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In this paper, we present and analyze a spatio-temporal eco-epidemiological model of a prey predator system 
where prey population is infected with a disease. The prey population is divided into two categories, susceptible 
and infected. The susceptible prey is assumed to grow logistically in the absence of disease and predation. 
The predator population follows the modified Leslie-Gower dynamics and predates both the susceptible and 
infected prey population with Beddington-DeAngelis and Holling type II functional responses, respectively. The 
boundedness of solutions, existence and stability conditions of the biologically feasible equilibrium points of 
the system both in the absence and presence of diffusion are discussed. It is found that the disease can be 
eradicated if the rate of transmission of the disease is less than the death rate of the infected prey. The system 
undergoes a transcritical and pitchfork bifurcation at the Disease Free Equilibrium Point when the prey infection 
rate crosses a certain threshold value. Hopf bifurcation analysis is also carried out in the absence of diffusion, 
which shows the existence of periodic solution of the system around the Disease Free Equilibrium Point and the 
Endemic Equilibrium Point when the ratio of the rate of intrinsic growth rate of predator to prey crosses a certain 
threshold value. The system remains locally asymptotically stable in the presence of diffusion around the disease 
free equilibrium point once it is locally asymptotically stable in the absence of diffusion. The Analytical results 
show that the effect of diffusion can be managed by appropriately choosing conditions on the parameters of the 
local interaction of the system. Numerical simulations are carried out to validate our analytical findings.
1. Introduction

It is known that infectious diseases can affect ecological systems and 
regulate population density. Thus, studying the influence of epidemi-

ological factors on the dynamics of prey-predator interactions plays 
a crucial role for better understanding of the eco-system. Because of 
these, mathematical modelling of epidemics has become a very impor-

tant subject of research after the seminal model of Kermack-McKendric 
[1] on SIRS systems. Anderson and May [2] were the pioneers for in-

vestigating the invasion, persistence, and spread of infectious diseases 
by formulating an eco-epidemiological prey-predator model. At recent 
times, many researchers have proposed and studied epidemic and eco-

epidemiological models [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. For 
example, Shaikh et al. [6] have investigated the dynamics of an eco-

epidemiological system with disease in competitive prey species. They 
have considered hyperbolic mortality of predators and Holling type II 
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functional response and showed the local and global stability of the 
feasible equilibria and the existence of Hopf bifurcation at both the en-

demic and Disease Free Equilibrium Points.

On the other hand, in reality, prey and predator species, both in-

fected and healthy ones, are in-homogeneously distributed in different 
ecological space at a given time and interact with other organisms 
present within their spatial domain. This consideration involves dif-

fusion process which can be quite intricate as different concentration 
levels of prey and predator cause different population movements [16]. 
Thus, this movement or diffusion process must be incorporated in tem-

poral eco-epidemiological models that do not represent space explicitly. 
Thus, the resulting eco-epidemiological models are represented by re-

action diffusion equations.

The spatio-temporal dynamics of a prey-predator system with dis-

ease has been investigated by many researchers [17, 18, 19, 20, 21, 22, 
23]. Ko et al. [17] have considered a ratio-dependent prey-predator sys-
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tem with infection in the prey population and studied the asymptotic 
behavior of constant solutions, whereas R.K. Upadhyaya and P. Roy 
[24] developed a reaction-diffusion eco-epidemiological model of prey-

predator interaction and found out the occurrence of temporal chaos 
at a fixed point in space. Raw et al. [18] have studied the dynamical 
complexities and formation of pattern in a spatial eco-epidemiological 
prey-predator system with prey infection and harvesting. They investi-

gated conditions for the existence of Turing instability. R.K. Upadhyaya 
et al. [21] designed a spatial model to study a damaged diffusive eco-

epidemiological system of Tilapia and Pelican populations in Salton Sea, 
California, USA. They observed the existence of Hopf bifurcation and in-

vestigated conditions for the Turing instability of the system. Li et al. 
[20] have considered an eco-epidemiological prey-predator system with 
infection in predator population and delay, and found the parameter 
ranges for the occurrence of Turing patterns.

Leslie and Gower [25] introduced a predator prey model where the 
predator grows logistically with carrying capacity depending on the 
availability of variable resource, the number of prey. The Leslie-Gower 
model is a ratio dependent model which has a singularity at the origin. 
However, when the predator is provided with an alternative food apart 
from its favored food, it gives rise to modified Leslie-Gower predator 
dynamics. Now, the model is mathematically free from any singularity 
and well behaved.

In recent years, more attention has been paid to the study of the 
dynamics of an eco-epidemiological Leslie-Gower predator-prey inter-

actions [10, 19, 26, 27, 28, 29, 30, 31, 32]. However, most of the works 
focus on the non-spatial dynamics of an eco-epidemiological Leslie-

Gower prey predator dynamics.

The novelty of this paper is the consideration of prey infection, 
with nonlinear incidence rate, mixed type of functional response: 
Beddington-DeAngelis type functional response and Holling type II 
functional response for the susceptible and infected prey population, 
respectively, and the modified Leslie-Gower predator dynamics. Thus, 
the main aim of this paper is to study the spatio-temporal dynamics of 
a diffusive eco-epidemiological predator-prey system with prey infec-

tion, Beddington-DeAngelis type functional response and the modified 
Leslie-Gower type predator dynamics.

The organization of this paper is as follows: in section 2, Mathemat-

ical Model Formulation is discussed. Section 3 deals with the analysis 
of the temporal system: existence and boundedness of solutions, the lo-

cal and global stability analysis of the biologically feasible equilibrium 
points and bifurcation analysis of the system (3). Section 4 is devoted 
to the analysis of the spatio-temporal system: persistence properties 
of solutions and local stability of equilibrium points of the system (2) 
are discussed. Numerical simulation results are presented in section 5. 
Lastly, conclusions are given in section 6.

2. Mathematical model formulation

Let 𝑁(𝑋, 𝑇 ) and 𝑊 (𝑋, 𝑇 ) represent the total prey population den-

sities and the predator population density, respectively at time 𝑇 and 
position 𝑋 in a habitat Ω ⊂ + and the prey population is infected 
with a disease. We took the following assumptions to formulate our 
eco-epidemiological model.

1. In the presence of disease, the prey population is divided into two 
groups: Susceptible prey 𝑈 and infected prey 𝑉 . Therefore the total 
prey population is 𝑁 =𝑈 + 𝑉 .

2. The susceptible prey is capable of reproducing and hence grows 
logistically with carrying capacity 𝐾 and intrinsic growth rate 𝑟1. 
The infected population does not recover and the disease is not 
genetically inherited. The infected prey is removed by death at a 
natural rate 𝑑.

3. We assume that the disease transmission follows the non-linear in-

cidence rate 𝑎𝑈𝑉

1+𝑏𝑉 . In this incidence rate the number of effective 
contacts between infective and susceptible individuals is assumed 
2

Table 1. Biological meaning of parameters.

Parameters Biological meaning

𝑟1 The intrinsic growth rate of Susceptible prey,

𝐾 Environmental carrying capacity of prey,

𝑎 Infection rate of prey,

𝑏 Measure of Inhibition of prey,

𝑐 Predation rate of Predator on susceptible prey

𝐵 Saturation constant

𝜔 Predator interference

𝐴 Search rate

ℎ Handling time

𝑑 Natural death rate of infected prey

𝑟2 Maximum per capita growth rate of the predator

𝑠 Residual loss in predator population due to severe

scarcity of its favorite food

𝑠2 Conversion factor of susceptible prey into predator

𝑠3 Conversion factor of infected prey into predator

𝐷𝑈 Diffusion coefficient of susceptible prey

𝐷𝑉 Diffusion coefficient of infected prey

𝐷𝑊 Diffusion coefficient of predator

to saturate at high infective levels due to crowding of infective in-

dividuals.

4. Predator predates both susceptible and infected prey following 
the Beddington-DeAngelis functional response and Holling type-II 
functional response, respectively. The Beddington-DeAngelis func-

tional response is used to capture the mutual interference of preda-

tors. Whereas, Holling type II functional response is used because 
the infected preys are relatively accessible for predation, as they 
are weak to escape from the predator.

5. The predator dynamics follow the modified Leslie-Gower dynamics 
with intrinsic growth rate 𝑟2 and carrying capacity proportional to 
the density of the susceptible and infected prey populations.

6. The susceptible prey, infected prey and predator population moves 
in the habitat with constant diffusion coefficients 𝐷𝑈 , 𝐷𝑉 and 𝐷𝑊 , 
respectively.

Based on the above assumptions and parameters (Table 1), the 
spatio-temporal eco-epidemiological model is given by the following 
set of reaction diffusion equations.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑈𝑇 −𝐷𝑈Δ𝑈 = 𝑟1

(
1 − 𝑈

𝐾

)
𝑈 − 𝑎𝑈𝑉

1 + 𝑏𝑉
− 𝑐𝑈𝑊

𝐵 +𝑈 +𝜔𝑊
,

𝑉𝑇 −𝐷𝑉 Δ𝑉 = 𝑎𝑈𝑉

1 + 𝑏𝑉
− 𝐴𝑊 𝑉

1 +𝐴ℎ𝑉
− 𝑑𝑉 ,

𝑊𝑇 −𝐷𝑊 Δ𝑊 = 𝑟2

(
1 − 𝑊

𝑠+ 𝑠2𝑈 + 𝑠3𝑉

)
𝑊 ,

𝑈𝜈 = 𝑉𝜈 =𝑊𝜈 = 0

𝑈 (𝑋,0) =𝑈0(𝑋) ≥ 0, 𝑉 (𝑋,0) = 𝑉0(𝑋) ≥ 0,

𝑊 (𝑋,0) =𝑊0(𝑋) ≥ 0,

(1)

where Ω ⊂+ is a bounded region with smooth boundary 𝜕Ω, and all 
the parameters in the model are assumed to be positive. 𝜈 is the out-

ward unit normal vector to the boundary 𝜕Ω. The admissible initial 
data 𝑈0(𝑋), 𝑉0(𝑋) and 𝑊0(𝑋) are continuous functions on Ω. The ho-

mogeneous Neumann boundary condition means that the system (1) is 
self-contained and has no population flux across the boundary 𝜕Ω.

Introduce the following non-dimensional variables and parameters 
so as to reduce the number of parameters of the system (1):

𝑢 = 𝑈

𝐾
,𝑣 = 𝑉

𝐾
,𝑤 = 𝑊

𝐾
, 𝑡 = 𝑟1𝑇 ,𝑥 =𝑋

√
𝑟1
𝐷𝑈

,𝐷2 =
𝐷𝑉

𝐷𝑈

,

𝐷3 =
𝐷𝑊

𝐷𝑈

,𝛼 = 𝑎𝐾

𝑟1
, 𝜅 = 𝑏𝐾,𝛽 = 𝐵

𝐾
, 𝛾 = 𝑐

𝑟1
, 𝜃 = 𝐴𝐾

𝑟1
,

𝜂 =
𝑟2
𝑟1

, 𝜎 =𝐴ℎ𝐾, 𝑠1 =
𝑠

𝐾
, 𝛿 = 𝑑

𝑟1
.
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The system (1) is transformed to the following non-dimensional system.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 −Δ𝑢 = (1 − 𝑢)𝑢− 𝛼𝑢𝑣

1 + 𝜅𝑣
− 𝛾𝑢𝑤

𝛽 + 𝑢+𝜔𝑤
,

𝑣𝑡 −𝐷2Δ𝑣 =
𝛼𝑢𝑣

1 + 𝜅𝑣
− 𝜃𝑣𝑤

1 + 𝜎𝑣
− 𝛿𝑣,

𝑤𝑡 −𝐷3Δ𝑤 = 𝜂

(
1 − 𝑤

𝑠1 + 𝑠2𝑢+ 𝑠3𝑣

)
𝑤,

𝑢𝜈 = 𝑣𝜈 =𝑤𝜈 = 0,

𝑢(𝑥,0) = 𝑢0(𝑥) ≥ 0, 𝑣(𝑥,0) = 𝑣0(𝑥) ≥ 0,

𝑤(𝑥,0) =𝑤0(𝑥) ≥ 0.

(2)

3. Analysis of the temporal system

It is ecologically and epidemiologically reasonable to study the local 
dynamics of a predator-prey system before proceeding to the study of 
its spatio-temporal dynamics. Thus the temporal dynamics of the system 
(1), which involves only the interaction terms, is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝑢

𝑑𝑡
= (1 − 𝑢)𝑢− 𝛼𝑢𝑣

1 + 𝜅𝑣
− 𝛾𝑢𝑤

𝛽 + 𝑢+𝜔𝑤
,

𝑑𝑣

𝑑𝑡
= 𝛼𝑢𝑣

1 + 𝜅𝑣
− 𝜃𝑣𝑤

1 + 𝜎𝑣
− 𝛿𝑣,

𝑑𝑤

𝑑𝑡
= 𝜂

(
1 − 𝑤

𝑠1 + 𝑠2𝑢+ 𝑠3𝑣

)
𝑤,

𝑢(0) = 𝑢0 ≥ 0, 𝑣(0) = 𝑣0 ≥ 0,𝑤(0) =𝑤0 ≥ 0.

(3)

Let us define

𝐺1(𝑢, 𝑣,𝑤) = (1 − 𝑢)𝑢− 𝛼𝑢𝑣

1 + 𝜅𝑣
− 𝛾𝑢𝑤

𝛽 + 𝑢+𝜔𝑤
,

𝐺2(𝑢, 𝑣,𝑤) = 𝛼𝑢𝑣

1 + 𝜅𝑣
− 𝜃𝑣𝑤

1 + 𝜎𝑣
− 𝛿𝑣, (4)

𝐺3(𝑢, 𝑣,𝑤) = 𝜂

(
1 − 𝑤

𝑠1 + 𝑠2𝑢+ 𝑠3𝑣

)
𝑤.

3.1. Positive invariance and boundedness

Theorem 3.1. All solutions of the system (3) with positive initial conditions 
exist and remain positive.

Proof. Let (𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡) be a solution of the system (3). One can easily 
show that the functions 𝐺1, 𝐺2 and 𝐺3 are continuous functions and 
locally Lipschitizian on 3

+. Therefore, the solution of the system (3) 
with positive initial condition exists and is unique. Moreover, it can be 
shown that these solutions exist for all 𝑡 > 0 and stay positive. □

Theorem 3.2. All solutions of the system (3) which initiate in 3
+ are uni-

formly bounded in the region

Θ=
{
(𝑢, 𝑣,𝑤) ∈3

+ ∶ 𝑢 ≤ 1 + 𝜀1, 𝑣(𝑡) ≤
𝛼

𝛿𝜅
+ 𝜀2,

𝑤(𝑡) ≤ 𝑠1 + 𝑠2 +
𝑠3𝛼

𝛿𝜅
+ 𝜀3,∀𝜀1, 𝜀2, 𝜀3 > 0

}
.

Proof. Let (𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡) be any solution of the system (3) with positive 
initial conditions. Since 𝑑𝑢

𝑑𝑡
≤ 𝑢(1 − 𝑢), by the comparison principle we 

have lim𝑡→∞ 𝑢(𝑡) ≤ 1. Thus there exists 𝑡1 >> 1 such that 𝑢(𝑡) ≤ 1 + 𝜀1 for 
some arbitrarily small 𝜀1 > 0.

From the second equation of the system (3), we have

𝑑𝑣

𝑑𝑡
+ 𝛿𝑣 ≤

𝛼𝑢𝑣

1 + 𝜅𝑣
≤

𝛼(1 + 𝜀1)
𝜅

.

Applying Gronwall’s inequality [33], we have

0 < 𝑣(𝑡) <
𝛼(1 + 𝜀1) (1 − 𝑒−𝛿𝑡

)
+ 𝑣(0)𝑒−𝛿𝑡.
𝛿𝜅

3

Since 𝜀1 > 0 is arbitrarily small and for letting 𝑡 → ∞, we have 
lim𝑡→∞ 𝑣(𝑡) ≤ 𝛼

𝛿𝜅
. Thus there exists 𝑡2 >> 1 such that 𝑣(𝑡) ≤ 𝛼

𝛿𝜅
+ 𝜀2 for 

some arbitrarily small 𝜀2 > 0.

From the third equation of the system (3), we have

𝑑𝑤

𝑑𝑡
≤

𝜂

(
𝑠1 + 𝑠2(1 + 𝜀1) + 𝑠3

(
𝛼

𝛿𝜅
+ 𝜀2

)
−𝑤

)
𝑤

𝑠1 + 𝑠2(1 + 𝜀1) + 𝑠3

(
𝛼

𝛿𝜅
+ 𝜀2

) .

By the comparison principle, we get

lim
𝑡→∞

𝑤(𝑡) ≤ 𝑠1 + 𝑠2(1 + 𝜀1) + 𝑠3

(
𝛼

𝛿𝜅
+ 𝜀2

)
.

Since 𝜀1 > 0 and 𝜀2 > 0 are arbitrarily small, we have lim𝑡→∞𝑤(𝑡) ≤ 𝑠1 +
𝑠2 + 𝑠3

𝛼

𝛿𝜅
. Thus there exists 𝑡3 >> 1 such that 𝑤(𝑡) ≤ 𝑠1 + 𝑠2 + 𝑠3

𝛼

𝛿𝜅
+ 𝜀3

for some arbitrarily small 𝜀3 > 0.

Hence all solutions of the system (3), starting in 3
+ are uniformly 

bounded for all 𝑡 ≥ 0 and eventually confined in the region

Θ=
{
(𝑢, 𝑣,𝑤) ∈3

+ ∶ 𝑢 ≤ 1 + 𝜀1, 𝑣(𝑡) ≤
𝛼

𝛿𝜅
+ 𝜀2,

𝑤(𝑡) ≤ 𝑠1 + 𝑠2 +
𝑠3𝛼

𝛿𝜅
+ 𝜀3,∀𝜀1, 𝜀2, 𝜀3 > 0

}
. □

3.2. Extinction criteria

Theorem 3.3. The disease will be removed from the system (3) if 𝛼 < 𝛿.

Proof. From the second equation of the system (3), we have

𝑑𝑣

𝑑𝑡
≤

(
𝛼𝑢

1 + 𝜅𝑣
− 𝛿

)
𝑣 ≤ (𝛼 − 𝛿)𝑣.

And hence,

𝑑𝑣

𝑑𝑡
+ (−𝛼 + 𝛿)𝑣 ≤ 0.

Applying Gronwall’s inequality [33], we have 0 ≤ 𝑣(𝑡) < 𝑣(0)𝑒(𝛼−𝛿)𝑡. Thus, 
for 𝑡 →∞, we have 0 ≤ 𝑣(𝑡) ≤ 0, if 𝛼 < 𝛿. Therefore, 𝑣(𝑡) → 0 as 𝑡 →∞ if 
𝛼 < 𝛿. Hence, the theorem. □

3.3. Equilibrium points and reproduction number

3.3.1. Equilibrium points

The temporal system (3) has the following six biologically feasible 
equilibrium points.

1. The Extinction Equilibrium Point 𝐸0 = (0, 0, 0), which exists always.

2. The Infection and Predator Free Equilibrium Point 𝐸1 = (1, 0, 0), 
which exists always.

3. The Prey Free Equilibrium Point 𝐸2 = (0, 0, 𝑠1), which exists always.

4. The Predator Free Equilibrium Point 𝐸3 = (𝑢∗, 𝑣∗, 0), where 𝑢∗ =
𝛿(1+𝜅𝑣∗)

𝛼
and 𝑣∗ is the unique positive root of the quadratic equa-

tion

𝛿2𝜅2𝑣2 + (𝛼2𝛿 − 𝛼𝛿𝜅 + 2𝛿2𝜅)𝑣− 𝛿(𝛼 − 𝛿) = 0. (5)

Equation (5) will have a unique positive root if 𝛼 > 𝛿. Thus, 𝐸3
exists if 𝛼 > 𝛿.

5. The Disease Free Equilibrium Point 𝐸4 = (�̂�, 0, �̂�), where

�̂� =
−𝐵1 +

√
𝐵2
1 + 4(1 + 𝑠2𝜔)𝐶1

2(1 + 𝑠2𝜔)
, �̂� = 𝑠1 + 𝑠2�̂� (6)

with

𝐵1 = 𝛽 + 𝑠2𝛾 +𝜔(𝑠1 − 𝑠2) − 1, 𝐶1 = 𝛽 − 𝑠1(𝛾 −𝜔).

It can be observed that �̂� is positive if 𝐶1 > 0. Thus, 𝐸4 exists if

𝛽 > 𝑠1(𝛾 −𝜔). (7)



D. Melese and S. Feyissa Heliyon 7 (2021) e06193
6. The Endemic Equilibrium Point 𝐸5 = (�̃�, ̃𝑣, �̃�), where

�̃� = 𝑠1 + 𝑠2�̃�+ 𝑠3�̃�, (8)

�̃� =
(1 + 𝜅�̃�)(𝛿 + 𝑠1𝜃 + (𝑠3𝜃 + 𝜎𝛿)�̃�)

𝛼 − 𝑠2𝜃 + (𝛼𝜎 − 𝑠2𝜃𝜅)�̃�
(9)

and �̃� is the unique positive root of the polynomial

𝐴5𝑣
5 +𝐴4𝑣

4 +𝐴3𝑣
3 +𝐴2𝑣

2 +𝐴1𝑣+𝐴0 = 0. (10)

The coefficients 𝐴𝑖 (𝑖 = 1, 2, 3, 4, 5) are given in Supplementary Ap-

pendix.

3.3.2. Reproduction number

The basic reproduction number R0 is obtained by using the next gen-

eration matrix method [34]. The temporal system (3) has one infected 
state, 𝑣, and two uninfected states, 𝑢 and 𝑤. Therefore, the flux of newly 
infected is  , where  = 𝛼𝑢𝑣

𝜅𝑣+1 ; other entering and leaving fluxes is  , 
where  = 𝜃𝑣𝑤

𝜎𝑣+1 + 𝛿𝑣.

The Next generation matrix is then 𝐾 = 𝐹𝑉 −1, where

𝐹 =
(
𝜕

𝜕𝑣

) |||𝐸4=(�̂�,0,�̂�)
and 𝑉 =

(
𝜕

𝜕𝑣

) |||𝐸4=(�̂�,0,�̂�)
.

The reproduction number R0 is the spectral radius of the generation 
matrix 𝐾 , which can be given as [34]

R0 = 𝜌(𝐾) = 𝛼�̂�

𝛿 + 𝜃(𝑠1 + 𝑠2�̂�)
. (11)

3.4. Local stability analysis

In this subsection, the local dynamics of the system (3) around the 
biologically feasible equilibrium points is investigated. The Jacobean 
matrix of the system (3) at any arbitrary point (𝑢, 𝑣, 𝑤) is given as

𝐽 (𝑢, 𝑣,𝑤) =
⎛⎜⎜⎝
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞⎟⎟⎠ ,
where

𝑎11 = 1 − 2𝑢− 𝛼𝑣

𝜅𝑣+ 1
− 𝛾𝑤(𝛽 +𝑤𝜔)

(𝛽 + 𝑢+𝑤𝜔)2
,

𝑎12 = − 𝛼𝑢

(𝜅𝑣+ 1)2
, 𝑎13 = − 𝛾𝑢(𝛽 + 𝑢)

(𝛽 + 𝑢+𝑤𝜔)2
,

𝑎21 =
𝛼𝑣

𝜅𝑣+ 1
, 𝑎22 = −𝛿 + 𝛼𝑢

(𝜅𝑣+ 1)2
− 𝜃𝑤

(𝜎𝑣+ 1)2
,

𝑎23 = − 𝜃𝑣

𝜎𝑣+ 1
, 𝑎31 =

𝜂s2𝑤2

(𝑠1 + 𝑠2𝑢+ 𝑠3𝑣)2
,

𝑎32 =
𝜂𝑠3𝑤

2

(𝑠1 + 𝑠2𝑢+ 𝑠3𝑣)2
, 𝑎33 =

𝜂(𝑠1 + 𝑠2𝑢+ 𝑠3𝑣− 2𝑤)
𝑠1 + 𝑠2𝑢+ 𝑠3𝑣

.

Theorem 3.4. The Extinction Equilibrium Point 𝐸0 = (0, 0, 0) and the In-

fected Prey and Predator Free Equilibrium Points 𝐸1 = (1, 0, 0) are unstable 
saddle points.

Proof. The eigenvalues of the Jacobean matrices 𝐽 (𝐸0) and 𝐽 (𝐸1) are 
1, −𝛿, 𝜂 and −1, 𝛼 − 𝛿, 𝜂, respectively. Therefore, both the equilibrium 
points 𝐸0 and 𝐸1 are unstable saddle equilibrium points as 𝐽 has a 
positive eigenvalue at the respective equilibrium points. □

Theorem 3.5. The Prey Free Equilibrium Point 𝐸2 = (0, 0, 𝑠1) is locally 
asymptotically stable provided 𝛽 < 𝑠1(𝛾 −𝜔). Otherwise, it is unstable.

Proof. The eigenvalues of the Jacobean matrix 𝐽 (𝐸2) are −𝜂, 1 −
𝑠1𝛾

𝛽+𝑠1𝜔
, −𝛿−𝑠1𝜃. Thus, all eigenvalues will be negative provided 1 − 𝑠1𝛾

𝛽+𝑠1𝜔
is negative. Therefore, 𝐸2 will be locally asymptotically stable provided 
𝛽 < 𝑠1(𝛾 −𝜔). However, if 𝛽 > 𝑠1(𝛾 −𝜔), then 𝐸2 becomes unstable. □
4

Theorem 3.6. The Predator Free Equilibrium Point 𝐸3 = (𝑢∗, 𝑣∗, 0) is un-

stable.

Proof. One of the eigenvalues of the Jacobean matrix 𝐽 (𝐸3) is 𝜂 > 0. 
Therefore, the equilibrium point 𝐸3 is unstable. □

Theorem 3.7. The Disease Free Equilibrium Point 𝐸4 = (�̂�, 0, �̂�) is locally 
asymptotically stable if

R0 < 1, 𝜂 > 𝑎11, (12)

where

𝑎11 =
(

𝛾�̂�

(𝛽 + �̂�+𝜔�̂�)2
− 1

)
�̂�.

Proof. The characteristic equation of the Jacobean matrix 𝐽 (𝐸4) is

(𝑎22 − 𝜆)(𝜆2 + (𝜂 − 𝑎11)𝜆− (𝑎11 + 𝑠2𝑎13)𝜂 = 0, (13)

where

𝑎13 = − 𝛾�̂�(𝛽 + �̂�)
(𝛽 + �̂�+𝜔�̂�)2

, 𝑎22 = 𝛿(𝑠1 + 𝑠2𝜃�̂�)(R0 − 1). (14)

The roots of the characteristics equation (13) are

𝜆1,2 =
𝑎11 − 𝜂+

√
(𝑎11 − 𝜂)2 + 4𝜂(𝑎11 + 𝑠2𝑎13)

2
, (15)

𝜆3 = 𝛿(𝑠1 + 𝑠2𝜃�̂�)(R0 − 1).

It is clear that 𝜆3 becomes negative for R0 < 1 and 𝜆1,2 will have negative 
real part if 𝑎11 − 𝜂 < 0 and 𝑎11 + 𝑠2𝑎13 < 0. Now,

𝑎11 + 𝑠2𝑎13 = −
�̂�((1 + 𝑠2𝜔)2�̂�2 +𝐵�̂�+𝐶)

(𝛽 + �̂�+𝜔�̂�2)
;

𝐵 = 2(𝛽 + 𝑠1𝜔)(1 + 𝑠2𝜔), 𝐶 = (𝛽 + 𝑠1𝜔)2 + 𝛾(𝑠2𝛽 − 𝑠1).

Since 2(1 + 𝑠2𝜔)�̂� > 1 + 𝑠2𝜔 − (𝛽 + 𝑠2𝛾 + 𝑠1𝜔) and 𝛽 − 𝑠1(𝛾 −𝜔) > 0 (cf. (6) 
and (7)), we have

𝐵�̂�+𝐶 > (1 + 𝑠2𝜔)(𝛽 − 𝑠1(𝛾 −𝜔)) > 0

This implies 𝑎11 + 𝑠2𝑎13 < 0.

Therefore, the Disease Free Equilibrium Point 𝐸4 will be locally 
asymptotically stable if R0 < 1 and 𝜂 > 𝑎11 (i.e. condition (12) holds). 
Hence the theorem. □

Theorem 3.8. The Endemic Equilibrium Point 𝐸5 = (�̃�, ̃𝑣, �̃�) is locally 
asymptotically stable if

𝜙2 > 0, 𝜙0 > 0, 𝜙1𝜙2 − 𝜙0 > 0, (16)

where

𝜙2 = −𝑎11 − 𝑎22 − 𝜂,

𝜙1 = 𝑎11𝑎22 − 𝑎21𝑎12 − 𝜂(𝑠2𝑎13 + 𝑠3𝑎23 + 𝑎11 + 𝑎22),

𝜙0 = 𝜂(𝑎11𝑎22 − 𝑎12𝑎21 + 𝑠3(𝑎11𝑎23 − 𝑎13𝑎21)

+ 𝑠2(𝑎13𝑎22 − 𝑎12𝑎23))

and 𝑎𝑖𝑗 (𝑖 = 1, 3; 𝑗 = 1, 2, 3) are the entries of the Jacobean matrix 𝐽 (𝐸5)
which are given as

𝑎11 = �̃�

(
𝛾�̃�

(𝛽 + �̃�+𝜔�̃�)2
− 1

)
, 𝑎12 = − 𝛼�̃�

(𝜅�̃�+ 1)2
,

𝑎13 = − 𝛾�̃�(𝛽 + �̃�)
(𝛽 + �̃�+𝜔�̃�)2

, 𝑎21 =
𝛼�̃�

𝜅�̃�+ 1
,

𝑎22 = − 𝛼𝜅�̃�
2 + 𝜃𝜎�̃�

2 , 𝑎23 = − 𝜃�̃�
.

(𝜅�̃�+ 1) (𝜎�̃�+ 1) 𝜎�̃�+ 1
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Proof. The characteristic equation of the Jacobean matrix 𝐽 (𝐸5) is

𝜆3 + 𝜙2𝜆
2 + 𝜙1𝜆+𝜙0 = 0. (17)

According to Routh-Hurwitz criteria, all the roots of the characteristics 
equation (17) have negative real parts if and only if 𝜙2 > 0, 𝜙0 and 
𝜙1𝜙2 −𝜙0 > 0.

Therefore, the Endemic Equilibrium Point 𝐸5 is locally asymptot-

ically stable provided the condition (16) is satisfied. Hence the re-

sult. □

3.5. Global stability

In this subsection the global stability of the Disease Free Equilibrium 
Point and the Endemic Equilibrium Point is investigated.

Theorem 3.9. The Disease Free Equilibrium Point 𝐸4 is globally asymptot-

ically stable if

𝛼 < 𝛿, 𝑠3

(
1 + 𝜎𝛼

𝛿𝜅

)
< 𝑠1𝜃,

2𝛾𝑠1 + 𝑠2𝛽 + 𝑠2(1 + 2𝛾)�̂�
𝜒1𝜒2𝜒3

>
𝛽2(4𝑠1 + 𝑠22) + 𝑠21

(𝛽𝑠1)2
, (18)

where

𝜒1 = 𝛽 + 𝑢+𝜔𝑤, 𝜒2 = 𝛽 + �̂�+𝜔�̂�, 𝜒3 = 𝑠1 + 𝑠2𝑢+ 𝑠3𝑤.

Proof. Consider a Lyapunov function

𝑆(𝑢, 𝑣,𝑤) =
(
𝑢− �̂�− �̂� ln 𝑢

�̂�

)
+ 𝑣+

(
𝑤− �̂�− �̂� ln 𝑤

�̂�

)
. (19)

Differentiating equation (19) with respect to time 𝑡 along the solutions 
of the temporal system (3) yields

𝑑𝑆

𝑑𝑡
=𝐴 (𝑢− �̂�)2 +𝐶 (𝑤− �̂�)2 +𝐵(𝑢− �̂�)(𝑤− �̂�) +𝐿𝑣

= 𝐶

(
𝑤− �̂�+ 𝐵

2𝐶
(𝑢− �̂�)

)2
+ 4𝐴𝐶 −𝐵2

4𝐶
(𝑢− �̂�)2 +𝐿𝑣,

where

𝐴 = 𝛾�̂�

𝜒1𝜒2
− 1, 𝐵 =

𝑠2
𝜒3

− 𝛽 + �̂�

𝜒1𝜒2
𝐶 = − 1

𝜒3
,

𝐿 =
𝑠3(𝑤− �̂�)

𝜒3
+ 𝛼�̂�

1 + 𝜅𝑣
− 𝛿 − 𝜃𝑤

1 + 𝜎𝑣
.

Since, 𝐶 < 0, 𝑑𝑆
𝑑𝑡

will be negative if 4𝐴𝐶 −𝐵2 > 0 and 𝐿 < 0.

Now, under condition (18), we have

4𝐴𝐶 −𝐵2 =
2𝛾𝑠1 + 𝑠2𝛽 + 𝑠2(1 + 2𝛾)�̂�

𝜒1𝜒2𝜒3
−

(
4
𝜒3

+
𝑠22

𝜒2
3

+ (𝛽 + �̂�)2

𝜒2
1𝜒

2
2

)

>
2𝛾𝑠1 + 𝑠2𝛽 + 𝑠2(1 + 2𝛾)�̂�

𝜒1𝜒2𝜒3
−

𝛽2(4𝑠1 + 𝑠22) + 𝑠21
(𝛽𝑠1)2

> 0

and

𝐿 ≤ 𝛼 − 𝛿 +

(
𝑠3
𝑠1

− 𝜃

1 + 𝜎𝛼

𝛿𝜅

)
𝑤

= 𝛼 − 𝛿 +

(
𝑠3(1 +

𝜎𝛼

𝛿𝜅
) − 𝜃𝑠1

𝑠1(1 +
𝜎𝛼

𝛿𝜅
)

)
𝑤< 0.

Therefore, by Lyapunov theorem, the Disease Free Equilibrium Point 
𝐸4 is globally asymptotically stable if condition (18) holds. Hence the 
theorem. □
5

Theorem 3.10. The Endemic Equilibrium Point 𝐸5 is globally asymptoti-

cally stable if

𝑙11 > 0, 𝑙22 > 0, 𝑙212 < 𝑙11𝑙22, 𝑙
2
13 < 𝑙11𝑙33, 𝑙

2
23 < 𝑙22𝑙33, (20)

where

𝑙11 = 1 − 𝛾�̃�

𝜒1
, 𝑙12 =

𝛼𝜅�̃�

2(1 + 𝜅�̃�)
, 𝑙13 =

s2

2𝜒4
− 𝛽 + �̃�

2𝜒1
,

𝑙23 =
𝑠3
2𝜒4

− 𝜃

2𝜒3
, 𝑙22 = − 𝜃𝜎�̃�

𝜒3
+ 𝛼𝜅�̃�

𝜒2
, 𝑙33 =

1
𝜒4

𝜒1 = (𝛽 + 𝑢+𝜔𝑤)(𝛽 + �̃�+𝜔�̃�), 𝜒2 = (1 + 𝜅𝑣)(1 + 𝜅�̃�),

𝜒3 = (1 + 𝜎𝑣)(1 + 𝜎�̃�), 𝜒4 = 𝑠1 + 𝑠2𝑢+ 𝑠3𝑤.

Proof. Consider a Lyapunov function

𝑆(𝑢, 𝑣,𝑤) =
(
𝑢− �̂�− �̂� ln 𝑢

�̂�

)
+
(
𝑣− �̂�− �̂� ln 𝑣

�̂�

)
+
(
𝑤− �̂�− �̂� ln 𝑤

�̂�

)
. (21)

Differentiating equation (21) with respect to time 𝑡 along the solutions 
of the temporal system (3) results

𝑑𝑆

𝑑𝑡
= −𝑙11 (𝑢− �̂�)2 − 𝑙22 (𝑣− �̂�)2 + 𝑙12(𝑢− �̂�)(𝑣− �̂�)

− 𝑙33 (𝑤− �̂�)2 + 𝑙13(𝑢− �̂�)(𝑤− �̂�) + 𝑙23(𝑣− �̂�)(𝑤− �̂�)

= P𝑇𝑀P,

where

P = (𝑢− �̂�, 𝑣− �̂�,𝑤− �̂�), 𝑀 =
⎛⎜⎜⎝
−𝑙11 𝑙12 𝑙13
𝑙12 −𝑙22 𝑙23
𝑙13 𝑙23 −𝑙33

⎞⎟⎟⎠ .
Now, 𝑑𝑆

𝑑𝑡
is negative if and only if the matrix 𝑀 is negative definite. 

The sufficient conditions for the matrix 𝑀 to be negative definite are

𝑙11 > 0, 𝑙22 > 0, 𝑙33 > 0, 𝑙212 < 𝑙11𝑙22, 𝑙
2
13 < 𝑙11𝑙33, 𝑙

2
23 < 𝑙22𝑙33.

Since, 𝑙33 > 0, 𝑀 is negative definite if condition (20) holds. Thus, 𝑑𝑆
𝑑𝑡

becomes negative if condition (20) holds.

Therefore, by Lyapunov theorem, the Endemic Equilibrium Point 
𝐸5 is globally asymptotically stable if condition (20) holds. Hence the 
theorem. □

3.6. Bifurcation analysis

In this subsection the local bifurcation at the Disease Free Equilib-

rium Point and the Endemic Equilibrium Points is discussed with the 
help of Sotomayor Theorem [35].

Theorem 3.11. When the bifurcation parameter 𝛼 passes through the criti-
cal value 𝛼∗ = 𝛿(𝑠1+𝑠2𝜃�̂�)

�̂�
(i.e. R0 = 1), the temporal system (3) at the Disease 

Free Equilibrium Point 𝐸4 = (�̂�, 0, �̂�) has

1. no saddle-node bifurcation,

2. a transcritical bifurcation if 𝛼𝑔 ≠ 𝜃ℎ + 𝜅𝛿(𝑠1 + 𝑠2𝜃�̂�) − 𝜃𝜎�̂�,

3. a pitchfork bifurcation if 𝛼𝑔 = 𝜃ℎ + 𝜅𝛿(𝑠1 + 𝑠2𝜃�̂�) − 𝜃𝜎�̂�, 𝜎 ≠ 𝜅 and 
𝜎�̂� ≠ ℎ,

where

𝑔 =
𝛿(𝑠1 + 𝑠2𝜃�̂�) − 𝑠3𝑎13

𝑎11 + 𝑠2𝑎13
, ℎ =

𝑠2𝛿(𝑠1 + 𝑠2𝜃�̂�) + 𝑠3𝑎11
𝑎11 + 𝑠2𝑎13

,

𝑎11 =
𝛾�̂��̂�

2 − �̂�, 𝑎13 = − 𝛾�̂�(𝛽 + �̂�)
2 .
(𝛽 + �̂�+𝜔�̂�) (𝛽 + �̂�+𝜔�̂�)
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Proof. The Jacobean matrix at 𝐸4 is

𝐽 (𝐸4) =
⎛⎜⎜⎝
𝑎11 −𝛼�̂� 𝑎13
0 𝛿(𝑠1 + 𝑠2𝜃�̂�)(R0 − 1) 0
𝑠2𝜂 𝑠3𝜂 −𝜂

⎞⎟⎟⎠ .
If the bifurcation parameter 𝛼 = 𝛼∗, then the Jacobean matrix 𝐽 (𝐸4) has 
a zero eigenvalue and can be given as

𝐽 (𝐸4)𝛼∗ =
⎛⎜⎜⎝
𝑎11 −𝛼�̂� 𝑎13
0 0 0
𝑠2𝜂 𝑠3𝜂 −𝜂

⎞⎟⎟⎠ .
Let 𝑃 = (𝑝1, 𝑝2, 𝑝3)𝑇 be an eigenvector corresponding to the eigenvalue 
𝜆 = 0. Hence, 𝐽 (𝐸4)𝛼∗𝑃 = 0 gives 𝑃 = 𝑝2(𝑔, 1, ℎ) where 𝑝2 is any nonzero 
real number. Similarly, assume 𝑄 = (𝑞1, 𝑞2, 𝑞3)𝑇 be the corresponding 
eigenvector of 𝐽 (𝐸4)𝑇𝛼∗ . Thus, from 𝐽 (𝐸4)𝑇𝛼∗𝑄 = 0, we get 𝑄 = (0, 𝑞2, 0)𝑇
where 𝑞2 is any nonzero real number.

Let u(𝑡) = (𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡))𝑇 and G = (𝐺1, 𝐺2, 𝐺3)𝑇 , where 𝐺1, 𝐺2 and 
𝐺3 are given in equation (4). Then, the temporal system (3) can be 
given as u′ = G(u). Now

𝑑G

𝑑𝛼
= G𝛼 =

(
− 𝑢𝑣

𝜅𝑣+ 1
,

𝑢𝑣

𝜅𝑣+ 1
,0
)𝑇

.

This implies G𝛼(𝐸4, 𝛼∗) = (0, 0, 0)𝑇 . Then, we have 𝑄𝑇 G𝛼(𝐸4, 𝛼∗) =
(0, 0, 0)𝑇 .

Thus, by Sotomayor’s theorem, the temporal system (3) has no 
saddle-node bifurcation near the Disease Free Equilibrium Point near 
𝛼 = 𝛼∗.

The derivative of G𝛼 with respect to u evaluated at (𝐸4, 𝛼∗) is given 
as

𝐷G𝛼(𝐸4, 𝛼
∗) =

⎛⎜⎜⎝
0 −�̂� 0
0 �̂� 0
0 0 0

⎞⎟⎟⎠ .
Hence, 𝑄𝑇 [𝐷G𝛼(𝐸4, 𝛼∗)𝑃 ] = 𝑝2𝑞2�̂� ≠ 0.

The second derivative of G with respect to u evaluated at (𝐸4, 𝛼∗) is 
obtained as

𝐷2G((𝐸4, 𝛼
∗))(𝑃 ,𝑃 ) = 2𝑝2

(
𝑏11, 𝑏21, 𝑏31

)𝑇
,

where

𝑏11 =
(

𝛾�̂�(𝛽 + �̂�𝜔)
(𝛽 + �̂�+𝜔�̂�)3

− 1
)
𝑔2 − 𝛼∗𝑔 + 𝜅𝛿(𝑠1 + 𝑠2𝜃�̂�)

− 𝛾(𝛽(𝛽 + �̂�) +𝜔�̂�(𝛽 + 2�̂�))𝑔ℎ
(𝛽 + �̂�+𝜔�̂�)3

+ 𝛾�̂�𝜔(𝛽 + �̂�)ℎ2

(𝛽 + �̂�+𝜔�̂�)3
,

𝑏21 = 𝛼∗𝑔 − 𝜃ℎ+ 𝜃𝜎�̂�− 𝜅𝛿(𝑠1 + 𝑠2𝜃�̂�),

𝑏31 =
𝜂

𝑠1 + 𝑠2�̂�

(
−𝑠22𝑔

2 − 𝑠2𝑠3𝑔 + 2𝑠2𝑔ℎ+ 2𝑠3ℎ− 𝑠23 − ℎ2
)
.

Thus,

𝑄𝑇 [𝐷2G((𝐸4, 𝛼
∗))(𝑃 ,𝑃 )] = 2𝑝2𝑞2𝑏21.

Therefore, by Sotomayor’s theorem, a transcritical bifurcation occurs 
at 𝐸4 when the bifurcation parameter 𝛼 passes the critical value 𝛼∗ if 
𝛼∗ ≠

𝜃ℎ−𝜃𝜎�̂�+𝜅𝛿(𝑠1+𝑠2𝜃�̂�)
𝑔

.

However, if 𝛼∗ = 𝜃ℎ−𝜃𝜎�̂�+𝜅𝛿(𝑠1+𝑠2𝜃�̂�)
𝑔

, then after some algebraic calcu-

lations, we get

𝑄𝑇 [𝐷3G((𝐸4, 𝛼
∗))(𝑃 ,𝑃 .𝑃 )] = 6𝜃(𝜎 − 𝜅)(ℎ− 𝜎�̂�).

Therefore, by Sotomayor’s theorem, a pitchfork bifurcation occurs at 𝐸4
when the bifurcation parameter 𝛼 passes the critical value 𝛼∗ if 𝜎 ≠ 𝜅

and 𝜎�̂� ≠ ℎ. Hence, the theorem. □

Theorem 3.12. The temporal system (3) undergoes Hopf Bifurcation 
around the Disease Free Equilibrium Point 𝐸4 = (�̂�, 0, �̂�), when the bi-

furcation parameter 𝜂 crosses the critical value 𝜂𝑐𝑟 = 𝑎11, where 𝑎11 =(
𝛾�̂�

2 − 1
)
�̂�.
(𝛽+�̂�+𝜔�̂�)

6

Proof. From the eigenvalues of the Jacobean matrix 𝐽 (𝐸4), which are 
given in (15), we can see that 𝜆3 is real, 𝜆1, 𝜆2 are purely imaginary 
if and only if there is a critical value of 𝜂 = 𝜂𝑐𝑟 = 𝑎11. Thus, at 𝜂 = 𝜂𝑐𝑟, 
we have 𝜆1 = 𝑖

√
𝑝2, 𝜆2 = −𝑖

√
𝑝2, 𝜆3 = 𝛿(𝑠1 + 𝑠2𝜃�̂�)(R0 − 1), where 𝑝2 =

−(𝑎11 + 𝑠2𝑎13) and 𝑎13 =
(

𝛾�̂�

(𝛽+�̂�+𝜔�̂�)2 − 1
)
�̂�.

Now, differentiating equation (13) with respect to 𝜂 gives[
𝑑𝜆

𝑑𝜂

]
𝜂=𝜂𝑐𝑟

= −

[[
𝜆�̇�1 + �̇�2
2𝜆+ 𝑝1

]
𝜆=𝑖

√
𝑝2

]
𝜂=𝜂𝑐𝑟

=

[
2𝑝2

𝑝21 + 4𝑝2

]
𝜂=𝜂𝑐𝑟

+ 𝑖

[
2𝑝1

√
𝑝2

𝑝21 + 4𝑝2

]
𝜂=𝜂𝑐𝑟

= 0.5 ≠ 0,

where 𝑝1 = −(𝑎11 + 𝑠2𝑎13).
This implies 𝑅𝑒 

[
𝑑𝜆

𝑑𝜂

]
𝜂=𝜂𝑐𝑟

= 0.5 ≠ 0.

Therefore, the temporal system (3) undergoes a Hopf Bifurcation 
around the Disease Free Equilibrium Point at a certain critical value of 
the parameter 𝜂 = 𝜂𝑐𝑟. □

Theorem 3.13. The temporal system (3) will experience a Hopf Bifurcation 
around the Endemic Equilibrium Point 𝐸5 when the bifurcation parameter 𝜂
passes the critical value 𝜂 = 𝜂𝑐𝑟 if the following conditions hold.

(i) 𝜙2(𝜂) > 0 and 𝜙0(𝜂) > 0 at 𝜂 = 𝜂𝑐𝑟,

(ii) 𝐻(𝜂) ∶= 𝜙1(𝜂)𝜙2(𝜂) −𝜙0(𝜂) = 0 at 𝜂 = 𝜂𝑐𝑟,

(iii)
[
𝑑𝐻(𝜂)
𝑑𝜂

]
𝜂=𝜂𝑐𝑟

≠ 0,

where 𝜙2, 𝜙1, 𝜙0 are as defined in theorem (3.8).

Proof. From conditions (i) and (ii), it follows that the temporal system 
(3) will have one negative root and two purely imaginary roots. Thus, 
for 𝜂 = 𝜂𝑐𝑟, the characteristic equation of the Jacobean matrix 𝐽 (𝐸5)
given in (17), must be written as (𝜆2 + 𝜙1)(𝜆 + 𝜙2) = 0, and gives the 
three roots: 𝜆1 = 𝑖

√
𝜙1, 𝜆2 = −𝑖

√
𝜙1 and 𝜆3 = −𝜙2.

For all values of the bifurcation parameter 𝜂, the eigenvalues 𝜆1,2
are of the form 𝜆1 = 𝑞1(𝜂) + 𝑖𝑞2(𝜂) and 𝜆2 = 𝑞1(𝜂) − 𝑖𝑞2(𝜂), in which 𝑞1(𝜂)
and 𝑞2(𝜂) are real. Substituting 𝜆 = 𝑞1(𝜂) + 𝑖𝑞2(𝜂) in to the characteristics 
equation (17) gives

(𝑞1(𝜂) + 𝑖𝑞2(𝜂))3 +𝜙2(𝜂)(𝑞1(𝜂) + 𝑖𝑞2(𝜂))2

+𝜙1(𝜂)(𝑞1(𝜂) + 𝑖𝑞2(𝜂)) +𝜙0(𝜂) = 0. (22)

Differentiating equation (22) with respect to the bifurcation parameter 
𝜂 and separating real and imaginary parts gives

𝐴(𝜂)�̇�1(𝜂) −𝐵(𝜂)�̇�2(𝜂) +𝐶(𝜂) = 0, (23)

𝐵(𝜂)�̇�1(𝜂) +𝐴(𝜂)�̇�2(𝜂) +𝐷(𝜂) = 0, (24)

where

𝐴(𝜂) = 𝜙1(𝜂) + 2𝜙2(𝜂)𝑞1(𝜂) + 3(𝑞21(𝜂) − 𝑞21(𝜂)),

𝐵(𝜂) = 2(𝜙2(𝜂) + 3𝑞1(𝜂))𝑞2(𝜂),

𝐶(𝜂) = (𝑞21(𝜂) − 𝑞22(𝜂))�̇�2(𝜂) + 𝑞1(𝜂)�̇�1(𝜂) + �̇�0(𝜂),

𝐷(𝜂) = (2𝑞1(𝜂)�̇�2 + �̇�1(𝜂))𝑞2(𝜂).

Solving the simultaneous equations (23) and (24) for �̇�1 gives

𝑅𝑒

[
𝑑𝜆

𝑑𝜂

]
𝜂=𝜂𝑐𝑟

= −
[
𝐴(𝜂)𝐶(𝜂) +𝐵(𝜂)𝐷(𝜂)

𝐴2(𝜂) +𝐵2(𝜂)

]
𝜂=𝜂𝑐𝑟

=

[
𝜙1(𝜂)�̇�2(𝜂) +𝜙2(𝜂)�̇�1(𝜂) − �̇�0

2(𝜙2(𝜂) +𝜙2(𝜂)

]

1 2 𝜂=𝜂𝑐𝑟
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= −
⎡⎢⎢⎣

𝑑𝐻(𝜂)
𝑑𝜂

2(𝜙2
1(𝜂) +𝜙2

2(𝜂)

⎤⎥⎥⎦𝜂=𝜂𝑐𝑟 ≠ 0.

Hence the theorem. □

4. Analysis of the spatio-temporal system

In this section, the spatio-temporal dynamics of the system (2) is 
investigated.

4.1. Persistence and boundedness

To study the existence of a positively invariant attracting region, 
the boundedness and the persistence property of solutions of the spatio-

temporal system (2), the following lemma is used [36].

Lemma 4.1. Let 𝑓 (𝑠) be a positive 𝐶1 function for 𝑠 ≥ 0, and let 𝑑 > 0, 𝜂 ≥ 0
be constants. Further, let 𝑇 ∈ [0, ∞) and Φ ∈ 𝐶2,1(Ω × (𝑇 , ∞)) ∩ 𝐶1,0(Ω ×
[𝑇 , ∞)) be a positive function.

1 If Φ satisfies{
Φ𝑡 − 𝑑ΔΦ ≤Φ1+𝜂𝑓 (Φ)(𝜗−Φ), (𝑥, 𝑡) ∈ Ω × (𝑇 ,∞),

Φ𝜈 = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [𝑇 ,∞),

and the constant 𝜗 > 0, then limsup
𝑡→∞

max
Ω

Φ(., 𝑡) ≤ 𝜗.

2 If Φ satisfies{
Φ𝑡 − 𝑑ΔΦ ≥Φ1+𝜂𝑓 (Φ)(𝜗−Φ), (𝑥, 𝑡) ∈ Ω × (𝑇 ,∞),

Φ𝜈 = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [𝑇 ,∞),

and the constant 𝜗 > 0, then lim inf
𝑡→∞

min
Ω

Φ(., 𝑡) ≥ 𝜗.

3 If Φ satisfies{
Φ𝑡 − 𝑑ΔΦ ≤Φ1+𝜂𝑓 (Φ)(𝜗−Φ), (𝑥, 𝑡) ∈ Ω × (𝑇 ,∞),

Φ𝜈 = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [𝑇 ,∞),

and the constant 𝜗 ≤ 0, then limsup
𝑡→∞

max
Ω

Φ(., 𝑡) ≤ 0.

Theorem 4.2. All solutions of (2) initiating in 𝐑3
+ are ultimately bounded 

and eventually enter into the positively invariant attracting region

Σ = [0,1] ×
[
0, 𝛼

𝛿𝜅

]
×
[
0, 𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

]
.

Proof. We have to show that for (𝑢(𝑥, 0), 𝑣(𝑥, 0), 𝑤(𝑥, 0)) ∈ Σ, (𝑢(𝑥, 𝑡),
𝑣(𝑥, 𝑡), 𝑤(𝑥, 𝑡)) ∈ Σ ∀𝑡 ≥ 0. It is straightforward to see that 𝑢(𝑥, 𝑡) ≥ 0, 
𝑣(𝑥, 𝑡) ≥ 0 and 𝑤(𝑥, 𝑡) ≥ 0 since the initial values 𝑢(𝑥, 0), 𝑣(𝑥, 0) and 𝑤(𝑥, 0)
are nonnegative. Now from the first equation of system (2), we have

𝑢𝑡 −Δ𝑢 ≤ 𝑢(1 − 𝑢).

Thus, by Lemma 4.1 we have

limsup
𝑡→∞

max
Ω

𝑢(., 𝑡) ≤ 1. (25)

Thus, for any given 𝜀 > 0 there exists 𝑡1 >> 1, such that 𝑢(𝑥, 𝑡) ≤ 1 + 𝜀, 
for (𝑥, 𝑡) ∈ Ω× [𝑡1, ∞). As a result, for (𝑥, 𝑡) ∈Ω× [𝑡1, ∞), the equation of 
𝑣 satisfies

𝑣𝑡 −𝐷2Δ𝑣 ≤
𝛼(1 + 𝜀)𝑣
1 + 𝜅𝑣

− 𝛿𝑣 ≤ 𝛿

(
𝛼(1 + 𝜀)

𝛿𝜅
− 𝑣

)
.

Since 𝜀 > 0 is arbitrary, Lemma 4.1 yields

limsup
𝑡→∞

max
Ω

𝑣(., 𝑡) ≤ 𝛼

𝛿𝜅
. (26)
7

Thus, for any given 𝜀1 > 0 there exists 𝑡2 >> 1, such that 𝑣(𝑥, 𝑡) ≤
𝛼

𝛿𝜅
+ 𝜀1, for (𝑥, 𝑡) ∈ Ω × [𝑡2, ∞). As a result, for (𝑥, 𝑡) ∈ Ω × [𝑡2, ∞), the 

equation of 𝑤 satisfies

𝑤𝑡 −𝐷3Δ𝑤 ≤ 𝜂

(
1 − 𝑤

𝑠1 + (1 + 𝜀)𝑠2 + ( 𝛼

𝛿𝜅
+ 𝜀1)𝑠3

)
𝑤

= 𝜂

(
𝑠1 + (1 + 𝜀)𝑠2 + ( 𝛼

𝛿𝜅
+ 𝜀1)𝑠3 −𝑤

𝑠1 + (1 + 𝜀)𝑠2 + ( 𝛼

𝛿𝜅
+ 𝜀1)𝑠3

)
𝑤.

Since 𝜀 > 0 and 𝜀1 > 0 are arbitrary, Lemma 4.1 yields

limsup
𝑡→∞

max
Ω

𝑤(., 𝑡) ≤ 𝑠1 + 𝑠2 +
𝛼𝑠3
𝛿𝜅

. (27)

Hence, the proof is complete. □

Definition 4.1. The system (2) is said to be persistent if for any nonneg-

ative initial data (𝑢(𝑥, 0), 𝑣(𝑥, 0), 𝑤(𝑥, 0)) with, (𝑢(𝑥, 0), 𝑣(𝑥, 0), 𝑤(𝑥, 0)) ≠
(0, 0, 0), there exist positive constants 𝜎0, 𝜎1 and 𝜎2 such that the so-

lutions (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑤(𝑥, 𝑡)) of (2) satisfy

lim inf
𝑡→∞

min
Ω

𝑢(., 𝑡) ≥ 𝜎0, lim inf
𝑡→∞

min
Ω

𝑣(., 𝑡) ≥ 𝜎1, lim inf
𝑡→∞

min
Ω

𝑤(., 𝑡) ≥ 𝜎2.

Theorem 4.3. The system (2) is persistent if

𝑙𝑢 = 1 − (𝛼∕𝜅) − (𝛾∕𝜔) > 0, 𝛼𝑙𝑢 −
(
𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
+ 𝛿

)
> 0.

Proof. Since 𝑢𝑡 −Δ𝑢 ≥ 𝑢(1 − (𝛼∕𝜅) − (𝛾∕𝜔) − 𝑢) and 1 > (𝛼∕𝜅) + (𝛾∕𝜔), by 
Lemma 4.1,

lim inf
𝑡→∞

min
Ω

𝑢(., 𝑡) ≥ 1 − (𝛼∕𝜅) − (𝛾∕𝜔) = 𝑙𝑢 > 0. (28)

Thus, for any 0 < 𝜀 < 𝑙𝑢, there exists 𝑡0 >> 1 such that

𝑢(𝑥, 𝑡) ≥ 𝑙𝑢 − 𝜀, in Ω× [𝑡0,∞).

For (𝑥, 𝑡) ∈Ω× [𝑡0, ∞), the second equation of system (2) gives

𝑣𝑡 −𝐷2Δ𝑣 ≥
(

𝛼𝑢

1 + 𝜅𝑣
− 𝜃𝑤− 𝛿

)
𝑣

≥

(
𝛼𝑢

1 + 𝜅𝑣
− 𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
− 𝛿

)
𝑣

≥

(
𝛼(𝑙𝑢 − 𝜀)
1 + 𝜅𝑣

− 𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
− 𝛿

)
𝑣

≥ 𝑓

⎛⎜⎜⎜⎝
𝛼(𝑙𝑢 − 𝜀) − 𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
− 𝛿(

𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
+ 𝛿

)
𝜅

− 𝑣

⎞⎟⎟⎟⎠ ,
where

𝑓 =

(
𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
+ 𝛿

)
𝜅𝑣

1 + 𝜅𝑣
.

Since 𝜀 is arbitrary, we have

lim inf
𝑡→∞

min
Ω

𝑣(., 𝑡) ≥
𝛼𝑙𝑢 −

(
𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
+ 𝛿

)
(
𝜃

(
𝑠1 + 𝑠2 +

𝛼𝑠3
𝛿𝜅

)
+ 𝛿

)
𝜅

= 𝑙𝑣 > 0. (29)

For given 𝜀∗ > 0, there exists 𝑡1 ≥ 𝑡0 such that

𝑣(., 𝑡) ≥ 𝑙𝑣 − 𝜀∗.

Similarly, the third equation of the system (2) gives

𝑤𝑡 −𝐷3Δ𝑤 ≥ 𝜂

(
1 − 𝑤

𝑠1 + 𝑠2(𝑙𝑢 − 𝜀) + 𝑠3(𝑙𝑣 − 𝜀 ∗)

)
𝑤

= 𝜂

(
𝑠1 + 𝑠2(𝑙𝑢 − 𝜀) + 𝑠3(𝑙𝑣 − 𝜀∗) −𝑤

𝑠1 + 𝑠2(𝑙𝑢 − 𝜀) + 𝑠3(𝑙𝑣 − 𝜀 ∗)

)
𝑤.
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Since 𝜀 and 𝜀∗ are arbitrary, we have

lim inf
𝑡→∞

min
Ω

𝑤(., 𝑡) ≥ 𝑠1 + 𝑠2𝑙𝑢 + 𝑠3𝑙𝑣 = 𝑙𝑤 > 0. (30)

Hence, from (28), (29) and (30), it follows that the system (2) is persis-

tent. □

4.2. Local stability

In this subsection, the stability of the constant steady states of the 
spatio-temporal system (2) is discussed. It is easy to see that the constant 
steady states of the spatio-temporal system (2) are the six biologically 
feasible equilibrium points of the temporal system (3).

Now, denote u = (𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡), 𝑤(𝑥, 𝑦, 𝑡))𝑇 and G(u) = (𝐺1(u),
𝐺2(u), 𝐺3(u))𝑇 . Let 0 = 𝜇0 < 𝜇1 < 𝜇2 < 𝜇3 < ... be the eigenvalues of the 
operator −Δ on Ω under the homogeneous Neumann boundary con-

dition. 𝑂(𝜇𝑖) is the eigenspace corresponding to the eigenvalue 𝜇𝑖, 
X𝑖𝑗 ∶= {c.𝜓𝑖𝑗 ∶ c ∈ 𝐑3}, where {𝜓𝑖𝑗} are orthonormal basis of X𝑖 for 
𝑗 = 1, 2, 3, ..., 𝑑𝑖𝑚[𝑂𝑖], X ∶= {u = (𝑢, 𝑣, 𝑤) ∈ [𝐶1

(
Ω
)
]3| 𝜕u

𝜕𝜈
= 0 on 𝜕Ω}, and 

so X =
∞⨁
𝑖=0

X𝑖, where X𝑖 =
𝑑𝑖𝑚[𝑂(𝜇𝑖)]⨁

𝑗=1
X𝑖𝑗 .

Linearization of the system (2) at 𝐸𝑛 (𝑛 = 0(1)5) yields

u = Lu; L = D+ 𝐽 (𝐸𝑛), D = 𝑑𝑖𝑎𝑔(1,𝐷2,𝐷3),

where 𝐽 (𝐸𝑛) is the Jacobean Matrix which is defined in section 3.4. The 
eigenspace X𝑖, 𝑖 ≥ 0, is invariant under the operator L. 𝜆 is an eigenvalue 
of L on X𝑖 if and only if it is an eigenvalue of the matrix L𝑖 = −𝜇𝑖D +
𝐽 (𝐸𝑛).

Theorem 4.4. The equilibrium points 𝐸0, 𝐸1 and 𝐸3 are unstable.

Proof. For 𝑖 = 0, the operator L𝑖 at 𝐸0 𝐸1 and 𝐸3 has a common positive 
eigenvalue 𝜂 > 0. This shows that the equilibrium points 𝐸0, 𝐸1 and 𝐸3
are unstable. □

Theorem 4.5. The equilibrium point 𝐸2 = (0, 0, 𝑠1) is uniformly asymptoti-

cally stable if 𝛽 + 𝑠1𝜔 < 𝑠1𝛾 .

Proof. The eigenvalues of the operator L𝑖 at 𝐸2 are 𝜆1𝑖 = −𝛿 − 𝑠1𝜃 −
𝐷2𝜇𝑖, 𝜆2𝑖 = −𝜂−𝐷3𝜇𝑖 and 𝜆3𝑖 = 1 − 𝑠1𝛾

𝛽+𝑠1𝜔
−𝜇𝑖. Hence, all the eigenvalues 

will be negative if 𝛽+𝑠1𝜔 < 𝑠1𝛾 . Thus, there exist some positive numbers 
𝜌𝑖 such that 𝑅𝑒{𝜆1𝑖}, 𝑅𝑒{𝜆2𝑖}, 𝑅𝑒{𝜆3𝑖} ≤ −𝜌𝑖 ∀𝑖.

Let 𝜌 = min{𝜌𝑖}. Then, 𝜌 > 0 and 𝑅𝑒{𝜆1𝑖}, 𝑅𝑒{𝜆2𝑖}, 𝑅𝑒{𝜆3𝑖} ≤ −𝜌 ∀𝑖. 
Consequently, the spectrum of L lies in {𝑅𝑒𝜆 ≤ −𝜌}. Thus, Theorem 
5.1.1. of Dan Henry (p. 98) [37] concludes the uniform asymptotically 
stability of 𝐸2. □

Remark 4.1. If 𝛽 + 𝑠1𝜔 < 𝑠1𝛾 then the temporal stability of equilibrium 
point 𝐸2 ensures the uniform stability of the spatio-temporal system (2) 
in the vicinity of 𝐸2. That is, diffusion do not have an effect on the 
stability of the locally asymptotically stable equilibrium point 𝐸2.

Theorem 4.6. The Disease Free Equilibrium Point 𝐸4 = (�̂�, 0, �̂�) is uni-

formly asymptotically stable if

R0 < 1, 𝑎11 < 0. (31)

Proof. The characteristics equation of the operator L𝑖 at 𝐸4 is

(𝜆− (𝛿(𝑠1 + 𝑠2𝜃�̂�)(R0 − 1) − 𝜇𝑖𝐷2))(𝜆2 + 𝑇 𝑟𝑖𝜆+ 𝑑𝑒𝑡𝑖) = 0, (32)

where
8

𝑇 𝑟𝑖 = (𝑎11 − 𝜂) − (1 +𝐷3)𝜇𝑖,

𝑑𝑒𝑡𝑖 = −𝜂(𝑎11 + 𝑠2𝑎13) + (𝜂 − 𝑎11𝐷3)𝜇𝑖 +𝐷3𝜇
2
𝑖

and 𝑎11 and 𝑎13 are as in Theorem 3.7.

Hence, under condition (31) and the fact that 𝑎11 + 𝑠2𝑎13 < 0 (cf.

Theorem 3.7), we can see that 𝑇 𝑟𝑖 < 0, 𝑑𝑒𝑡𝑖 > 0 and (𝛿(𝑠1 + 𝑠2𝜃�̂�)(R0 −
1) − 𝜇𝑖𝐷2) < 0 for all 𝑖 ≥ 0. From the Routh-Hurwitz criterion it follows 
that, for each 𝑖 ≥ 0, all the three roots 𝜆1𝑖, 𝜆2𝑖 and 𝜆3𝑖 have nega-

tive real parts. Thus, there exist some positive numbers 𝜌𝑖 such that 
𝑅𝑒{𝜆1𝑖}, 𝑅𝑒{𝜆2𝑖}, 𝑅𝑒{𝜆3𝑖} ≤ −𝜌𝑖 ∀𝑖.

Let 𝜌 = min{𝜌𝑖}. Then, 𝜌 > 0 and 𝑅𝑒{𝜆1𝑖}, 𝑅𝑒{𝜆2𝑖}, 𝑅𝑒{𝜆3𝑖} ≤ −𝜌 ∀𝑖. 
Consequently, the spectrum of L lies in {𝑅𝑒𝜆 ≤ −𝜌}. Thus, Theorem 
5.1.1. of Dan Henry (p. 98) [37] concludes the uniform asymptotically 
stability of 𝐸4. □

Theorem 4.7. The Endemic Equilibrium Point 𝐸5 = (�̃�, ̃𝑣, �̃�) is uniformly 
asymptotically stable if

𝑎11 < 0, 𝑎22 < 0, (33)

where 𝑎11, 𝑎12 and 𝑎22 are as defined in Theorem 3.8.

Proof. The characteristics equation of L𝑖 at the Endemic Equilibrium 
Point 𝐸5 is given by

𝜆3 + 𝑃2𝑖𝜆
2 + 𝑃1𝑖𝜆+ 𝑃0𝑖 = 0, (34)

where

𝜙2𝑖 = (1 +𝐷2 +𝐷3)𝜇𝑖 + 𝜙2,

𝜙1𝑖 = (𝐷2 +𝐷3(1 +𝐷2))𝜇2
𝑖
− (𝑎22(1 +𝐷3) + 𝑎11(𝐷2 +𝐷3))𝜇𝑖

+ 𝜂(1 +𝐷2)𝜇𝑖 + 𝜙1,

𝜙0𝑖 =𝐷2𝐷3𝜇
3
𝑖
+ (𝜂𝐷2 − (𝑎22 + 𝑎11𝐷2)𝐷3)𝜇2

𝑖
− 𝑎12𝑎21𝐷3𝜇𝑖

+ (𝑎11𝑎22𝐷3 + (−𝑎23𝑠3 − 𝑎22 − (𝑎11 + 𝑎13𝑠2)𝐷2))𝜂𝜇𝑖 + 𝜙0

and 𝑎𝑟𝑠 (𝑟 = 1, 3; 𝑠 = 1, 2, 3), 𝜙2, 𝜙1 and 𝜙0 are as defined in Theorem 3.8.

Algebraic manipulations and simplifications give

𝜙1𝑖𝜙2𝑖 − 𝜙0𝑖 =𝑀1𝜇
3
𝑖
+𝑀2𝜇

2
𝑖
+𝑀3𝜇

1
𝑖
+𝑀4,

where

𝑀1 = (1 +𝐷2)(1 +𝐷3)(𝐷2 +𝐷3),

𝑀2 = −𝑎11(𝐷2 +𝐷3)(2 +𝐷2 +𝐷3) − 𝑎22(1 +𝐷3)(1 + 2𝐷2 +𝐷3)

+ 𝜂(1 +𝐷2)(1 +𝐷2 + 2𝐷3),

𝑀3 = −𝜂𝑠2(1 +𝐷3) − 𝑠3𝜂𝑎23(𝐷2 +𝐷3) − 𝑎12𝑎21(1 +𝐷2)

+ (𝑎211 − 𝑎22𝜂)𝐷2 + 𝑎11𝑎22(𝑎11 + 𝑎22 − 2𝜂)𝐷3

+ (𝑎22 − 𝜂)(𝑎22 + (2𝑎11 − 𝜂)(1 +𝐷2)),

𝑀4 = (𝑎11 + 𝑎22)(𝑎12𝑎21 − 𝑎11𝑎22) + ((𝑎11 + 𝑎22)2 + 𝑠3𝑎11𝑎13)𝜂

+ 𝑠2𝑎12𝑎23 + 𝑠3𝑎22𝑎23 + 𝑎13(𝑠2𝑎23 + 𝑠3𝑎21))𝜂

+ (−𝑎11 − 𝑎22 − 𝑠2𝑎𝑎13 − 𝑠3𝑎23)𝜂2.

Now, under condition (33) and the fact that 𝑎12 > 0, 𝑎13 < 0, 𝑎21 > 0, 
𝑎23 < 0 and

𝑎21 + 𝑠2𝑎13 =
𝛿 + 𝑠1𝜃 + (𝑠3𝜃 + 𝜎𝛿)�̃�

�̃�(1 + 𝜎�̃�)
> 0,

we have 𝜙2 > 0, 𝜙1 > 0, 𝜙0 > 0 and 𝑀𝑛 (𝑛 = 1, 2, 3, 4) > 0. This implies

𝜙2𝑖 > 0, 𝜙1𝑖 > 0, 𝜙0𝑖 > 0, 𝜙1𝑖𝜙2𝑖 −𝜙0𝑖 > 0, ∀𝑖 ≥ 0.

Hence, the Routh-Hurwitz criterion implies that, for each 𝑖 ≥ 0, all 
the three roots 𝜆1𝑖, 𝜆2𝑖 and 𝜆3𝑖 have negative real parts. Thus, there exist 



D. Melese and S. Feyissa Heliyon 7 (2021) e06193
Fig. 1. Transcritical Bifurcation diagram of the temporal system (3) around the 
Disease Free Equilibrium Point 𝐸4 for the data set as in (35) and 𝜂 = 0.25 with 
respect to 𝛼.

Fig. 2. Hopf Bifurcation diagram of the temporal system (3) around the Disease 
Free Equilibrium Point 𝐸4 for the data set as in (35) with respect to 𝜂.

some positive numbers 𝜌𝑖 such that 𝑅𝑒{𝜆1𝑖}, 𝑅𝑒{𝜆2𝑖}, 𝑅𝑒{𝜆3𝑖} ≤ −𝜌𝑖 ∀𝑖 ≥
0. Let 𝜌 =min{𝜌𝑖}. Then, 𝜌 > 0 and 𝑅𝑒{𝜆1𝑖}, 𝑅𝑒{𝜆2𝑖}, 𝑅𝑒{𝜆3𝑖} ≤ −𝜌 ∀𝑖 ≥ 0. 
Consequently, the spectrum of L lies in {𝑅𝑒𝜆 ≤−𝜌}.

Therefore, by Theorem 5.1.1. of Dan Henry (p. 98) [37], the En-

demic Equilibrium Point is uniform asymptotically stability. □

5. Numerical simulation

In this section, we present some numerical simulation results of the 
temporal system (3) and the spatio-temporal system (2) to support our 
analytical findings stated in the previous sections. The numerical simu-

lations are performed with the help of MATLAB-R2014a, Mathematica-

11 and MatCont-6pt1 software packages.

5.1. Temporal system

In this subsection, we consider the following two sets of parametric 
values.

𝛼 = 0.03, 𝛾 = 1.5, 𝜃 = 0.6, 𝛿 = 0.1, 𝜎 = 1, 𝜅 = 1,

𝑠1 = 0.1, 𝑠2 = 0.5, 𝑠3 = 0.4, 𝛽 = 0.15,𝜔 = 0.2, (35)

𝛼 = 0.8, 𝛾 = 0.6, 𝜃 = 0.6, 𝛿 = 0.1, 𝜎 = 1, 𝜅 = 0.1,

𝑠1 = 0.1, 𝑠2 = 0.2, 𝑠3 = 0.4, 𝛽 = 0.1,𝜔 = 0.1. (36)

For the data set (35), the Disease Free Equilibrium Point 𝐸4 =
(0.23954, 0, 0.21977) exists. For 𝜂 = 0.25, the temporal system (3) under-

goes a Transcritical bifurcation around 𝐸4 at 𝛼 = 0.96794813 as shown 
in Fig. 1. Whereas, for the data set (35), the temporal system (3) un-

dergoes a Hopf bifurcation about 𝐸4 when the parameter 𝜂 crosses the 
critical value 𝜂 = 𝜂𝑐𝑟 = 0.18067445 as shown in Fig. 2.
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Fig. 3. Stability behavior of the temporal system (3) around 𝐸4 for the para-

metric values as in (35) and 𝜂 = 0.25. (a) The times series solution (b) The phase 
portrait showing the local asymptotically stability of 𝐸4 .

Fig. 4. The phase portrait of the temporal system (3) showing the global asymp-

totic stability of the system (3) around the point 𝐸4 for the parametric values 
as in (35) and 𝜂 = 0.25.

From the Hopf bifurcation diagram (cf. Fig. 2), we can infer that the 
temporal system (3) exchanges stability when the bifurcation param-

eter 𝜂 crosses its threshold value 𝜂𝑐𝑟 = 0.18067445. The local stability 
analysis also shows that, for the parametric values as in (35), the Dis-

ease Free Equilibrium Point 𝐸4 will be locally asymptotically stable for 
𝜂 > 𝜂𝑐𝑟 = 0.18067445 and unstable for 𝜂 < 𝜂𝑐𝑟 = 0.18067445. The existence 
of Hopf bifurcation ensures the existence of periodic solution, leading 
to the existence of a limit cycle, for 𝜂 < 𝜂𝑐𝑟 = 0.18067445. Fig. 3 shows 
the local stability of the temporal system (3) for the parametric values 
as in (35) and 𝜂 = 0.25. Moreover, the temporal system (3) is globally 
asymptotically stable around 𝐸4 as shown in Fig. 4.

Fig. 5 shows the existence of periodic solution of the system (3) 
around the Disease Free Equilibrium Point 𝐸4 for the parametric values 
as in (35) and 𝜂 = 0.1.

For the data set (36), the Endemic Equilibrium Point 𝐸5 = (0.303278,
0.357855, 0.303798) exists. For 𝜂 = 𝜂𝑐𝑟 = 0.32517, the temporal system (3) 
undergoes a Hopf bifurcation around 𝐸5 (cf. Fig. 6).
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Fig. 5. Dynamical behavior of the temporal system (3) around 𝐸4 for the para-

metric values as in (35) and 𝜂 = 0.1. (a) The time series solution (b) The phase 
portrait showing the existence of a limit cycle.

Fig. 6. Hopf Bifurcation diagram of the temporal system (3) around the Endemic 
Equilibrium Point 𝐸5 for the data set as in (36) with respect to 𝜂.

The Hopf bifurcation diagram (cf. Fig. 6) of the temporal system 
(3) around the Endemic Equilibrium Point 𝐸5 shows the existence of 
exchange of stability of the temporal system (3) around 𝐸5 when the bi-

furcation parameter 𝜂 passes its threshold value 𝜂 = 𝜂𝑐𝑟 = 0.32517. From 
the local stability analysis of the temporal system (2), one can see that, 
for the parametric values as in (36), the Endemic Equilibrium Point 𝐸5
is locally asymptotically stable for 𝜂 > 𝜂𝑐𝑟 = 0.32517 and unstable for 
𝜂 < 𝜂𝑐𝑟 = 0.32517. The existence of Hopf bifurcation ensures the exis-

tence of periodic solution, leading to the existence of a limit cycle, for 
𝜂 < 𝜂𝑐𝑟 = 0.32517.

The bifurcation diagram (cf. Fig. 7 and Fig. 8) of the temporal sys-

tem (3) around the Endemic Equilibrium Point 𝐸5 shows the existence 
of exchange of stability of the temporal system (3) around 𝐸5 when 
the bifurcation parameter 𝛼 passes its threshold value 𝛼 = 𝛼𝑐𝑟 = 0.7474. 
Moreover, it can be seen that the Endemic Equilibrium Point disappears 
when the value of 𝛼 is less 0.312. In this case, a trans-critical bifurca-

tion occurs at the Endemic Equilibrium Point. From the local stability 
10
Fig. 7. Bifurcation diagram of the temporal system (3) around the Endemic 
Equilibrium Point 𝐸5 for the data set as in (36), except 𝛼, and 𝜂 = 0.2 with 
respect to 𝛼.

Fig. 8. The Hopf bifurcation diagram of the temporal system (3) around the 
Endemic Equilibrium Point 𝐸5 for the data set as in (36), except 𝛼, and 𝜂 = 0.2
with respect to 𝛼.

analysis of the temporal system (3), one can see that, for the paramet-

ric values as in (36) and 𝜂 = 0.2, the Endemic Equilibrium Point 𝐸5 is 
locally asymptotically stable for 0.312 < 𝛼 < 𝛼𝑐𝑟 = 0.7474 and unstable 
for 𝛼 > 𝛼𝑐𝑟 = 0.7474. The existence of Hopf bifurcation ensures the exis-

tence of periodic solution, leading to the existence of a limit cycle, for 
𝛼 > 𝛼𝑐𝑟 = 0.7474.

Fig. 9 shows the local stability of the temporal system (3) for the 
parametric values as in (36) and 𝜂 = 0.6. Moreover, the temporal system 
(3) is globally asymptotically stable around 𝐸5 as shown in Fig. 10. 
Fig. 11 shows the existence of periodic solution of the system (3) around 
the Endemic Equilibrium Point 𝐸5 for the parametric values as in (36) 
and 𝜂 = 0.2.

Fig. 12 shows the stability of the temporal system (3) around the 
Endemic Equilibrium Point for the parametric values as in (36) except 
𝛼 = 0.7 and 𝜂 = 0.2. Thus, from Figs. 11 and 12, we can observe that 
a decrease in the amount of prey infection leads to damping of the 
oscillation and results in the stability of the temporal system (3) around 
the Endemic Equilibrium Point.

5.2. Diffusive system

In this subsection, numerical simulation results of the stability of the 
spatio-temporal system (2) around the Disease Free Equilibrium Point 
and the Endemic Equilibrium Point are presented.

Fig. 13 shows that the spatio-temporal system (2) is locally asymp-

totically stable around the Disease Free Equilibrium Point 𝐸4 =
(0.368648, 0, 0.284324) for the parametric values as in (35) except 
𝛽 = 0.25, 𝜂 = 0.25, 𝐷2 = 0.01 and 𝐷3 = 10. Fig. 13(a), (b) and (c) rep-

resent the time series solution of the spatio-temporal system (2) around 
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Fig. 9. Stability behavior of the temporal system (3) around 𝐸5 for the para-

metric values as in (36) and 𝜂 = 0.6. (a) The times series solution (b) The phase 
portrait showing the local asymptotically stability of 𝐸5 .

Fig. 10. The phase portrait of the temporal system (3) showing the global 
asymptotic stability of the system (3) around the point 𝐸5 for the parametric 
values as in (36) and 𝜂 = 0.6.

the Disease Free Equilibrium Point 𝐸4 at spatial locations 𝑥 = 500, 2000
and 𝑥 = 4000, respectively. Fig. 13(d) represents the spatial distribution 
of the species at 𝑡 = 600.

Fig. 14 shows that the spatio-temporal system (2) is locally 
asymptotically stable around the Endemic Equilibrium Point 𝐸5 =
0.409029,0.374422,0.331575 for the parametric values as in (36) except 
𝜅 = 0.9, 𝜂 = 0.325, 𝐷2 = 0.01 and 𝐷3 = 10. Fig. 14(a), (b) and (c) repre-

sent the time series solution of the spatio-temporal system (2) around 
the Endemic Equilibrium Point 𝐸5 at spatial locations 𝑥 = 500, 2000 and 
𝑥 = 4000, respectively. Fig. 14(d) represents the spatial distribution of 
the species at 𝑡 = 600.

Fig. 15 shows that the spatio-temporal system (2) is spatially un-

stable around the Endemic Equilibrium Point 𝐸5 = (0.315978, 0.362293,
0.308113), leading to the formation one dimensional chaotic pattern, for 
the parametric values as in (36) except 𝜅 = 0.2, 𝜂 = 0.1, 𝐷2 = 0.01 and 
𝐷3 = 10, and for the heterogeneous initial distribution

𝑢(𝑥,0) = 0.315978 + 10−8(𝑥− 1200)(𝑥− 2800)
11
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Fig. 11. Dynamical behavior of the temporal system (3) around 𝐸5 for the 
parametric values as in (36) and 𝜂 = 0.2. (a) The time series solution (b) The 
phase portrait showing the existence of a limit cycle.

Fig. 12. Stability behavior of the temporal system (3) around 𝐸5 for the para-

metric values as in (36) except 𝛼 = 0.7 and 𝜂 = 0.2. (a) The times series solution 
(b) The phase portrait showing the local asymptotically stability of 𝐸5 .



D. Melese and S. Feyissa Heliyon 7 (2021) e06193

Fig. 13. Dynamical behavior of the spatio-temporal system (2) around 𝐸4 for the parametric values as in (35) except 𝛽 = 0.25, 𝜂 = 0.25, 𝐷2 = 0.01 and 𝐷3 = 10. (a) 
Time series solution at 𝑥 = 500 (b) Time series solution at 𝑥 = 2000 (c) Time series solution at 𝑥 = 4000 (d) Spatial distribution at time 𝑡 = 600.

Fig. 14. Dynamical behavior of the spatio-temporal system (2) around 𝐸5 for the parametric values as in (36) except 𝜅 = 0.9, 𝜂 = 0.325, 𝐷2 = 0.01 and 𝐷3 = 10. (a) 
Time series solution at 𝑥 = 500 (b) Time series solution at 𝑥 = 2000 (c) Time series solution at 𝑥 = 4000 (d) Spatial distribution at time 𝑡 = 600.
12
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Fig. 15. Emergence of one dimensional chaotic pattern for the parametric val-

ues as in (36) except 𝜅 = 0.2, 𝜂 = 0.1, 𝐷2 = 0.01 and 𝐷3 = 10.

𝑣(𝑥,0) = 0.362293

𝑤(𝑥,0) = 0.308113 + 10−8(𝑥− 1200)(𝑥− 2800).

6. Conclusions

In this paper, a spatio-temporal eco-epidemiological model with 
Beddington-DeAngelis functional response and the modified Leslie-

Gower type predator dynamics under homogeneous Newman boundary 
condition is considered. The prey population is assumed to be infected 
with a disease and the disease spread in the system according to the 
nonlinear incidence rate.

It is observed that the temporal system (3) has six biologically fea-

sible equilibrium points: 𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4 and 𝐸5. It is also seen that 
the six biologically feasible equilibrium points of the temporal system 
(3) are also the constant equilibrium points of the spatio-temporal sys-

tem (2). The equilibrium points 𝐸0, 𝐸1 and 𝐸3 are unstable both in the 
presence and absence of diffusion. The prey free equilibrium point is lo-

cally asymptotically stable if and only if 𝛽 < 𝑠1(𝛾 − 𝜔), in the presence 
and absence of diffusion. The local and global stability conditions for 
the Disease Free Equilibrium Point and Endemic Equilibrium Point of 
the temporal system (3) are obtained. Moreover, the local stability con-

ditions for the Disease Free Equilibrium Point and Endemic Equilibrium 
Point of the spatio-temporal system (2) are established.

From the results of Theorem 3.7 and Theorem 4.6, we can conclude 
that the presence of diffusion will not have an effect on the dynamics 
of the system (3) around the Disease Free Equilibrium Point as long as 
the reproduction number is less than unity and the first entry of the 
corresponding Jacobean matrix is negative.

The infected prey will be extinct if the prey infection rate is less 
than the death rate of the infected prey (cf. Theorem 3.3). The stability 
of the Disease Free Equilibrium Point implies that total extinction of the 
species is not possible and hence the introduction of infected prey into 
the system may act as a biological control. The Bifurcation analysis of 
the temporal system (3) shows that the temporal system (3) undergoes a 
transcritical, pitchfork and Hopf bifurcations under certain conditions.

Numerical simulations are performed to support the analytical re-

sults. The numerical simulation results show the existence of trans-

critical and Hopf bifurcation of the temporal system (3) around the 
Disease Free Equilibrium Point (cf. Fig. 1 and Fig. 2), and the existence 
of Hopf bifurcation (cf. Fig. 6 and Fig. 7) and trans-critical bifurcation 
(cf. Fig. 7) at the Endemic Equilibrium Point. The emergence of chaotic 
pattern for the system (2) is shown in Fig. 15.

We conclude that the prey infection rate, 𝛼, has both stabilizing 
and destabilizing effect on the Endemic Equilibrium Point. When it is 
less that its critical value 𝛼𝑐𝑟, the susceptible prey, infected prey and 
predator will coexist and approaches to the Endemic Equilibrium Point. 
However, when the prey infection rate passes through some critical 
13
value, the Endemic Equilibrium Point loses its stability and Hopf bifur-

cations occurs. The three population exhibits an oscillatory behavior. 
Wang et al. [38] points out that the increase of the infectious rate can 
lead to the lost of stability. Thus, our results are inline with the results 
of Wang et al. [38].

The main novelty between our work and other recent works is the 
inclusion of prey infection, with nonlinear incidence rate, mixed type 
of functional response for the susceptible and infected prey population, 
and the modified Leslie-Gower predator dynamics. These additional 
ecological components enrich the dynamics of the system and make 
the system more realistic than the existing models.

Both analytical and numerical simulation results show the complex 
and rich dynamics of the system under consideration. The future work 
can be carried out by incorporating the horizontal and vertical dis-

ease transmission to the predator population with ecological factors 
like refuge, additional food and delay and the formation of spatial and 
spatio-temporal patterns.
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