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Exposure to Low to Moderate Doses
of Ionizing Radiation Induces A Reduction
of Pro-Inflammatory Ly6chigh Monocytes
and a U-Curved Response of T Cells
in APOE -/- Mice
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Abstract
Low dose ionizing radiation (LDIR) is known to have a protective effect on atherosclerosis in rodent studies, but how it impacts
different cells types involved in lesion formation remains incompletely understood. We investigated the immunomodulatory
response of different doses and dose-rates of irradiation in ApoE-/- mice. Mice were exposed to external g rays at very low
(1.4 mGy.h-1) or low (50 mGy.h-1) dose-rates, with cumulative doses spanning 50 to 1000 mGy. Flow cytometry of circulating cells
revealed a significant decrease in pro-inflammatory Ly6CHi monocytes at all cumulative doses at low dose-rate, but more dis-
parate effects at very low dose-rate with reductions in Ly6CHi cells at doses of 50, 100 and 750 mGy only. In contrast, Ly6CLo

monocytes were not affected by LDIR. Similarly, proportions of CD4þ T cell subsets in the spleen did not differ between
irradiated mice and non-irradiated controls, whether assessing CD25þFoxP3þ regulatory or CD69þ activated lymphocytes. In
the aorta, gene expression of cytokines such as IL-1 and TGF-ß and adhesion molecules such as E-Selectin, ICAM-1, and VCAM-1
were reduced at the intermediate dose of 200 mGy. These results suggest that LDIR may reduce atherosclerotic plaque formation
by selectively reducing blood pro-inflammatory monocytes and by impairing adhesion molecule expression and inflammatory
processes in the vessel wall. In contrast, splenic T lymphocytes were not affected by LDIR. Furthermore, some responses to
irradiation were nonlinear; reductions in aortic gene expression were significant at intermediate doses, but not at either highest
or lowest doses. This work furthers our understanding of the impact of LDIR with different dose-rates on immune system
response in the context of atherosclerosis.
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Introduction

Despite multiple studies investigating the health impacts of

ionizing radiation, questions remain regarding the effects of

exposure on cardiovascular diseases. Both epidemiological1-4

and experimental studies5-11 revealed that exposure to high

doses of ionizing radiation has detrimental cardiovascular out-

comes. However, when it comes to low dose ionizing radiation

(LDIR), epidemiological studies have not provided a clear

message. For instance Schöllnberger et al12 did not resolve

whether or not there is a risk of heart disease for individuals

exposed to doses below 2.6 Gy, and Azizova et al13 showed an
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increased risk of developing ischemic heart disease for cumu-

lative external doses above 1 Gy. There remains a lack of

epidemiological data on the impact of radiation on cardiovas-

cular diseases after exposure to low to moderate doses, espe-

cially under 500 mGy.14

Differing from the paucity of epidemiological information

linking LDIR and cardiovascular diseases, several experimen-

tal studies have investigated this matter, revealing the impor-

tance of considering the dose-rate of radiation exposure. Such

studies have been conducted mainly on mouse models of ather-

osclerosis, using genetically modified ApoE-/- mice which

become hyperlipidemic and develop atherosclerotic lesions

similar to those found in humans when fed a chow diet.15

Atherosclerosis is a disease characterized by chronic and exa-

cerbated inflammation in the wall of medium and large arteries,

due to lipoprotein influx. Excessive growth or rupture of ather-

osclerotic plaques underlies most cardiovascular diseases.

Mitchel et al16 demonstrated that exposure to LDIR, especially

at low dose-rate, slowed plaque progression in mice. Mancuso

et al17 indicated that acute irradiation at moderate doses (300

mGy) can have detrimental effects on atherosclerosis, but that

chronic exposure to the same dose has less impact. Finally,

both Le Gallic et al18 and Ebrahimian et al19 found that expo-

sure to chronic internal LDIR enhances plaque stability in

ApoE-/- mice. These latter 2 studies even showed a decrease

in inflammatory parameters after exposure to LDIR, including

diminished plaque content of CD68þ foam cells and a shift in

aortic mRNA expression favoring anti- rather than pro-

inflammatory cytokines.18,19 These data corroborate the notion

that ionizing radiation has an impact in the immune system,

with high doses promoting inflammation20 and proinflamma-

tory macrophages,21 whereas lower doses lead to decreased

inflammation.22,23

Nevertheless, there is little information available regarding

the impact of LDIR on monocytes and lymphocytes that con-

tribute to atherosclerosis lesion formation in the first place. One

study reported that in vitro irradiation of RAW264.7 mono-

cytes/macrophages altered the binding of these cells to vascular

cell adhesion molecule-1 (VCAM-1),24 confirming a previous

work demonstrating that LDIR reduced adhesion of monocytes

to the endothelium.25 It was also determined that LDIR affects

cytokine gene expression by different T cells.26 Only 1 study

explored the effects of LDIR on white and red blood cell popu-

lations in the context of atherosclerosis,19 but specific mono-

cyte and lymphocyte subgroups were not investigated. This

represents a significant knowledge gap, since monocytes and

T cells can polarize into distinct classes that are considered to

be either pro-inflammatory or anti-inflammatory, with poten-

tially opposing effects on atherosclerosis.27,28

Hence, identifying how low doses of irradiation can mod-

ulate the inflammatory response in atherosclerosis is clearly

essential. In order to investigate this process, ApoE-/- mice

were irradiated at 2 different dose-rates (50 mGy.h-1 and

1.4 mGy.h-1) and a wide range of cumulative doses of irradia-

tion ranging from 50 mGy to 1000 mGy. Immunophenotyping

of immune T cells in the spleen and monocyte subsets in

circulating blood were explored, and aortic mRNA expression

of pro-inflammatory cytokines and adhesion molecules were

evaluated.

Methods

Animals

All experiments and procedures were carried out in accor-

dance with the Guide for the Care and Use of Laboratory

Animals as published by the French regulations for animal

experiments (Ministry of Agriculture Order No. B92-032-

01, 2006) with European Directives (86/609/CEE), and

approved by the local ethical committee of the Institute for

Radiological Protection and Nuclear Safety (permit number

P10-11, thematic number T29) and the Swedish Board of

Agriculture (permit number N 134/16). Six to 8 week-old

ApoE-/- male mice on a C57BL/6 J background were

obtained from Charles River Laboratory. Groups consisted

of 6 to 8 mice. Animals were maintained in a specific-

pathogen-free environment and monitored daily. Mice were

fed a regular chow diet ad libitum and maintained in a 12 h

light/dark cycle environment.

Irradiation

Mice were distributed into 6 groups according to total

cumulative doses of g rays (137Cs): 50, 100, 200, 500, 750, or

1000 mGy (n ¼ 6 each), and a control non-irradiated group

(n ¼ 8). Two dose rates were applied: very low dose rate

(1.4 mGy.h-1) for chronic exposure and low dose rate

(50 mGy.h-1) for acute exposure. Hence, it was possible to

compare not only the impact of absolute doses to one another,

but also compare equivalent doses administered at different

dose-rates. Animals were irradiated at the Department of Mole-

cular Biosciences, Experimental Animal Core Facility, Stock-

holm University, Sweden and then sent to IRSN. Application of

correct dosimetry was assured by daily calibration using PTW

UNIDOS E Universal Dosimeter equipped with a Farmer Ioni-

zation Chamber Type 30010 in the 9 different positions inside

the cage thus limiting dose uncertainty to approximately

þ/- 7% Mouse groups exposed to the same dose were sacrificed

at the same age (Supplementary Figure 1).

Blood Sampling and Analyses

Mice were terminally anesthetized by intraperitoneal injection

of ketamine/xylazine (Ketamine 500 Virbac, Rompun 2%
Bayer). Blood was collected by cardiac puncture with a hepar-

inized syringe. Blood was centrifuged for 10 minutes at 1000 g.

Spleens were collected in Facs buffer (PBS1X-FBS 2%),

whereas aortas were collected in Trizol (Sigma Aldrich LLC).

Flow Cytometry

Total blood and spleens were collected for flow cytometry

experiments. Spleens were mashed, filtered and incubated with
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Fc blocker (#130-059-901 Mylteni) followed with a second

incubation in a cocktail of cell surface antibodies: CD3

(AF700 #56-0032-80 Invitrogen), CD4 (FITC #11-0041-82

Invitrogen), CD8 (APC #47-0081-80 Thermo Fisher), CD69

(PE #553237 Biolegend), and CD25 (Efluor 450 #45-0251-

80 Thermo Fisher). FoxP3 (APC #17-5773-80 Invitrogen)

labeling was performed upon permeabilization with a 30%
Fixperm Solution. Blood was incubated first with FcR blocking

reagent (# 130-059-901 Mylteni) followed by cell surface anti-

bodies (Invitrogen) identifying monocytes: Ly6G (Gr-1)

(FITC, clone 1A8-Ly6 g #11-0112), Ly6C (APC, clone RB6-

8C5, # 17-5931-82 Thermo Fisher), CD11b (Efluor450 Clone

M1/70 # 48-9668-80 Thermo Fisher), and F4/80 (PE #12-4801-

82 Thermo Fisher). Flow cytometry was performed on a FACS

CANTO II (BD Bioscience). After forward and side scatter

gating, doublets were eliminated. CD11bþ monocytes were

selected after exclusion of Ly6G positive cells, for identifi-

cation of Ly6CHi and Ly6CLo monocytes (Supplementary

Figure 2).

Real-time Polymerase Chain Reaction

Total RNA was extracted from aortas using Tri Reagent

solution (Sigma Aldrich LLC,). RNA quality (260/280 nm) was

determined using a Nanodrop ND 1000 spectrophotometer.

One microgram of total RNA was synthesized to 20 mL com-

plementary DNA (cDNA) using the high-capacity cDNA

Reverse Transcription Kit from Applied Biosystems (Life

Technologies) according to the manufacturer’s protocol. Quan-

titative polymerase chain reaction analysis was performed with

a QuantStudio 12 K Flex Real-Time PCR System (Life Tech-

nologies) using TaqMan 6 carboxyfluorescein-labeled probes

and a standard thermal cycler protocol (50�C for 2 minutes

before the first cycle, 95�C for 15 seconds, and 60�C for 1 min-

ute repeated 45 times). Samples were run in duplicates and

normalized with gapdh and hprt using geometric mean using

the 2-DDCT method, control samples serving as a reference

value of 1. We quantified the mRNA expression of intracel-

lular adhesion molecule-1 (ICAM-1), vascular adhesion

molecule-1 (VCAM-1), E-Selectin (E-Sel), tumor necrosis

factor alpha (TNF-a), interleukin-1 (IL-1), and transforming

growth factor beta (TGFb). The following assays were used:

TGFb-Mm01178820_m1, ICAM-1-Mm00516023_m1,

TNFa-Mm00443258_m1, E-Sel-Mm0441278_m1, IL-1rap-

Mm00492638_m1, VCAM-1-Mm01320970-m1, GAPDH-

Mm99999915_g1, and HPRT-Mm01545399_m1.

Figure 1. Exposure to low doses of irradiation decreases Ly6CHi
pro-inflammatory circulating monocytes but does not affect anti-
inflammatory Ly6C Lo cells. ApoE-/- mice were exposed to low doses
of y ionizing radiation at dose-rates of 1.4 and 50 mGy.h-1. Mice were

Figure 1. (Continued). sacrificed at day 12-50 post-irradiation and
blood monocytes analyzed by flow cytometry. No effects of irradia-
tion were noted in Ly6C Lo cells. However, proportions of Ly6CHI
monocytes (among CD11bþGr1- populations) were reduced at all
doses of irradiation, most consistently in mice exposed to the dose-
rate of 50 mGy.h-1. Data are mean + SEM of n ¼ 5-8. *P < 0.05, **P <
0.01 vs non-irradiated, age-matched control.
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Statistics

Results are presented as mean+SEM. Data were compared

with 2-way analysis of variance (ANOVA) or 2-way ANOVA

for repeated measures, with all ANOVA tests followed by a

Student–Newman–Keuls posthoc test, or with an unpaired

t-test, as appropriate. P < 0.05 was considered statistically

significant.

Results

Low Doses of Ionizing Radiation Administered at Low or
Very low Dose-Rates Decrease Blood pro-Inflammatory
Ly6CHi Monocytes

Flow cytometry analysis of blood samples provided an over-

view of circulating monocyte response to irradiation. Ly6CHi

monocytes are dominant in an inflammatory response and are

often named “pro-inflammatory monocytes”. They accumulate

preferentially in atherosclerotic plaques, compared with

Ly6CLo monocytes.29 We thus distinguished 2 circulating

populations of monocytes according to expression of Ly6C,

as depicted in Supplementary Figure 2. We observed that expo-

sure to low doses of external gamma rays induced a significant

reduction in the proportion of Ly6CHi pro-inflammatory mono-

cytes in the blood (Figure 1, Supplementary Figure 3). This was

especially evident when irradiation was administered at the

50 mGy.h-1 dose-rate, which led to a 45%-78% decrease in

circulating Ly6CHi cells at every dose tested (P < 0.05), com-

pared with non-irradiated controls. At the 1.4 mGy.h-1 dose-

rate, significant reductions in Ly6CHi monocytes were also

observed, although significance was only reached at doses of

50, 100 and 750 mGy (Figure 1, Supplementary Figure 3). In

contrast, proportions of Ly6CLo “patrolling” monocytes in the

blood were not affected by irradiation, whatever the dose or

dose-rate applied. These results indicate that low doses of

ionizing irradiation have a selective effect on circulating mono-

cyte abundance, resulting in a reduced relative abundance of

Ly6CHi, pro-inflammatory populations.

Low Doses of Ionizing Radiation Have Little Impact on
T Cell Populations in the Spleen

The balance between regulatory (Treg) and effector (Teff) T

cells can have a profound impact on atherosclerotic plaque

formation and progression. Treg reduce the activation and pro-

liferation of effector T cells and are important modulators of

atherosclerotic lesion formation.30 We compared the effects of

different irradiation regimens on CD4þ T cells, either regula-

tory (CD25þFoxP3þ) or effector (CD25þFoxP3-). The sorting

strategy used to distinguish these populations are depicted in

Supplementary Figure 4. Treg cells were not impacted by irra-

diation at all, whatever the dose or dose-rate tested (Figure 2,

Supplementary Figures 4 and 5). However, we found that expo-

sure to LDIR at very low dose and at low dose-rate induced a

decrease in activated effector T cells in ApoE-/- mice.

Figure 2. Exposure to low doses of ionizing radiation has little impact
on spleen T cells. ApoE-- mice were exposed to low doses of y ionizing
radiation at dose-rates of 1.4 and 50 mGy.h-1. Mice were sacrificed at
day 12-50 post-irradiation and spleen T cells analyzed by flow cyto-
metry. (A) Proportions of regulatory T cells (CD25þFoxp3þ Tregs)
quantified among CD4þCD8- lymphocytes did not vary at any dose or
dose-rate. (B) A reduced proportion of activated CD69þ T cells
(among CD4þCD8-CD25-Foxp3- lymphocytes) was observed at the
single dose of 100 mGy administered at very low dose-rate. Data are
mean + SEM of n ¼ 5-8. **P < 0.01 vs non-irradiated, age-matched
control.
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Proportions of CD25 FoxP3-CD69þ cells were reduced in mice

exposed to 100 mGy, to 3.4%+0.6% of CD4þ cells, compared

with 5.8%+0.7% in control mice (P < 0.01). In mice irradiated

at the lowest dose (50 mGy), reductions in

CD25þFoxP3-CD69þ cells approached but did not reach sig-

nificance. Hence, LDIR has little impact on splenic T cell

populations, affecting only effector T cells at very low doses.

Low Doses of Ionizing Radiation Reduced the mRNA
Expression of Cytokines and Adhesion Molecules in
Aortas of ApoE-/- Mice

Adhesion molecules, chemokines and cytokines have a direct

impact in the ability of monocytes to be recruited to the vessel

wall, to adhere and transmigrate through the endothelial layer,

and to differentiate in inflammatory type macrophages. Their

relative expression was investigated in aortas of ApoE-/- mice.

No effects were detected in animals exposed to the lowest and

highest doses of LDIR, 50 and 1000 mGy (Figure 3). However,

at the intermediate dose of 200 mGy, a significant impact on

gene expression was noted. Among the adhesion molecules,

VCAM-1 was significantly decreased at dose-rates of both

1.4 and 50 mGy.h-1, by 51% and 54% respectively (P <

0.05). E-selectin was only reduced in aortas of mice exposed

to at 50 mGy.h-1. As for cytokine response, we observed a

significant downregulation of TGFb at both very low (51%)

and low dose-rates (34%) compared with control. IL-1 expres-

sion was also reduced by half at the 50 mGy.h-1 dose-rate

(P < 0.05). Hence, changes in the vasculature induced by

low-dose irradiation point to a reduction in chemokine and

adhesion molecule expression.

Discussion

In this study we show that very low and low doses of irradiation

produce diverse responses in the different cell types we

investigated, which are implicated in atherosclerosis plaque

formation and progression. In general, we found that the low

dose-rate (50 mGy.h-1) had more impact than the very low

dose-rate (1.4 mGy.h-1) for a given total dose administered.

Interestingly, LDIR mostly affected pro-inflammatory mono-

cytes and aortic cells, resulting in reduced monocyte numbers

and lowered expression of adhesion molecules and cytokines

that would allow these cells to enter the plaque.

Cell components of both innate and adaptive immunity are

involved in atherosclerosis. These cells originate in the bone

marrow and are released in the circulation, from which they

will migrate into tissues following chemotactic gradients, or

transfer into lymphoid tissue such as the spleen for further

maturation. Following entry and oxidation of low-density lipo-

proteins in the intimal layer of arteries, endothelial expression

of adhesion molecules including ICAM-1, VCAM-1, and

E-Sel, as well as chemokine release, stimulate monocyte

recruitment. As monocytes accumulate, they differentiate into

macrophages that take up the oxidized lipids and produce pro-

inflammatory cytokines such as TNF-a, IL-6, IL-1b, and inter-

feron gamma (IFN-g).31 This results in an alteration of the

artery wall structure and enhanced recruitment of additional

inflammatory cells including T lymphocytes.32-35

In mice, circulating blood monocytes can be separated in 2

subsets based on expression levels of Ly6C. ApoE-/- mice have

greater amounts of circulating monocytes than their wild-type

counterparts,29 and hypercholesterolemia enhances the propor-

tion of the pro-inflammatory Ly6CHi monocytes in blood.29,36

Furthermore, Ly6CHi monocytes enter atherosclerotic plaques

more readily than their Ly6CLo counterparts.29 Our results

establish that low-dose irradiation prompted a clear decrease

in the levels of circulating Ly6CHi monocytes in the ApoE-/-

mice, at all applied doses. In contrast, no changes in Ly6CLo

cells were observed. Our data support earlier reports that in

vitro exposure of monocytes to LDIR favors an anti-

inflammatory phenotype,37-39 whereas high doses of ionizing

radiation have the opposite effect.40 In addition, Sharma et al41

demonstrated that LDIR decreased the monocytes count in

blood of rats. However, to the best of our knowledge, we are

the first to report a specific suppressive effect of LDIR on the

Ly6CHi monocyte subtype.

A second set of major actors in atherosclerosis is T lympho-

cytes, from the adaptive immune system. Specific CD4þ effec-

tor T cells can recognize oxidized LDL in the atherosclerotic

intima and aggravate the inflammatory response by producing

cytokines including IFN-g.42 Inversely, regulatory T lympho-

cytes defined as CD4þCD25þFoxp3þ have the ability to mod-

ulate atherosclerosis30 by producing the anti-inflammatory

Figure 3. Exposure to low doses of ionizing radiation triggers a non-
linear reduction in adhesion molecule and cytokine mRNA expression
in the aorta. ApoE-/- mice were exposed to low of y ionizing radiation
at dose-rates of 1.4 mGy.h-1 (A) and 50 mGy.h-1 (B). Mice were
sacrificed at day 12-50 post-irradiation and aortic mRNA expression
levels evaluated by Q-PCR. Samples were run in duplicates and nor-
malized with gapdh and hprt using the 2-DDCT method. Results are
expressed as fold change vs non-irradiated, age-matched control mice.
Data are mean + SEM of n ¼ 5-8 animals. *P < 0.05 vs control.
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cytokines IL-10 and transforming growth factor beta (TGFb).43

Thus, the balance between inflammatory effector T cells and

anti-inflammatory regulatory T cells will influence athero-

sclerosis progression or regression.44 LDIR is broadly reported

to alter spleen CD4þ T cell proliferation and numbers.45-49

Nevertheless, our data demonstrate that in ApoE-/- mice, low

dose irradiation had no impact in spleen Treg numbers, and

only reduced activated CD69þ cells at a single low dose

applied at very low dose-rate. In fact, irradiation appears to

produce divergent effects in Tregs. In some studies, regulatory

T cells were decreased after exposure of rodents to low dose of

ionizing radiation, leading to a rather pro-inflammatory

response.50,51 In contrast, Tregs were significantly increased

following irradiation in mice affected with arthritis,52

asthma,53 or prostate cancer.54 Likewise, many,46,55 but not

all56 low dose radiation studies report enhanced CD69þ acti-

vated T cells. Regardless, our findings do not support a pre-

dominant role for regulatory or CD69þ T cells in the response

to LDIR in the context of atherosclerosis.

Finally, we surveyed the chemokine and adhesion molecule

profile of aortas in mice submitted to LDIR. Our experiments

showed diminished expression levels of IL-1, TGFb, E-Sel,

ICAM-1, and VCAM-1 at a cumulative dose of 200 mGy. Most

effects were observed at the most elevated dose-rate, although

reductions were also observed at 1.4 mGy.h-1. Shin et al57

found a variable serum cytokine profile in C57BL/6 mice irra-

diated at 200 mGy, noting that some interleukins were elevated

but others reduced. Our study most closely resembles that of

Mathias et al58 who also irradiated ApoE-/- mice at different

doses and assessed cardiovascular outcomes after 3 and 6

months. They found that expression of some adhesion mole-

cules was reduced in myocardial cross-sections of mice

exposed to 25-500 mGy irradiation, but that VCAM-1 and E-

Sel were enhanced after 2000 mGy. Variations in levels of

circulating pro-inflammatory factors were also noted.58

VCAM-1, ICAM-1, and E-selectin allow firm adhesion of

monocytes to endothelial cells, which precedes their transmi-

gration,59 which contributes to atherosclerosis.60,61 Combined

with reduced expression of adhesion molecules, the lowered

IL-1 expression observed in our study would further favor

atherosclerosis abatement, since it is pro-inflammatory and is

associated with atherosclerosis progression.62-64 IL-1 is even

involved in the upregulation of adhesion molecule expression

on the endothelial cell surface,63 suggesting that its decrease

could explain the loss of VCAM-1, ICAM-1, and E-Sel we

observed. However, the downregulation of TGFb, an anti-

inflammatory and anti-atherogenic cytokine,65 is a contradic-

tory result that warrants further investigation.

Interestingly, the exposure of ApoE-/- mice to low dose

ionizing radiation resulted in nonlinear responses. At both

dose rates, cytokine and adhesion molecule expression were

reduced in mice exposed to an intermediate dose of 200 mGy,

whereas neither the highest nor the lowest doses of irradiation

affected mRNA expression. These nonlinear responses are in

agreement with previous in vitro studies on gene expression in

endothelial cells exposed to LDIR.66 Also of interest, the dose-

rate at which LDIR was applied influenced monocyte subset

abundance and aortic gene expression. Specifically, most sig-

nificant effects were observed at 50 mGy.h-1, suggesting that

an accelerated dose-rate enhances the effectiveness of low dose

irradiation. Previous in vitro results demonstrated that LDIR

decreased inflammation when applied at an even higher dose

rate of 1.15 Gy.min-1.67 To the best of our knowledge the dose-

rate used in our study has been used in atherosclerosis models

only in the works of Mancuso et al and Mitchel et al.16,67

However, those studies focused on phenotypical changes that

occurred in plaque such as macrophage accumulation and

lesion-associated macrophage lipids. They also occurred at a

more prolonged time scale post-irradiation, spanning many

months rather than days to weeks.

In conclusion, our observations are in line with the reported

atheroprotective effect of low dose ionizing radiation observed

in previous studies.16,18,19,67 This study provides new informa-

tion pertaining to the impact on monocyte populations and

aortic gene expression that further explain how LDIR may

mitigate lesion formation. We used a wide range of doses and

2 dose-rates to demonstrate how diverse the responses to these

stimuli can be. Low dose ionizing radiation clearly has mod-

ulating effects on different cell populations. Further testing of

monocyte and lymphocyte subsets regulated by radiation could

bring a better understanding of immune processes in the con-

text of atherosclerosis.
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