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ABSTRACT We report the complete genome sequence of Streptococcus pneumoniae
EF3030, a serotype 19F isolate that colonizes the nasopharynx of mice while being
mostly noninvasive. Such attributes make this strain highly attractive in pneumococ-
cal carriage studies. The availability of its complete genomic sequence is likely to ad-
vance studies in the field.

Streptococcus pneumoniae is the causative agent of important invasive and nonin-
vasive human diseases (1). These morbidities cause a significant financial burden

and many mortalities every year, especially in children under 5 years of age (2, 3). The
pneumococcal strain EF3030 of the serotype 19F was isolated from a patient with otitis
media (4, 5). One of the most interesting features of this strain is its suitability for animal
models of pneumococcal disease, as it can colonize the upper respiratory tract for
weeks while rarely causing bacteremia (6–10). Such lack of virulence in mice improves
the study of host-S. pneumoniae interactions, which are particularly relevant in the
assessment of immunization strategies against pneumococcal carriage and disease
(11–15). In addition, EF3030 forms dense biofilms and is compatible in models of mixed
infection, facilitating an investigation of pneumococcal strain behavior, including the
study of natural transformation and other forms of horizontal gene transfer (16).

The S. pneumoniae strain EF3030 was grown in Todd-Hewitt broth supplemented
with 5% yeast extract (THY) until late-log phase, and DNA was extracted using the
Quick-DNA fungal/bacterial microprep kit (Zymo Research), according to the manufac-
turer’s protocol. Library preparation utilized the Illumina Nextera XT kit. Sequencing
was performed on an Illumina NextSeq platform with 2 � 150-bp reads and an Oxford
Nanopore MinION device with a MasterPure complete DNA purification kit (Epicen-
tre, Biosearch Technologies) and the Ligation sequencing kit 1D. Nanopore reads were
processed for base calling using Albacore v2.1.10 (17). Reads were assembled using
Canu v1.5 (18), which yielded one contig with a total sequence length of 2,142,815
bases. Initial error correction of the Nanopore data assembly was performed using
Minimap2 v2.6 (19) and Racon (20), with additional polishing using Illumina data,
mapping reads to the contig using BWA-MEM v0.7.15, and fixing single-nucleotide
polymorphism (SNP) and indel errors (21). Further analysis of the contig revealed a
41,194-base segment that was duplicated on either end of the contig, which prevented
circularization of the genome. To confirm circularization, we trimmed one copy of this
duplicated sequence to create a trimmed genome contig of 2,101,618 bases in length.
We then remapped reads with BWA-MEM v0.7.15 (21), extracted read pairs where either
end mapped within 500 bp of either end of the contig, and performed an assembly on
those reads using SPAdes (22). This yielded a single circularization contig of 947 bases
in length. Alignment to the trimmed genome contig with nucmer (23) revealed an
overlap of the circularization contig with either end of the genome contig, confirming
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that the trimmed genome contig was circular. We replaced the aligned sequences from
the trimmed genome contig with the bases that overlapped with the circularization
contig, which added 3 bases to the total genome size for a final circular genome of
2,101,621 bases in length. Finally, we rotated the genome to match the circularized
contig to Streptococcus pneumoniae R6 (NCBI RefSeq accession no. NC_003098) with
nucmer (23), and the start position of the genome was set as the origin of replication
locus upstream of the dnaA gene (24). Gene annotation was performed following the
NCBI Prokaryotic Genome Annotation Pipeline revision 4.7 (25).

The complete genome of S. pneumoniae EF3030 presents a GC content of 39.8% and
2,222 genes, including 2,149 coding sequences (CDS), 73 RNA-coding genes (4 com-
plete rRNA operons, 58 tRNAs, and 3 noncoding RNAs [ncRNAs]), and 210 pseudogenes.
The hybrid assembly filled the 85 gaps in the recent EF3030 draft genome (26). Newly
identified genes included the capsule locus that contains the genes specific to the
strain EF3030 serotype 19F (capsule locus starts at position �306000). Among these are
the glycosyltransferase genes wchO (EF3030_01700), wchP (EF3030_01705), and wchQ
(EF3030_01710), the polymerase gene wzy (EF3030_01715), the flippase gen wzx
(EF3030_01720), and the mnaA and rhamnose pathway genes rmlABCD (EF3030_01725
to EF3030_01745). Altogether, we expect that the availability of the complete genome
sequence for S. pneumoniae EF3030 will facilitate the genetic manipulation of this strain
and the further study of pneumococcal colonization and disease.

Data availability. The nucleotide sequence of the S. pneumoniae EF3030 genome
is deposited in NCBI GenBank under accession no. CP035897, and the raw reads are
available in the Sequence Read Archive with BioProject no. PRJNA521678.
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