months (n = 5 per group, 2 independent experiments) with the

corresponding ion image of the fatty acid dihomo-linolenic acid (DGLA). (B) Pathway enrichment scatterplot displaying pathway impact scores vs. significance

value in HFD compared to control mouse liver tissues. Increased circle size indicates pathway coverage of the identified metabolites in the dataset. Pathways

identified as enriched are displayed by name. (C) Schematic overview of the connected metabolic pathways of glycolysis and the pentose phosphate pathway

with corresponding relative fold change intensities of HFD compared to control mice, with indicated intensity scale. (D) H&E and MALDI MSI ion images

from glycolysis pathway and PPP of tissue serial sections from a representative control and HFD mouse liver. MSI ion images(30 μm pixel) show relative

distribution of the indicated metabolites, with indicated intensity scale. (E) Schematic overview of purine metabolism with corresponding relative fold change

intensities of HFD compared to control mice, with indicated intensity scale.(F) MALDI MSI ion images of tissue serial sections from a representative control

and HFD mouse liver showing relative distribution of the indicated metabolites, with indicated intensity scale.

https://doi.org/10.1371/journal.pone.0261803.g004
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insights into metabolic function and heterogeneity at the single-cell scale [19,39]. With

increasing sensitivity and specificity in ion detection and annotation, MSI is now emerging as

a tool for spatially-resolved, metabolome-scale analyses that advance our understanding of cel-

lular and organismal biology [39]. Maintaining metabolic fidelity of the tissue during sample

processing is essential to yielding meaningful analyses, especially in comparison with chroma-

tography-based mass spectrometry approaches where metabolomes are stabilized by quench-

ing steps and samples are maintained at low temperatures until analysis while several sample

preparation steps for MALDI MSI occur at ambient conditions. Here, we demonstrate an

approach to prepare tissue samples for MSI that minimizes conversion or breakdown of labile

metabolites while broadening the range of small metabolites detected to more broadly cover

metabolic pathways and yield new insights into tissue metabolism.

Liver zonation is well-understood on the transcript level [2,3,5,6,9,40,41], but has not been

comprehensively visualized on the metabolite level. An important advance of profiling meta-

bolic heterogeneity on the metabolite rather than transcript level is that an immediate snapshot

of metabolism can be captured instead of indirect measures provided by enzyme transcripts or

protein levels. Direct metabolite profiling is enabled by the fact that MALDI MSI requires min-

imal sample handling, and dissociation of distinct cell types is not necessary. We were able to

validate and visualize metabolic compartmentalization in liver tissues in distinct nutrient stress

and excess conditions. We observed distinct metabolic profiles within zones and between tis-

sue compartments, which may be obscured in extraction-based metabolomic analyses as the

hepatocyte fraction contributes most of the mass and metabolic content of the liver. By analyz-

ing metabolite spectra from distinct extra- and intravascular regions, we observed specific met-

abolic profiles consistent with the known metabolic function of each compartment. We

observed a strong enrichment of fatty acids in blood vessels, consistent with the liver’s function

of converting fatty acids released from the adipose tissue to generate alternative fuels for dis-

tant organs. In addition to compartmentalization between the liver organ environment and

the circulation, we also observed distinct patterns of metabolite abundance within the tissue

microenvironment, with hepatocytes showing enrichment of specific fatty acids based on their

proximity to the vasculature. This distinct pattern was highly organized and reproducible

between biological replicates in nutrient-replete conditions but vanished when facing nutrient

stress after fasting. This suggests that prolonged nutrient stress induces metabolic adaptations

that overrule the functional compartmentalization of hepatocytes seen under nutrient-replete

conditions. In prolonged nutrient excess conditions induced by a high-fat diet, lipid droplets

accumulate in the liver, forming distinct lipid depots throughout the tissue.

In contrast to fasting conditions, where glycolytic metabolites were low, fatty livers dis-

played higher levels of glycolytic and PPP metabolites together with a marked increase in GSH

levels, indicating oxidative stress. Additionally, we observed an increase in purine metabolism,

which may produce nucleotides needed to repair DNA damage, generate essential energy car-

riers, or provide precursors for metabolic cofactors such as NAD, which can all become dis-

turbed by cellular redox stress. These results indicate that although the lipid content of the

liver increases upon HFD feeding, the lipid droplets act as an overflow depot rather than being

effectively metabolized by the liver to dissipate excess energy. Adding a temporal component

to our spatial metabolomic analyses and multiplexing with orthogonal modes of single-cell tis-

sue imaging analyses [42,43] may help further elucidate which regulatory nodes govern the

observed fuel switching in fasting and fatty liver. Taken together, our described workflow

enables the detection of endogenous metabolites and achieves a broad coverage of the tissue

metabolome that can be applied to characterize and interrogate metabolic heterogeneity in

physiology and pathology. In this study, the right lobe of a mouse liver was used, however, due

to the large size and complex heterogeneity nature of the liver, scaling this to human livers

PLOS ONE Characterization of metabolic compartmentalization in the liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0261803 September 6, 2022 15 / 19

https://doi.org/10.1371/journal.pone.0261803


would require histological selection of tissue specimens to allow for image comparison of dif-

ferent health and disease states.

Conclusions

Cellular metabolism is spatiotemporally heterogeneous, yet leading metabolomics approaches

do not preserve spatial information. We present a MALDI MSI approach to map metabolic

heterogeneity in the liver in nutrient replete, stress, and excess conditions. Our data validate

and extend what is known about liver metabolic compartmentalization and visualize this at

high resolution with broad coverage of key pathways in central energy metabolism. The label-

free molecular imaging approach demonstrated here can be applied broadly to study metabo-

lism in tissues and reveal new insights into metabolic heterogeneity in vivo to better under-

stand the role of metabolism in physiology and pathology.
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