
1Berg GD, Gurley VF. BMJ Open 2019;9:e022935. doi:10.1136/bmjopen-2018-022935

Open access�

Development and validation of 
15-month mortality prediction models: a 
retrospective observational comparison 
of machine-learning techniques in a 
national sample of Medicare recipients

Gregory D Berg,1 Virginia F Gurley2

To cite: Berg GD, Gurley VF.  
Development and validation of 
15-month mortality prediction 
models: a retrospective 
observational comparison of 
machine-learning techniques 
in a national sample of 
Medicare recipients. BMJ Open 
2019;9:e022935. doi:10.1136/
bmjopen-2018-022935

►► Prepublication history and 
additional material for this paper 
are available online. To view 
please visit the journal (http://​
dx.​doi.​org/​10.​1136/​bmjopen-​
2018-​022935).

Received 13 March 2018
Revised 28 November 2018
Accepted 13 June 2019

1Analytics, AxisPoint Health, 
Westminster, Colorado, USA
2Medical Affairs, AxisPoint 
Health, Westminster, Colorado, 
USA

Correspondence to
Dr Gregory D Berg;  
​gregory.​d.​berg@​icloud.​com

Research

© Author(s) (or their 
employer(s)) 2019. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

Abstract
Objective  The objective is to develop and validate a 
predictive model for 15-month mortality using a random 
sample of community-dwelling Medicare beneficiaries.
Data source  The Centres for Medicare & Medicaid 
Services’ Limited Data Set files containing the five per cent 
samples for 2014 and 2015.
Participants  The data analysed contains de-identified 
administrative claims information at the beneficiary level, 
including diagnoses, procedures and demographics for 
2.7 million beneficiaries.
Setting  US national sample of Medicare beneficiaries.
Study design  Eleven different models were used to 
predict 15-month mortality risk: logistic regression (using 
both stepwise and least absolute shrinkage and selection 
operator (LASSO) selection of variables as well as models 
using an age gender baseline, Charlson scores, Charlson 
conditions, Elixhauser conditions and all variables), naïve 
Bayes, decision tree with adaptive boosting, neural 
network and support vector machines (SVMs) validated by 
simple cross validation. Updated Charlson score weights 
were generated from the predictive model using only 
Charlson conditions.
Primary outcome measure  C-statistic.
Results  The c-statistics was 0.696 for the naïve Bayes 
model and 0.762 for the decision tree model. For models 
that used the Charlson score or the Charlson variables 
the c-statistic was 0.713 and 0.726, respectively, similar 
to the model using Elixhauser conditions of 0.734. 
The c-statistic for the SVM model was 0.788 while the 
four models that performed the best were the logistic 
regression using all variables, logistic regression after 
selection of variables by the LASSO method, the logistic 
regression using a stepwise selection of variables and the 
neural network with c-statistics of 0.798, 0.798, 0.797 and 
0.795, respectively.
Conclusions  Improved means for identifying individuals 
in the last 15 months of life is needed to improve the 
patient experience of care and reducing the per capita 
cost of healthcare. This study developed and validated 
a predictive model for 15-month mortality with higher 
generalisability than previous administrative claims-based 
studies.

Introduction
Background
Despite 80% of people stating they would 
prefer to die at home, only 20% actually do1. 
Increasing the delivery of advanced care 
planning and palliative care to individuals 
nearing the last year of life is likely to result 
in greater adherence to patient and caregiver 
treatment and setting of care preferences, 
reduced use of low-value services and lower 
healthcare costs.2-4 The scope of these missed 
opportunities is significant in that there were 
over 2.7 million deaths in the USA in 2015 
which represented just under 1% of the US 
population and an age-adjusted death rate 
of 733.1 per 100 000.5 At the same time, only 
one in three US adults having any type of 
advance directive for end-of-life care6 and as 
a result, many individuals receive unwanted 
life-prolonging services in care settings that 

Strengths and limitations of this study

►► The data contains over 2.8 million Centres for 
Medicare & Medicaid Services (CMS) beneficiaries 
which makes it the largest sample of data to pro-
duce an end-of-life predictive model.

►► The data included the entire five per  cent sample 
of the US Medicare population, which increases its 
generalisability by including people under the age of 
65, people enrolled in an health maintenance organ-
isation and dually eligible beneficiaries.

►► Various methods including machine learning algo-
rithms are tested including naïve Bayes, decision 
tree with adaptive boosting, logistic regression with 
least absolute shrinkage and selection operator se-
lection of variables, neural networks and support 
vector machines.

►► The CMS data did lack pharmacy claims which lim-
its the model’s ability to select drug information and 
interactions.

http://bmjopen.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2018-022935&domain=pdf&date_stamp=2019-07-15
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differ from the intensity and setting of care they wish to 
receive7 8.

Analytics-based indicators identifying patients that are 
likely to be nearing the last year of life hold the poten-
tial to help clinicians increase the delivery of advanced 
care planning, palliative and end-of-life care. Accurate 
predictive models using machine learning techniques 
is one such tool for providing advanced care planning 
indicators to aid clinicians’ in the identification of 
patients likely to benefit from advanced care planning. 
For example, in recognition of the benefits of advanced 
care planning, the state of California Senate Bill 1004 
requires the Department of Healthcare Services to 
‘establish standards and provide technical assistance for 
Medi-Cal managed care plans to ensure delivery of palli-
ative care services.’9 10 Such technical assistance may take 
the form of a predictive model-derived indicator placed 
in a patient’s medical record alerting clinicians when a 
person is likely to benefit from initiation of advanced care 
planning services.

Predictive models and their translation into a patient-
level indicator in the medical record are meant to support 
professional clinical judgement and trigger consideration 
of when to initiate a shared decision-making process 
involving treating clinicians, the patient and caregivers.11

In addition to helping maximise the quality of life for 
end-of-life people, predictive models may also be used to 
identify gaps between risk adjustment and higher proba-
bility of entry into a costly spending period. Payers know 
that end-of-life care is often expensive, as evidenced by 
findings that the last year of life accounts for almost 28% 
of total Medicare spending - amounting to over $50 000 
total payments per person per year for decedents.12 
Higher spending during the last week of life was found 
to be associated with a decreased quality of death.13 
Spending patterns in the last year of life show that costs 
do not skyrocket at the end of life but, instead, can be 
described by four distinct cost patterns: high persistent, 
moderate persistent, progressive and late rise. Almost half 
of people were classified as high persistent,14 indicating 
that payers and providers should not target just the last 
few months of life, but rather attend to missed opportuni-
ties for advanced care planning and cost avoidance when 
patients are nearing the last year of life. This is precisely 
where medical record indicators derived from predictive 
model algorithms can help clinicians identify those who 
can most benefit from advanced care planning services.

Previous algorithms
The most widely known algorithms that use administra-
tive medical claims data to predict mortality are from 
Charlson et al15 in 1987, which used a weighted sum of the 
presence or absence of one of 19 conditions with weights 
updated in 1993 by Romano et al16 and Elixhauser et al17 
in 1988, which used 30 conditions.

A more recent review of the literature for all-cause 
mortality was conducted by Yourman  et  al 18 in 
2012, who found six mortality predictive models for 

community-dwelling older adults. Although many studies 
use surveys of either providers or patients instead of admin-
istrative claims, which are more expensive to administer 
compared with administrative claims, one study by Gagne 
et al19 in 2013 did use administrative claims. This study 
combined the conditions from the Romano et al16 imple-
mentation of Charlson index and the van Walraven et al20 
implementation of the Elixhauser system into one model 
to predict 1 year mortality. The Gagne results had modest 
improvements over the Charlson and Elixhauser models 
run separately. When run separately, the c-statistic using 
the Charlson index was 0.778 and using the Elixhauser 
system was 0.772. However, combined the c-statistic was 
0.788, showing improvements when combining models.

Other examples using administrative Medicare claims 
include one by Hamlet et al21 in 2010, to predict 1 year 
mortality for people with heart failure and/or diabetes 
and were all high risk as part of a Medicare Health 
Support pilot, instead of a random sample of all Medi-
care beneficiaries. Also, Schneeweiss et al22 in 2003 had 
a restricted Medicare population from New Jersey and 
Pennsylvania limiting its generalisability but did perform 
well with c-statistics ranging between 0.70 and 0.80.

Beyond the epidemiology and health services research 
perspective, mortality prediction in the computer science 
community includes machine learning models based on 
data from hospitals, intensive care units (ICUs), unstruc-
tured text data from ECGs and electronic medical records. 
Xu et al (2017) reviewed the literature from engineering 
and computer science perspectives which in prediction 
of ICU mortality using many of the same methods in this 
paper.23 Other models from a hospital mortality perspec-
tive include logistic regressions, neural networks, random 
forests and decision trees, naïve Bayes and support vector 
machines.24 25 26 27

Objectives
The objective of this study was to develop and validate a 
predictive model for 15-month mortality using a random 
sample of community-dwelling Medicare beneficiaries 
who might benefit from end-of-life services and to update 
the Charlson score weights using a national sample 
data set. The predictive model uses administrative claims 
rather than surveys, which enables it to be run on a larger 
population and at different times while not being depen-
dent on physicians or members filling out a survey.

Methods
Data
The Centres for Medicare & Medicaid Services 
(CMS) makes Limited Data Set (LDS) files available 
to researchers. As such no ethical board approval was 
needed. Although the LDS files contain beneficiary-level 
health information, they do not contain specific direct 
identifiers as defined in the Health Insurance Portability 
and Accountability Act Privacy Rule. This analysis used 
the CMS’ five per cent LDS samples for 2014 and 2015 
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which contain administrative claims information at the 
beneficiary level, including diagnoses, procedures and 
beneficiary demographic data.

Administrative claims and beneficiary data for calendar 
year 2014 was used to create the explanatory variables used 
in the predictive models. Beneficiary data for calendar 
year 2015 was used to create the outcome variable (death 
indicator) used in the predictive models. Explanatory 
variables were derived from the 2014 data, in order to be 
temporally antecedent to the outcome variable, which 
was derived from 2015 to 2016 beneficiary data.

Sample size
The initial population was 2.8 million beneficiaries in 
2014 and 2.9 million beneficiaries in 2015. The following 
three steps were used to create a final analytical data set.

First, in creating an analytical data  set, beneficia-
ries were required to be in both years’ data  sets, which 
resulted in 2.7 million beneficiaries with data in both 
2014 and 2015. This restriction ensured that beneficiaries 
were eligible for Medicare at the time of the prediction, 
31 December, 2014, and that each member had up to a 
year of previous Medicare eligibility (2014) to be used for 
explanatory variable generation when predicting future 
death between January 2015 and March 2016.

Second, the 2.7 million beneficiaries were randomly 
split into a training and a validation data  set with 
1.35 million beneficiaries in each. This method of simple 
cross validation, or hold-out cross validation, was chosen 
given the abundance of data. The validation data  set 
was used to ensure that overfitting did not occur. Over-
fitting occurs when a model with enough complexity 
predicts very well in the training data  set but does not 
predict well in a validation data  set. Overfitting would 
generate spurious relationships that are not generalis-
able to another data set. It is the validation data set that 
checks that the estimated model is generalisable and not 
spurious.

Third, people with one or more hospice claims in the 
last 120 days before prediction were excluded. However, 
further analysis revealed that about 64 per cent of people 
with a hospice claim prior to prediction actually expired 
in the subsequent 15 months. Since this was not near 
100% as expected, a second analytical data set was created 
which included people with one or more hospice claims.

This study included the entire five per cent sample of 
the US Medicare population, which increases its gener-
alisability by including a random sample of all Medicare 
beneficiaries. Included are people under the age of 
65, people enrolled in an health maintenance organ-
isation (HMO), and people who participated in a state 
buy-in (duals who are dually eligible for Medicare and 
Medicaid). The motivation for including all CMS bene-
ficiaries is to develop a predictive model from all CMS 
community-dwelling beneficiaries rather than restrict 
to a certain state, age or demographic characteristic to 
enhance the model’s generalisability.

Patient and public involvement
The present work does not include original patient data 
but is based on a five per cent sample of the US Medicare 
population available for purchase by the CMS. Therefore, 
no patients or public were involved in this study.

Outcome variable
CMS uses three sources to determine the dates of death 
for beneficiaries, including Medicare claims, online data 
submitted by family members and benefit information 
collected from the Railroad Retirement Board and the 
Social Security Administration with over 99% of death 
dates being validated.28 These dates of death in the bene-
ficiary data are used to calculate a binary death indicator 
which is the outcome variable in the predictive models to 
show if the person died during the 15 month time period 
between January 2015 through March 2016.

Explanatory variables
Included in the annual LDS beneficiary data are monthly 
indicators. One such indicator shows whether or not a 
person had monthly HMO coverage. Another indicator 
shows whether or not a person was dually eligible for Medi-
care and Medicaid which is also known as the person partic-
ipating in a state buy-in defined as the state paying for the 
federal Medicare premium for those who are unable to 
afford it. Both the state buy-in and HMO coverage are used 
as explanatory variables in the predictive model.

The explanatory variables used to predict death 
included over 568 potential variables, including a 
constant term, in the categories from the 2014 data listed 
in table 1.

Statistical methods
Eleven different models were estimated. Six types of 
machine learning classification models were used to 
predict mortality: naïve Bayes, decision tree with adap-
tive boosting, logistic regression, neural network, least 
absolute shrinkage and selection operator (LASSO) and 
support vector machines. For each model, the area under 
the curve was calculated as the c-statistic. A c-statistic is a 
standard measure of goodness of fit for binary outcomes. 
In clinical terms the c-statistic gives the probability that 
a randomly selected beneficiary who expired will have 
a higher risk score of mortality than a beneficiary who 
had not expired29. Generally, c-statistics between 0.7 and 
0.8 indicate a good model and values over 0.8 indicate a 
strong model.30

Predictive models
The first model included age and gender as the only 
explanatory variables and was used as a baseline model. 
Second, a model with the age and gender categories plus 
the Charlson score was estimated. Third, a model with the 
age and gender categories plus the Charlson condition 
indicators was estimated. This model was used to derive 
new Charlson weights to be compared with the original 
weights and the Romano adaptation of the Charlson 
weights. Fourth, a model with the age and gender 
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categories plus the Elixhauser condition indicators was 
estimated. Fifth, a model with all 568 explanatory vari-
ables was estimated. Sixth, a stepwise model was estimated 
to reduce the 568 explanatory variables into a more parsi-
monious set of variables. With over 1.3 million observa-
tions in the training data set, the entry p value into the 
stepwise model was 0.05 and the staying p value into the 
model was set at 0.001.

The seventh model estimated was a LASSO model. As 
with the stepwise model, the LASSO model was estimated 
to reduce the 568 explanatory variables into a more parsi-
monious set of variables. For estimation, the SAS proce-
dure HPGENSELECT was used with the LASSO option. 
The eighth model estimated was a neural network model. 
The neural network used one hidden layer with 64 hidden 
neurons with a skip layer. This was the limit imposed in 
SAS Enterprise Miner 14.1 in terms of the hidden layer 
and hidden neurons. The ninth model estimated was a 
naïve Bayes model with additive (Laplacian) smoothing 
using the e1071 package in R. The tenth model was a 
decision tree with adaptive boosting, with 10 trials for 
boosting, using the C50 package in R. Lastly, a support 
vector machine (SVM) algorithm was estimated in SAS 
Enterprise Miner 14.1. SAS Enterprise Miner could not 
estimate a SVM model with the full sample size of over 
1.3 million observations. As such, a 10% sample of the 
original training and validation data sets were used.

Two sets of the above nine models were estimated 
corresponding to the two different analytical data  sets 
that included and excluded people with a hospice claim 
in the last 120 days prior to prediction.

In addition, decile risk bands of the predicted prob-
ability of death were calculated. The first risk band are 
those people who have a predicted probability between 0 

and 0.1. The second risk band are those people who have 
a predicted probability between 0.1 and 0.2, etc. The step-
wise predictive model was used to derive these predicted 
probabilities using the validation data  set and used to 
compare actual death rates by risk band.

Charlson weights
Schneeweiss (2003) updated the original Charlson 
weights from 1983 using the Romano 1993 reclassifica-
tion of conditions for New Jersey Medicare. The updated 
weights here follow the same method, where weights 
were increased by 1 for each increase of 0.3 in the logistic 
regression estimates (the log of the ORs). The updated 
ORs here are from a logistic regression using the age/
gender variables in addition to the Charlson conditions as 
adapted by Romano. Table 2 scoring was used to generate 
updated weights using the national sample of Medicare 
beneficiaries of 1.35 million members.

To facilitate visually looking at the average Charlson 
scores by risk band, the stepwise regression model was 
scored against the validation data set to obtain risk bands. 

Table 2  Updated Charlson weight rules

Weight Rule

0 0<=ln(OR)<=0.15

1 0.15<ln(OR)<=0.45

2 0.45<ln(OR)<=0.75

3 0.75<ln(OR)<=1.05

4 1.05<ln(OR)<=1.35

5 1.35<ln(OR)<=1.65

6 1.65<ln(OR)<=1.95

Table 1  Explanatory variables

Variable category
Number of 
variables Explanation of variables

Charlson condition indicators 17 0/1 indicator for the presence of the Charlson condition (ICD-9 and ICD-10 
diagnoses)

Charlson score 1

AHRQ’s clinical classification 
software condition indicators

286 0/1 indicator for the presence of each of the condition categories identified 
by the AHRQ software (ICD-9 and ICD-10 diagnoses)

AHRQ’s clinical classification 
software procedure indicators

231 0/1 indicator for the presence of each of the procedure categories identified 
by the AHRQ software (ICD-9 and ICD-10 procedures)

Age and gender categories 20 10 age categories for each gender

Medical service utilisation groups 8

Long-term care indicator 1

Hospice indicator 1 This was determined as the presence of a hospice claim in the last 120 days 
before 31 December, 2014

Palliative care indicator 1

HMO indicator. 1 This was determined as six or more months of HMO coverage from the CMS 
LDS data

CMS, Centres for Medicare & Medicaid Services; HMO, health maintenance organisation; ICD, International Classification of Diseases; ICD-9, 
ICD – ninth revision; ICD-10, ICD - tenth revision; LDS, Limited Data Set. 
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Then, the average Charlson score using the Schneeweiss 
(2003) Medicare weights and updated weights using the 
CMS national sample data is calculated for each risk band.

Results
Descriptive statistics
Table 3 shows the sample size for the training and validation 
data sets of over 1.35 million Medicare beneficiaries, which 

was derived from a 50–50 random split of beneficiaries. The 
random split into training and validation data sets can be 
seen by the nearly identical descriptive statistics between 
each data set. All of the variables, except the per cent with a 
death date as noted, are calculated from calendar year 2014 
data. The per cent with a death date used the 2015 demo-
graphic data, which also included the first quarter of 2016, 
giving a death date up to 15 months after the baseline.

Table 3  Descriptive statistics from the training and validation data sets

Training data set Validation data set Variable description

 �  1 357 989 1 356 245 Sample size

 �  4.9% 4.9% Per cent with a death date listed (2015 through first quarter of 2016)

 � 29.5% 29.5% Per cent with six or more months of HMO in 2014

 � 16.7% 16.7% Per cent with six or more months of state buy in for 2014 (duals)

 � 1.56 1.55 Average Charlson score per person

 � 0.6% 0.6% Per cent of people with a hospice claim in the last 120 days of 2014

Annualised utilisation rates per 1000

 � 250.3 252.0 Ambulatory/surgery visits

 � 249.9 251.6 Ancillary visits

 � 1456.5 1452.3 Diagnostic services visits

 � 1318.3 1316.0 Emergency department visits

 � 318.0 315.9 Inpatient admissions

 � 221.0 220.4 Non-acute visits

 � 7749.5 7746.4 Outpatient visits

Demographics

 � 54.3% 54.5% Per cent Female

 � 45.7% 45.5% Per cent Male

 � 87.1% 87.0% Per cent age 60 and over

 � 69.8 69.9 Average age

Charlson conditions (percentage of population in data set)

 � 2.9% 2.9% Myocardial infarction

 � 7.3% 7.3% CHF

 � 9.4% 9.4% PVD

 � 8.5% 8.5% Cerebrovascular disease

 � 2.6% 2.6% Dementia

 � 14.1% 14.1% Chronic pulmonary disease

 � 2.7% 2.7% Connective tissue disease-rheumatic disease

 � 0.9% 0.9% PUD

 � 3.1% 3.1% Mild liver disease

 � 18.4% 18.4% Diabetes without complications

 � 6.1% 6.1% Diabetes with complications

 � 1.0% 1.1% Paraplegia and hemiplegia

 � 7.7% 7.6% Renal disease

 � 7.8% 7.7% Cancer

 � 0.3% 0.3% Moderate or severe liver disease

 � 0.9% 0.9% Metastatic carcinoma

 � 0.3% 0.3% AIDS/HIV

CHF, congestive heart failure; HMO, health maintenance organisation; PUD, peptic ulcer disease; PVD, peripheral vascular disease. 
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Not surprising, given higher female longevity compared 
with males, there are more females than males, repre-
sented by roughly 54 per  cent female in each data  set. 
Eighty-seven per  cent of all members are over the age 
of 60, with the largest percentages having the Charlson 
conditions of diabetes or chronic pulmonary disease. The 
per cent of beneficiaries with a death date listed in the 
subsequent 15 months is 4.9% for both data sets, which is 
the outcome variable that is used in the development of 
the predictive models.

Figure  1 shows the mortality rate for people with 
different numbers of hospice claims in the last 120 days. 
Not surprisingly, people with zero hospice claims had 
the lowest 15-month mortality rate of 4.6%. However, 
the 15-month mortality rate for people that had hospice 
claims was unexpected. Overall, for the people with 
hospice claims, the mortality rate was 64%.

Predictive model results
Table 4 shows the c-statistics for the nine models that were 
estimated. Each set of 11 models was estimated using both 

the entire training data set, as well as a training data set 
that excluded people with one or more hospice claims 
in the 120 days preceding the prediction. For all models, 
except the SVM and decision tree with adaptive boosting, 
the c-statistic from the training and validation data sets is 
within one-half a per cent of each other, which shows that 
the generalisation error did not rise due to overfitting the 
training data.

With a c-statistic of 0.5 indicating random chance of 
correctly classifying mortality, the baseline model that 
used only age and gender did not show much improve-
ment over chance, with a c-statistic of 0.547. The naïve 
Bayes model improved over the age gender baseline 
model with a c-statistic of 0.696. The models that used 
either the Charlson score, the Charlson conditions or 
the Elixhauser conditions improved over the age gender 

Figure 1  Mortality rate per 1000 and 95% CI by number of 
hospice claims. The red line is the mortality rate for all people 
at various levels of hospice claims. The black vertical lines 
represent the 95% CI for the mortality rate.

Table 4  C-statistic (area under the curve) for estimated models

Model description
C-statistic
all people

C-statistic
excluding hospice people

Logistic regression: age+gender only 0.547 0.549

Naïve Bayes 0.696 0.675

Logistic regression: Charlson score 0.713 0.701

Logistic regression: Charlson conditions 0.726 0.714

Logistic regression: Elixhauser conditions 0.734 0.724

Decision tree with adaptive boosting 0.762 0.744

Support vector machine 0.788 0.773

Neural network 0.795 0.780

Logistic regression: stepwise regression 0.797 0.783

Logistic regression: LASSO 0.798 0.784

Logistic regression: all variables 0.798 0.784

LASSO, least absolute shrinkage and selection operator. 

Figure 2  Actual mortality rate per 1000 by predicted risk 
band. Risk bands are deciles of the predicted mortality. Both 
predicted and actual mortality were calculated using the 
validation data set. The dashed line is the mortality rate for 
all people whereas the solid line is the mortality rate for all 
people excluding those with hospice.
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baseline model, with a c-statistic of 0.713, 0.726 and 0.734, 
respectively, indicating a good predictive model with the 
c-statistic over 0.7 as did the decision tree with adaptive 
boosting with a c-statistic of 0.762. The support vector 
machine algorithm had the next best c-statistic of 0.788 
in the validation data set.

The four models that performed the best were the 
neural network (c-statistic=0.795), the logistic regression 
using a stepwise selection of variables (c-statistic=0.797), 
the logistic regression using LASSO selection of variables 
(c-statistic=0.798) and the logistic regression using all 
variables (c-statistic=0.798). The online supplementary 
list shows  the ORs for the 154 variables retained in the 
stepwise model. The LASSO model retained 401 variables 
and is thus close to the full model of 568 variables. All four 
of these models had a c-statistic over 0.79 indicating that 
all of them have very good predictive power and could be 
used in predicting mortality in the next 15 months.

In clinical review of variables from the logistic regres-
sion which used stepwise selection of variables, those 
highly associated with 15-month mortality with ORs over 
2.0 include:

►► Presence of a hospice claim in the last 120 days before 
the prediction,

►► Age and gender groups, and
►► Various cancers.
In addition, people who were dually eligible for Medi-

care and Medicaid had a higher risk of mortality, with an 
OR of 1.18. People who were in an HMO for at least 6 
of the 12 months prior to prediction had a statistically 

significant and higher risk of mortality with an OR of 
1.50. In total, 154 of the 338 variables were selected as 
significant predictors of 15-month mortality.

Figure 2 shows that the actual mortality rate for each 
risk band for both models, one which includes people 
with hospice claims and the other which excludes people 

Figure 3  Average Charlson scores and actual mortality 
rate by predicted risk band. Risk bands are deciles of 
the predicted mortality. Both Charlson scores and actual 
mortality were calculated using the validation data set. 
The dashed line is the average Charlson score using the 
Schneeweiss weights whereas the solid line is the average 
Charlson score using the updated weights. The bars 
represent the mortality rate for all people.

Table 5  Charlson conditions and scoring weights

Conditions from the Romano adaptation of the 
Charlson index

Original Charlson
(1987)
weights

Schneeweiss
(2003)
weights

CMS national 
sample OR 
estimates

Assigned CMS 
national sample
weights

Myocardial infarction 1 1 1.11 0

Congestive heart failure 1 2 2.58 3

Peripheral vascular disease 1 1 1.48 1

Cerebrovascular disease 1 1 1.19 1

Dementia 1 3 5.07 5

Chronic pulmonary disease 1 2 1.47 1

Connective tissue disease-rheumatic disease 1 0 0.95 0

Peptic ulcer disease 1 0 1.09 0

Mild liver disease 1 2 1.16 1

Diabetes without complications 1 1 0.89 0

Diabetes with complications 2 2 1.03 0

Paraplegia and hemiplegia 2 1 1.48 1

Renal disease 2 3 1.69 2

Cancer 2 2 1.32 1

Moderate or severe liver disease 3 4 2.74 3

Metastatic carcinoma 6 6 5.72 6

AIDS/HIV 6 4 0.94 0

CMS, Centres for Medicare & Medicaid Services. 

https://dx.doi.org/10.1136/bmjopen-2018-022935
https://dx.doi.org/10.1136/bmjopen-2018-022935
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with hospice claims. In both cases, the mortality rate 
increases in a nearly linear fashion from a rate of 32 to 
748 per 1000 people between the lowest and highest risk 
bands for the model, which includes hospice claimants, 
and from a rate of 31 to 645 for the model which excludes 
hospice claimants. As the c-statistic shows, this alternate 
view shows that the model does a good job at discrimi-
nating between mortality. The people with a predicted 
mortality between 0 and 0.1 have a very low death rate 
of 32 per 1000 people and the people with a predicted 
mortality between 0.9 and 1.0 have a very high death rate 
of 748 per 1000 people.

Updated Charlson weights
Table  5 shows the updated Charlson weights using the 
national sample of Medicare beneficiaries of 1.35 million 
members. Some of the biggest changes from the Schnee-
weiss weights to the updated weights here are dementia, 
rising from a weight of three to a weight of five with the 
CMS national sample data. Also, the AIDS/HIV weight 
previously was four and is now weighted 0 with the 
CMS national sample data from this study, indicating 
that AIDS/HIV now does not increase the likelihood of 
mortality enough to warrant a Charlson weight. Given 
the treatment advances, the original 1987 weight of six, 
moved down to four in 2003 and is now zero.

Figure 3 shows the average Charlson scores by risk band 
using the Schneeweiss and updated weights. Both show 
that with an increasing risk band, the average Charlson 
score increases in a nearly linear fashion. The Schnee-
weiss range from a score of 1.1 to 12.5, between the lowest 
and highest risk bands, while the updated weights range 
from a score of 0.6 to 11.2. The updated weights follow the 
same upward sloping pattern as the Schneeweiss weights 
but with the line shifted downwards. This is because of 
the 17 condition categories only two increased, while 
nine weights decreased and six weights stayed the same. 
Only congestive heart failure and dementia increased in 
weight with congestive heart failure increasing by one 
and dementia increasing by two.

Although the c-statistic for the models using the 
Charlson score or the Charlson conditions was 0.713 
and 0.726, respectively, this simple model with updated 
weights still predicts 15-month mortality fairly well with a 
c-statistic over 0.7.

Discussion
Factors to consider when evaluating predictive model algo-
rithms include accuracy and generalisability.18 Both calibra-
tion (the degree to which predicted death match observed 
death) and discrimination (how well those who die are 
distinguished from those who don’t die) are part of accu-
racy. Within the category of generalisability, both geograph-
ical (different geographic locations are used) and spectrum 
(diverse disease states and trajectories) are part of generalis-
ability. In terms of calibration, the models here show a match 
between predicted and observed death from figure 2. In 

terms of discrimination, while the above described predic-
tive models did not produce significantly different c-statis-
tics from previously developed models. However, in terms 
of generalisability, both geographical and spectrum, these 
new models do provide much greater clinical utility based 
on generalisability across geographical areas and the full 
spectrum of disease and full range of health statuses. So, 
although these models have similar discriminative ability, 
given the broader disease categories and locations, this is 
seen as highly favourable to these new predictive models. 
This is in contrast to previous algorithms discussed in the 
introduction which were focused on a particular geography, 
used surveys instead of administrative claims, had small 
samples or were focused on particular conditions limiting 
their generalisability.18 Generalisability is a key requirement 
for the application of predictive analytics indicators toward 
enhanced clinical judgements of which patients are likely to 
benefit from the initiation of advanced care planning and 
subsequent transition to palliative and hospice care.

Given the key clinical eligibility criteria for transition into 
hospice is a physician’s assessment that death is probable 
in the ensuing 6 months, it was assumed that individuals 
with hospice claims had already been identified as being in 
the last year of life. However, the 64% 15-month mortality 
rate finding in these individuals indicates the difficulty of 
predicting near-term mortality. It was expected that this rate 
would be near 100%, and thus, people with a hospice claim 
should be excluded from a mortality predictive model since 
having a hospice claim would be a perfect predictor and 
not of value. Given the observed mortality rate was not near 
100%, two sets of models were estimated: one set with all 
people, including those with a hospice claim, and another 
excluding those with a hospice claim. Also of note, as the 
number of hospice claims increases, the mortality rate does 
not increase, but, instead, is fairly steady at 64%. This calls 
into question the accuracy of clinical judgement alone when 
referring individuals to hospice care since over one-third of 
people with six or more hospice claims prior to prediction 
do not die within 15 months.

Unlike previous research, which found a lower rate of 
mortality for people in a Medicare Advantage plan31, this 
study found a positive correlation between enrolment in an 
HMO for at least 6 of the 12 months prior to prediction and 
a statistically significant and higher risk of mortality. While 
not an indication of causation, one of several possible expla-
nations for this correlation could be a higher likelihood of 
attention to resource utilisation and advanced directives in 
Medicare Advantage plans, and thus greater avoidance of 
aggressive end-of-life treatments. Conversely, the correla-
tion between Medicare Advantage enrolment and higher 
mortality rates could be an indication of differential provi-
sion of medically necessary care. Further investigation of 
this relationship is warranted.

Improved identification of patients nearing the tran-
sition into the last year of life has become increasingly 
important as ageing populations increase. The models 
from this study can be used from a clinical perspective for 
identifying potential transition or initiation of advanced 
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care planning for palliative and advanced illness. Further, 
the models can be used from a payer perspective for risk 
adjustment. Compared with previous administrative claims-
based studies that were limited to geographical areas 
and risk levels, this study used a CMS national sample of 
beneficiaries, giving these results higher generalisability 
than previous models. In addition, with updated Charlson 
weights from an updated data set and from a more gener-
alizable result, the comorbidity scores can be used to save 
time and resources when calculating a mortality score. 
When claims data are not available, or in small popula-
tions, a Charlson score would still be a useful predictor of 
mortality. The c-statistic for the Charlson condition model 
was over 0.7 in the validation data indicating that, even with 
the limited conditions, this model still performs well. Six 
Charlson conditions now have a weight of zero as compared 
with the weights by Schneeweiss which had two Charlson 
conditions with a weight of zero. The updated weights with 
a weight of zero had previously had weights of one or two. 
Diabetes with complications had previously had a weight of 
two but now has a weight of zero. The largest difference was 
with HIV/AIDS which had a Schneeweiss weight of four but 
now a weight of zero which most likely reflects the change 
in treatment and mortality of this condition over the last 
15 years.

One criticism of a logistic regression is that prediction 
may be difficult when the decision boundary is highly 
non-linear which is overcome with neural networks can 
have highly non-linear decision boundaries. However, this 
does not appear to be a limitation with the current logistic 
regression predictive models given the similar c-statistics 
as that of the neural network. Alternatively, one criticism 
of the neural network and SVM model approaches is the 
‘black box’ interpretability of these models. That is, it 
cannot be known which explanatory variable is important 
in classifying the outcome variable and by what magnitude 
as with an OR in a logistic regression. As such, this type of 
model does not lend itself to clinical review of the explana-
tory variables.
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