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Objectives: The aim of the present study was to construct a polygenic risk score
(PRS) for poor survival among patients with stomach adenocarcinoma (STAD) based
on expression of malignant cell markers.

Methods: Integrated analyses of bulk and single-cell RNA sequencing (scRNA-seq)
of STAD and normal stomach tissues were conducted to identify malignant and
non-malignant markers. Analyses of the scRNA-seq profile from early STAD were
used to explore intratumoral heterogeneity (ITH) of the malignant cell subpopulations.
Dimension reduction, cell clustering, pseudotime, and gene set enrichment analyses
were performed. The marker genes of each malignant tissue and cell clusters were
screened to create a PRS using Cox regression analyses. Combined with the PRS and
routine clinicopathological characteristics, a nomogram tool was generated to predict
prognosis of patients with STAD. The prognostic power of the PRS was validated in two
independent external datasets.

Results: The malignant and non-malignant cells were identified according to 50
malignant and non-malignant cell markers. The malignant cells were divided into nine
clusters with different marker genes and biological characteristics. Pseudotime analysis
showed the potential differentiation trajectory of these nine malignant cell clusters
and identified genes that affect cell differentiation. Ten malignant cell markers were
selected to generate a PRS: RGS1, AADAC, NPC2, COL10A1, PRKCSH, RAMP1,
PRR15L, TUBA1A, CXCR6, and UPP1. The PRS was associated with both overall and
progression-free survival (PFS) and proved to be a prognostic factor independent of
routine clinicopathological characteristics. PRS could successfully divide patients with
STAD in three datasets into high- or low-risk groups. In addition, we combined PRS and
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the tumor clinicopathological characteristics into a nomogram tool to help predict the
survival of patients with STAD.

Conclusion: We revealed limited but significant intratumoral heterogeneity in STAD and
proposed a malignant cell subset marker-based PRS through integrated analysis of bulk
sequencing and scRNA-seq data.

Keywords: stomach adenocarcinoma (STAD), single-cell RNA sequencing (scRNA-seq), intratumoral
heterogeneity (ITH), polygenic risk score (PRS), pseudotime analysis

INTRODUCTION

Stomach adenocarcinoma (STAD) is the most frequent
histological type of stomach cancer and the fifth most common
type of cancer. It is the third most lethal cancer worldwide
(Bray et al., 2018; Rawla and Barsouk, 2019). Poor prognosis of
STAD patients results from multiple factors, such as late clinical
presentation, genetic heterogeneity, and effective drug resistance.
Currently, some classification systems based on histological or
genetic characteristics of STAD aim to identify high-risk patients
and provide personalized treatment. The Lauren classification
system divides STAD into the diffuse (poorly differentiated)
subtype, the intestinal (well differentiated) subtype, and the
mixed type (Lauren, 1965). The Cancer Genome Atlas (TCGA)
Research Network reported the following four subtypes of
STAD based on genomic characteristics: EBV-positive (9%),
microsatellite instable (MSI) (22%), genomically stable (20%),
and chromosomally instable (50%) (Cancer Genome Atlas
Research Network, 2014). Similar results were also seen in
studies from Singapore (Lei et al., 2013) and the Asian Cancer
Research Group (Cristescu et al., 2015). These classification
systems may lead to the development of specific therapies. For
example, patients with EBV-positive or MSI–high STAD may
not benefit from adjuvant chemotherapy (Ramos et al., 2020),
but they may benefit from immune checkpoint inhibitors (Derks
et al., 2016; Muro et al., 2016). These classification systems are
based on data derived from bulk tissues, so they cannot capture
intratumoral heterogeneity (ITH). Increasing evidence shows
that tumors harbor various genetic subpopulations that differ in
their response to drug therapies (Saunders et al., 2012). Indeed,
complete responses to drug therapies are rare in solid tumors.
Partial responses and secondary resistance indicate that some but
not all subpopulations in a given tumor are sensitive to therapy.

Recently, single-cell RNA sequencing (scRNA-seq) provides
methods to characterize the transcriptional state of thousands
of individual cells and perform an unbiased analysis of cellular
characteristics (Wen and Tang, 2016). It has been widely used
to dissect ITH in various cancers (Levitin et al., 2018; Gonzalez-
Silva et al., 2020) including STAD (Zhang et al., 2021). However,
the ITH of early-stage STAD is poorly understood. Early STAD
involves invasion of the mucosa and submucosa (T1), irrespective
of lymph node metastases (any N) (Gotoda, 2006). In our
present study, we reanalyzed the scRNA-seq data from a sample
with early STAD in order to reveal the ITH. Furthermore, we
combined this information with that derived from bulk STAD
tissue gene expression profiles to create a marker-based polygenic

risk score (PRS) that can help identify STAD patients at high risk
of poor survival.

MATERIALS AND METHODS

Expression Datasets
The following public expression datasets were used in this study:

Expression Datasets From Bulk Tissue
Datasets GSE66229, GSE113255, GSE84437, and GSE26942 were
obtained from Gene Expression Omnibus.1 All datasets were
generated using microarrays. The data were downloaded as
originally normalized by the authors and further processed as
follows: if a gene was detected by several probes, the expression
of that gene was defined as the average value of the gene
calculated across all the probes. GSE66229 comprises expression
data from 300 STAD and 100 normal mucosa tissues (Oh et al.,
2018), GSE113255 contains expression data from 130 STAD
and 10 mucosa tissues (Kim et al., 2020), GSE84437 contains
gene expression profiles and overall survival (OS) information
of 433 STAD tissues (Yoon et al., 2020), and GSE26942 contains
gene expression profiles and OS information of 202 STADs (Oh
et al., 2018). We first removed 3 gastrointestinal stromal tumors
and 12 surrounding normal gastric tissues from GSE26942
before analysis.

The TCGA-STAD dataset was downloaded from TCGA
repository.2 It consists of bulk RNA-seq data (displayed as raw
read counts) from 375 STAD and 32 normal tissues together with
clinical information. Raw read counts were normalized using the
voom function in the limma package in R.

Expression Dataset From Single Cells
The GSE134520 complete dataset was available in Gene
Expression Omnibus (see text footnote 1) and comprises
scRNA-seq data from 13 stomach mucosa biopsies from nine
patients with non-atrophic gastritis, chronic atrophic gastritis,
or intestinal metaplasia and one patient with early-stage STAD
(Zhang et al., 2019a). Only the data from the early-stage STAD
sample (GSM3954958) were downloaded for the present study.
The scRNA-seq data had been generated using the 10X Genomics
platform and were further processed in the present study as
indicated below.

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.cancer.gov/tcga
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The datasets used in our study are publicly available, so no
further ethical approval was necessary for the present study.
A detailed workflow of the use of the datasets in our study can
be seen in Figure 1.

Identification of robust malignant and non-malignant cell
markers
For GSE66229 and GSE113255, which are based on microarray
platforms, differential expression analysis was performed using
the limma package (Ritchie et al., 2015). Differentially expressed
genes (DEGs) from the TCGA-STAD RNA-seq dataset were
identified using the DESeq2 package (Love et al., 2014) based on
a criterion of p < 0.05 after adjustment by the false discovery
rate (FDR). The DEGs in the individual dataset were then
integrated and ranked with the RobustRankAggreg package
(Kolde et al., 2012) to obtain robust malignant and non-
malignant cell markers. Briefly, the DEGs were ranked first based
on log2(fold change) in individual datasets, and then the three
ranked lists were subjected to robust rank aggregation analysis.
Based on ranking by p value, the top 50 significantly upregulated
genes were considered as malignant cell markers, and the top
50 significantly downregulated genes were considered as non-
malignant cell markers (Zhang et al., 2021).

Kyoto encyclopedia of genes and genomes
To uncover the potential biological functions of malignant and
non-malignant cell markers, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was performed
using the clusterProfiler package (Yu et al., 2012).

Single-cell RNA-sequencing data
Preprocessing. The raw gene expression matrices from early
STAD tissues (GSM3954958 samples from the GSE134520
dataset) were imported and processed using the Seurat R package
(version 3.2.0)3 (Butler et al., 2018; Stuart et al., 2019) and
preprocessed as follows. First, low-quality cells were removed
based on one of these three criteria: (1) number of expressed
genes lower than 200; (2) a number of expressed genes larger than
6,000; or (3) 50% or more of unique molecular identifiers (UMIs)
mapped to mitochondrial genes (Supplementary Figure 1A).
Usually, cells are considered as low-quality when more than 15–
25% of UMIs map to mitochondrial genes. Here we used the 50%
mapping cutoff because stomach tissue is metabolically active and
the gastric epithelium is expected to have high mitochondrial
content. The gene expression profiles of the cells that passed
this quality cutoff (3,771 cells) were then normalized using
normalization.method = "LogNormalize."

Next, each of the 3,771 cells was annotated as malignant or
non-malignant/unknown using the SCINA R package (Zhang
et al., 2019c), and the expression of malignant and non-malignant
cell markers was determined as described above.

Dimension reduction and cell clustering analysis of
malignant cells
Cells identified as malignant were subjected to subsequent
analysis. The top 2,000 genes with the largest variance

3http://satijalab.org/seurat/

were selected as highly variable genes (HVGs) using Seurat
“FindVariableGenes” function and used for further analyses
(Supplementary Figure 1B). The expression profiles were
centered and scaled values using “ScaleData” function
before performing dimension reduction and clustering
analysis. The “RunPCA” function in the Seurat package
was used to carry out principal component analysis
(PCA) on the scRNA-seq expression matrix of HVGs.
The top 20 principal components (PCs), which explained
most of the variance, were subjected to further analysis
(Supplementary Figure 1C). Then, the “FindClusters”
function in the Seurat package was utilized to perform cell
clustering analysis, and the parameter resolution was set
as 0.5. Furthermore, uniform manifold approximation and
projection (UMAP) dimensionality reduction was conducted
and visualized using the RunUMAP function in the Seurat
package. Cell cluster marker genes were identified using
the “FindMarkers” function with the following parameters:
only.pos = F, min.pct = 0.25, logfc.threshold = 0.5, and
test.use = "roc."

Pseudotime analysis
A malignant tumor has highly heterogeneous cell populations.
Investigation of the differentiation trajectories and
corresponding genes in the various cell populations may
clarify the molecular mechanisms of cancer development.
Pseudotime and cell trajectory analyses were carried out
using the Monocle R package (Qiu et al., 2017) and default
parameters.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA; Subramanian et al., 2005)
was performed to characterize biologically the malignant cell
clusters using the SingleSeqGset package.4 SingleSeqGset is a
package for GSEA for scRNA-seq data. It uses variance-inflated
Wilcoxon rank sum testing to determine enrichment of gene sets
of interest across clusters. p < 0.05 after adjustment by the FDR
was considered significant.

Univariable and multivariable cox regression and polygenic
risk score
The expression profiles of malignant markers and the marker
genes of the malignant cell clusters were first used to
perform univariable Cox regression analysis in the TCGA-
STAD normalized data. Significant genes (p < 0.05) were
then subjected to multivariate Cox regression. Next, regression
analysis was run to create a PRS using the following
formula:

PRS = Exprgene1 × βgene1 + Exprgene2 × βgene2 +

Exprgene3 × βgene3 + . . .

where Expr represents the expression value of the genes in the
multivariate Cox regression analysis, and β is the corresponding
estimated regression coefficient.

4https://arc85.github.io/singleseqgset/
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FIGURE 1 | The workflow of the present study.

Analyses of time-dependent receiver operating characteristic
curves and survival
Time-dependent receiver operating characteristic curve (tROC)
curve analysis was performed using the tROC package in R
(Blanche et al., 2013). In brief, TCGA samples for which clinical
annotation was available were divided into low- or high-risk
groups, based on the median PRS. The OS and progression-
free survival (PFS) between the low- and high-risk groups were
compared using the log-rank method.

Nomogram model
The PRS was combined with routine clinicopathological features
(available for the dataset) to create a nomogram model in order
to better predict the prognosis of STAD patients. The nomogram
was created using the rms package5 in R.

Validation of the polygenic risk score
Four datasets (GSE84437, GSE66229, and GSE26942) were used
to validate the prognostic value of the PRS. If the PRS was
significantly associated with OS, but the median PRS in the
dataset failed to divide patients into high- or low-risk groups, the
optimal cutoff was identified using the survminer package.6

RESULTS

Robust Stomach Adenocarcinoma and
Non-malignant Cell Markers
In GSE66229 dataset, a total of 14,224 DEGs were identified,
including 7,799 up-regulated and 6,425 down-regulated in
STAD (Figure 2A). In GSE113255, a total of 8,669 DEGs
were identified, including 7,473 up-regulated and 1,196 down-
regulated in STAD (Figure 2B). In TCGA-STAD, a total of
13,353 DEGs were identified, including 7,077 up-regulated and

5https://CRAN.R-project.org/package=rms
6https://CRAN.R-project.org/package=survminer

6,276 down-regulated in STAD (Figure 2C). Notably, the up-
regulated (Figure 2D) and down-regulated genes (Figure 2E)
varied substantially across the three datasets. Thus, identifying
robust markers was necessary. After robust rank aggregation
analysis, we selected 50 robust malignant markers and 50 robust
non-malignant markers (Supplementary Table 1). In expression
heat maps (Figure 2F for GSE66229, Figure 2G for GSE113255,
and Figure 2H for TCGA-STAD), these 100 genes showed clearly
different expression patterns between STAD and normal stomach
tissues across the three datasets. In addition, the overlapping up-
and down-regulated genes involved different KEGG pathways.
Figure 2I shows the top 20 KEGG pathways (ranked by p
value) involving overlapping up-regulated genes, which included
the cell cycle, p53 signaling pathway, and Epstein–Barr virus
infection. Figure 2J shows the top 20 KEGG pathways involving
the overlapping down-regulated genes, which included the
peroxisome proliferator-activated receptor (PPAR) signaling
pathway, gastric acid secretion, and AMPK signaling pathway.

Intratumoral Heterogeneity in
Early-Stage Stomach Adenocarcinoma
Tumors
The 3,771 cells remaining after quality control were identified by
the SCINA package as 2,506 malignant cells, 63 non-malignant
cells, and 1,202 unknown type cells based on the malignant and
non-malignant cell markers (Figure 3A). These three types of
cells were not well distinguished by PCA based on the expression
patterns of the 100 marker genes (Figure 3B). The malignant
cells were further identified as nine cell clusters (Figure 3C). The
cell cluster markers were screened (Supplementary Table 2),
and the top five positive markers (ranked by logFC) were used
to draw an expression heat map (Figure 3D). Notably, most
cluster markers were not included among the overlapping
up- or down-regulated genes in STAD (Supplementary
Figure 2A), and few malignant and non-malignant cell markers
were included among the malignant cell cluster markers
(Supplementary Figure 2B). The pseudotime analysis was
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FIGURE 2 | Screening differentially expressed genes (DEGs) in stomach adenocarcinoma (STAD) and malignant and non-malignant cell markers. (A) DEGs in
GSE66229; (B) DEGs in GSE113255; (C) DEGs in The Cancer Genome Atlas (TCGA)-STAD dataset. (D) Venn plot of overlap up-regulated genes in the three
dataset. (E) Venn plot of overlap down-regulated genes in the three dataset. (F) Expression heat map of malignant and non-malignant cell markers in GSE66229.
(G) Expression heat map of malignant and non-malignant cell markers in GSE113255. (H) Expression heat map of malignant and non-malignant cell markers in
TCGA-STAD dataset. (I) The top 20 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (ranked by p value) involving the overlapping
up-regulated genes. (J) The top 20 significantly KEGG pathways (ranked by p value) involving the overlapping down-regulated genes.

performed using the cell cluster markers. The analysis suggested
that the potential cell differentiation trajectories of the malignant
cells comprised seven states (Figure 4A). In addition, we also
performed branched expression analysis modeling (BEAM)
analysis to identify the cell cluster marker genes that change as
cells pass from the early developmental stage to the top left of
the tree through the branch using the “BEAM” function. The
significant DEGs between the branches (q < 0.05) were included
in Supplementary Table 3. The expression patterns of the top
100 significant genes (ranked by q value) are shown as a heat
map in Figure 4B.

The GSEA indicated that the eight cell clusters were enriched
in various hallmark gene sets (Figure 4C). Cell cluster 0
was significantly enriched in PI3K/AKT/MTOR signaling and
oxidative phosphorylation. Cell cluster 1 seems to harbor
stronger protein secretion ability and was significantly enriched
in the protein secretion hallmark gene set. The down-regulated

genes of cell cluster 2 were significantly enriched in hallmark gene
sets of G2M checkpoint, E2F targets, and protein secretion. The
hallmark gene sets MYC targets, DNA repair, and E2F targets
were significantly enriched in cell cluster 3. The hallmark gene
sets of pancreatic beta cells, tumor necrosis factor α signaling via
nuclear factor κβ, inflammatory response, and allograft rejection
were significantly enriched, respectively, in cell clusters 5, 6, 7,
and 8. The results indicate that ITH emerges in the early stage of
STAD. Biological heterogeneity in STAD subpopulations may be
the basis of drug resistance.

A Cell Marker–Based Polygenic Risk
Score for Predicting Prognosis in
Stomach Adenocarcinoma
In the TCGA-STAD dataset, the malignant marker genes and
the eight malignant cell cluster marker genes were used to
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FIGURE 3 | Single-cell RNA sequencing (scRNA-seq) analysis in an early STAD. (A) Percentages of cell types identified by SCINA package. (B) Scatterplot for
uniform manifold approximation and projection (UMAP) using the malignant and non-malignant marker genes. (C) The UMAP plot of malignant cells, showing cell
clusters. (D) The relative expression heat map for malignant cell cluster markers. Only the top five are shown.

perform univariable Cox analysis, and 38 genes were significantly
associated with OS. Ten of them (RGS1, AADAC, NPC2,
COL10A1, PRKCSH, RAMP1, PRR15L, TUBA1A, CXCR6, and
UPP1) were retained to construct the PRS through univariable
and multivariable Cox proportional hazards regression and
stepwise regression (Supplementary Table 4). The PRS showed
significant association with OS [hazard ratio (HR) = 2.1356, 95%
CI = 1.6466–2.7697, p < 0.0001, Figure 5A]. Continuous tROC
curve analysis (Figure 5B) showed that the PRS may perform
well at predicting 5-year OS, with an area under the ROC curve
(AUC) = 0.794 (Figure 5C). The PRS was also associated with
PFS (HR = 2.7183, 95% CI = 2.1065–3.5078, p < 0.0001). The
patients with STAD were divided into high- or low-risk groups.
The patients in the high-risk group had shorter OS (Figure 5D)
and PFS (Figure 5E) than those in the low-risk group.
Furthermore, the PRS was an independent prognostic factor
compared with routine clinicopathological factors (Figure 5F).
In addition, we combined the routine clinicopathological factors
that were associated with OS to construct a nomogram model
for predicting OS rate (Figure 6A), which showed a concordance
index = 0.7151 (95% CI = 0.6714–0.7589). The calibration curves

for OS at 1, 2, and 3 years demonstrated good agreement between
prediction and observation (Figures 6B–D). The prognostic
value of the PRS was validated against the data in GSE84437
(HR = 1.566, 95% CI = 1.2205–2.0102, p = 0.0004), GSE66229
(HR = 3.4176, 95% CI = 1.127–10.362, p = 0.0299), and GSE26942
(HR = 1.434, 95% CI = 1.0211–2.0156, p = 0.0375). The patients
in the high-risk group had shorter OS than those in the low-
risk group in the datasets GSE84437 (Figure 7A), GSE6229
(Figure 7B), and GSE26942 (Figure 7C).

DISCUSSION

Intratumoral heterogeneity includes a spatial component
(heterogeneity in different tumor areas) and temporal
component (heterogeneity during progression from early to
advanced disease) (Gullo et al., 2018). It is a major obstacle
to the success of molecular treatments (Alsina et al., 2017). In
current clinical practice, despite ITH, patients with STAD are
treated according to pathological staging and expression of
certain cancer markers such as Hrb-b2 receptor tyrosine kinase
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FIGURE 4 | Pseudotime analysis and gene set enrichment analysis (GSEA). (A) The malignant cell differentiation trajectory plot, (B) The heat map for the expression
patterns of the top 100 significant genes (ranked by q value) in branched expression analysis modeling (BEAM). (C) The eight malignant cell clusters were enriched in
various hallmark gene sets. The number in the grids refers to the p value adjusted by the false discovery rate (FDR).

2 (HER2; Bang et al., 2010). Moreover, therapeutic intervention
may promote tumor progression by providing selective pressure
that promotes the expansion of resistant subpopulations (Kreso
et al., 2013; Burrell and Swanton, 2014). ITH is the problem that
must be overcome in the treatment of acquired drug-resistant
tumors. In recent years, with the development of scRNA-seq
technology, ITH has gradually been revealed. In the present
study, we identified nine clusters of malignant cells in early
STAD. The biological characteristics varied significantly among
the malignant cell clusters, which implies that the cell subsets
may respond differently to therapies. For example, the malignant
cell cluster 0 was enriched in the PI3K/AKT/mTOR pathway and
so may respond to treatments targeting this pathway. Some PI3K
inhibitors are being evaluated in clinical trials (Yang et al., 2019).

At the tissue level, functional enrichment analysis of
overlapping up- and down-regulated genes revealed the pathways

in which these genes are involved, which included the cell
cycle (Kastan and Bartek, 2004), p53 signaling pathway (Joerger
and Fersht, 2016), and DNA mismatch repair (Baretti and Le,
2018). These results also reveal some pathways that may provide
diagnostic biomarkers, such as Epstein–Barr virus infection,
PPAR signaling pathway, and DNA replication. At the cell
level, the GSEA of malignant clusters revealed some biological
characteristics of the individual cell clusters. We found that
the iconic cancer-related pathways, such as p53 signaling and
PI3K/AKT/mTOR pathways, are not significantly enriched in
all malignant clusters. These results highlight how ITH poses
a challenge to optimizing multidrug combination regimens or
sequential treatments.

The expression level of any single gene varies between cells,
partially due to the random and noisy nature of expression
regulation. Thus, it is essential to identify candidate genes that
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FIGURE 5 | The polygenic risk score (PRS) in the TCGA-STAD dataset. (A) Patients with STAD were divided into high- or low-risk groups according to the median
PRS. (B) The areas under time-dependent receiver operating characteristic (ROC) curves. (C) 4-year ROC curve of the PRS. (D) overall survival (OS) analysis using
Kaplan–Meier curves with the log-rank test. (E) progression-free survival (PFS) analysis using Kaplan–Meier curves with the log-rank test. (F) Multivariable Cox
analysis of the PRS and routine clinicopathological characteristics. **P < 0.01; ***P < 0.001.

affect cell differentiation, prognosis, and treatment efficacy. HER2
and kinase insert domain receptor (KDR also known as VEGFR2)
are validated therapeutic targets in STAD (Bang et al., 2010; Fuchs
et al., 2014). Given ITH, more therapeutic targets are urgently
needed. Several gene-based signatures have been reported in
previous studies (Zhu et al., 2016; Hou et al., 2017; Zhang
et al., 2019b), but they have been based on bulk RNA profiling,

which averages the expression profiles of the constituent cells
and therefore ignores ITH. Whether the genes included in
these signatures are expressed in malignant or non-malignant
cells (such as tumor-associated fibroblasts and tumor-infiltrating
lymphocytes) is unknown. In the present study, the marker genes
for each malignant cell cluster were identified, and some of them
were also found to determine cell differentiation according to
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FIGURE 6 | The nomogram tool for predicting survival rate in the TCGA-STAD dataset. (A) The nomogram tool. (B) Calibration curves for 1-year, (C) 2-year, and (D)
3-year survival rates with the nomogram tool.

FIGURE 7 | Validation of the PRS against the (A) GSE84437, (B) GSE66229, and (C) GSE26942 datasets.

BEAM analysis. A malignant marker and malignant cell marker–
based PRS was created to predict prognosis for STAD.

Ten genes were included in our PRS: RGS1, AADAC, NPC2,
COL10A1, PRKCSH, RAMP1, PRR15L, TUBA1A, CXCR6, and
UPP1. AADAC is a negative marker for malignant cell cluster
5 and associated with poor prognosis in STAD. Few previous

studies have focused on the role of NPC2 in STAD; in the
present study, NPC2 was identified as a negative marker of cell
cluster 4 and was found to be up-regulated in STAD. COL10A1
may promote invasion and metastasis in STAD via epithelial-to-
mesenchymal transition (Li et al., 2018), and here we found it to
be a malignant cell marker, but not a cell cluster marker. PRKCSH
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containing the GAG trinucleotide repeat has been reported
as a mutational target in high-MSI STAD (Palmirotta et al.,
2011). RAMP1 has been found to be a cancer-promoting gene
in many studies (Logan et al., 2013; Mishima et al., 2017;
Dallmayer et al., 2019). RGS1 is the marker gene of malignant
cell cluster 8 and has been associated with poor prognosis in
the present work and in a previous study (Li et al., 2021).
However, another study failed to detect such an association
(Zhu et al., 2021). The inconsistency in previous studies may
be attributed to the high ITH of STAD. Here we propose
a PRS based on markers of malignant cell subsets. The PRS
is an independent prognostic factor compared with routine
clinicopathological characteristics, and it can divide patients with
STAD into high- or low-risk groups. We validated the PRS in
three external datasets.

Although the present study may provide new insight into
STAD through integrated analysis of bulk and scRNA-seq data,
it has several limitations. First, the scRNA-seq profile was from
early STAD; thus, the subpopulations of malignant cells that can
be identified may be limited. Second, the PRS was developed
based on retrospective analysis and should be validated in
prospective trials before its use in clinical practice. Third, the
present study lacked molecular experiments to further explore
the specific mechanism of the malignant cell markers. It is
unknown whether the observed expression changes in these
markers are a cause or effect of STAD cell phenotypes and
patient prognosis.

Despite these limitations, our analyses reveal limited but
significant ITH in early STAD. Based on integrated analysis of
bulk and single-cell expression data, we propose a malignant
cell subset marker-based PRS that can identify STAD patients at
high risk of poor survival. The PRS, in combination with routine
clinicopathological evaluation of tumors, may help clinicians
provide more personalized treatment.
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