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Abstract

Tauopathies, including Alzheimer’s disease (AD) and other neurodegenerative conditions, are 

defined by a pathological hallmark: neurofibrillary tangles (NFT). NFT accumulation is thought to 

be closely linked to cognitive decline in AD. Here, we perform a genome-wide association study 

for NFT pathologic burden and report the association of the PTPRD locus (rs560380, p=3.8×10−8) 

in 909 prospective autopsies. The association is replicated in an independent dataset of 369 

autopsies. The association of PTPRD with NFT is not dependent on the accumulation of amyloid 

pathology. In contrast, we find that the ZCWPW1 AD susceptibility variant influences NFT 

accumulation and that this effect is mediated by an accumulation of amyloid β plaques. We also 

performed complementary analyses to identify common pathways that influence multiple 

neuropathologies which co-exist with NFT and found suggestive evidence that certain loci may 

influence multiple different neuropathological traits, including tau, amyloid β plaques, vascular 

injury and Lewy bodies. Overall, these analyses offer an evaluation of genetic susceptibility to 

NFT, a common endpoint for multiple different pathologic processes.

Multiple neurologic diseases can lead to loss of cognitive function with older age. Several of 

them can be grouped by neuropathologic changes found at autopsy, such as neurofibrillary 

degeneration which is best characterized by the accumulation of neurofibrillary tangles 

(NFT). “Tauopathies” share the accumulation of aggregates consisting of the Microtubule 

Associated Protein Tau (Tau) but have different clinical manifestations and distinct 

etiologies that ultimately converge in the abnormal accumulation of Tau species. 

Tauopathies include such neurodegenerative disorders as Alzheimer’s disease (AD), some 

forms of frontotemporal degeneration, progressive supranuclear palsy, cortico-basal 

degeneration, as well as forms of neurodegeneration occurring secondary to environmental 

insults, such as in chronic traumatic encephalopathy1. In an older population, it is possible 

that multiple different disease mechanisms interact to lead to the accumulation of NFT. 

Identifying risk factors that contribute to the accumulation of pathologic Tau is therefore 

meaningful, not just for the vast majority of the population that is at risk for AD but even 

more broadly for informing our understanding of other tauopathies.

Here, we leverage neuropathologic data collected from two longitudinal cohorts of aging 

whose participants are non-demented at the time of enrollment; in both the Religious Order 

Study (ROS) and the Rush Memory and Aging Project (MAP), brain donation is a condition 

of enrollment. Importantly, these subjects represent a sample of the older population in 

which multiple different neuropathologic changes are present, including NFT but also 

amyloid β plaques, vascular injury, Lewy bodies, and other pathologic changes. We focused 

on factors that influence NFT accumulation from all central nervous system insults 

commonly experienced by older subjects. Thus, in our discovery study, we performed a 

quantitative trait analysis to identify susceptibility loci for NFT and replicated our main 

result in an independent longitudinal cohort of aging with neuropathologic data.

In individuals selected as AD cases or AD controls, a recent genome-wide association study 

(GWAS)2 sought genetic factors associated with multiple individual neuropathologies, using 

correlations in beta estimates to discuss shared effects across the various pathologies. In this 

paper we propose a different approach. We leverage the data collected on multiple 
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pathologies within each individual in the ROS and MAP studies to identify loci that display 

pleiotropic effects on multiple pathologies within the same individual and thus influence 

multiple insults and pathways to neurodegeneration. Such loci could be excellent targets of 

further investigation both in understanding Tau pathology and in exploring the shared 

pathways leading to the central nervous system response to different disease processes.

Methods

Participants

The subjects consisted of participants from two longitudinal cohort studies operated out of 

The Rush Alzheimer’s Disease Center in Chicago, the Religious Order Study (ROS) and the 

Rush Memory and Aging Project (MAP). All participants are required to sign an informed 

consent and an Anatomical Gift Act at enrollment, agreeing to donate their brains (ROS) or 

brains, spinal cords, and select nerves and muscles (MAP) to the study upon death. Both 

studies were approved by the Institutional Review Board of Rush University Medical Center.

The ROS and MAP studies are maintained and the data are collected by a single group of 

researchers at the Rush Alzheimer’s Disease Center. Data collectors in both studies are 

cross-trained to allow efficient merging of data and all analyses are performed on the two 

cohorts combined. A more comprehensive description of the ROS and MAP studies can be 

found in previous publications3, 4.

At the time of analysis there were over 1,200 deceased participants combined in the ROS 

and MAP cohorts. Of these, 909 were successfully genotyped, all of whom had non-missing 

values for all seven pleiotropic phenotypes and covariates: neuritic plaque, neurofibrillary 

tangles, diffuse plaque, amyloid angiopathy, micro and macro infarct, and Lewy bodies, age 

at death and sex.

The Adult Changes in Thought (ACT) cohort, used for replication in this analysis, is a 

community-based study of brain aging and dementia which collects data on neuropathology 

on a sub-sample of their participants’ post-mortem. Participants in ACT are age 65 or older 

at enrollment, randomly sampled from a multi-center health maintenance organization from 

King County, Washington. More detailed information on the ACT cohort is published 

elsewhere5–7

Pathological phenotypes

The neuropathological phenotypes analyzed included: neuritic plaque (NP), neurofibrillary 

tangles (NFT), diffuse plaque (DP), presence of Lewy bodies, microscopic and gross 

(macroscopic) infarcts, and cerebral amyloid angiopathy.

For ROS and MAP, brain removal was performed at either Rush University or at one of 12 

designated sites across the country and sent to the Rush Alzheimer’s Disease Center where 

all post-mortem data collection occurred. Detailed descriptions or the autopsy procedure are 

published elsewhere8–11. In brief, neuritic plaques (NP), diffuse plaques (DP) and 

neurofibrillary tangles (NFT) were observed with a modified Bielschowsky silver stain and 

counted in five regions of the brain: midfrontal, temporal, inferior parietal, entorhinal, and 
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hippocampus. For each measure in each region, counts were normalized by dividing by the 

standard deviation, and a z score of the counts within each region was calculated. For the 

global measure of each AD pathology, we averaged these scores over the 5 regions, followed 

by a square root transformation which allowed us to treat it as a normally distributed 

continuous variable12. Cerebral amyloid angiopathy (CAA) was evaluated in four 

neocortical regions of the brain: midfrontal, midtemporal, angular and calcatrine cortices. 

Three monoclonal anti-human β-amyloid antibodies with the following dilutions were used 

for the assessment: 1) 6F/3D (1:50, Dako North America Inc., Carpinteria, CA), 2) 10D5 

(1:600, Elan Pharmaceuticals, San Francisco, CA) and 3) 4G8 (1:9000, Covance Labs, 

Madison, WI). A score for β-amyloid deposition ranging from 0 (no deposition) to 4 

(circumferential deposition in over 75% of vessels in the total region) was determined from 

meningeal and parenchymal vessels in each region separately, with the final score for the 

region defined as the maximum score between meningeal and parenchymal CAA scores. 

Finally, a final CAA score was created using the average score across the four regions in 

each individual and classified as none, mild, moderate and severe using consistent thresholds 

determined by the neuropathologist.13 Lewy bodies present in either the nigra or cortex was 

defined using consensus guidelines established by the international consortium on dementia 

with Lewy bodies14. Details of microscopic and macroscopic infarct measurements are 

detailed in previous literature15. Briefly, all suspected or visualized gross infarcts were 

further dissected for histological confirmation. Microscopic infarct measures were taken 

from examination of a minimum of nine regions in one hemisphere. Both macroscopic and 

microscopic infarcts were analyzed as binary, presence in at least one region or absence in 

all regions. Braak staging was performed according to consensus criteria for ROS, MAP and 

ACT cohorts16, 17 with detailed methods reported in previously published literature9, 18.

Genotyping

DNA used for genotyping ROS and MAP participants was collected from postmortem brain 

tissue, whole blood, or lymphocytes. The final QCed dataset consisted of 1709 participants 

were genotyped on the Affymetrix GeneChip 6.0 platform (Santa Clara, CA, USA) at the 

Broad Institute’s Center for Genotyping or the Translational Genomics Research Institute 

and 384 were genotyped on the Illumina OmniQuad Express platform at Children’s Hospital 

of Philadelphia, of these 799 and 110, respectively, had pathology information and were 

included in these analyses. The EIGENSTRAT software was used to calculate principle 

components used to control for population sub-structure and analysis was limited to only 

those of European decent.19 All DNA samples go through the same rigorous quality control 

process before and after genotype generation, and we see no difference in data quality based 

on source of DNA. Further information regarding genotyping and imputation can be found 

in previous publications.20, 21

RNA-Seq expression data were generated from frozen dorsolateral prefrontal cortex tissues 

following the construction of complementary DNA libraries. The paired-end reads were 

mapped using the Ensemble human genome transcriptomic database (http://

www.ensembl.org). RNA expression of the associated AD genes was queried and examined 

for an association with AD pathologies. Details on the RNA-Seq expression profiling are 

provided in the eMethods in the Supplement.
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Statistical Analysis

We used t-tests and chi squared tests to compare ROS and MAP participants on 

demographic characteristics and pathological traits

For each of the continuous pathological phenotypes (NP, DP, and NFT) we performed 

univariate GWAS using linear regression in PLINK. We analyzed dichotomous outcomes 

(Lewy body dementia and micro and macro infarctions) in PLINK with logistic regression. 

We used R to analyze an ordinal CAA outcome (www.r-project.org) using ordered logistic 

regression with the function polr from the package MASS (Agresti, 2002). To minimize 

artifacts of imputation, we analyzed samples from the Affymetrix and Illumina platforms 

independently and then meta-analyzed the findings using a fixed effects method weighting 

by the inverse of the standard error. We used PLINK to meta-analyze the continuous and 

dichotomous phenotypes, and METAL to meta-analyze CAA22. For the cis-eQTL analysis 

we used linear regression to assess the association between significant loci from the NFT 

analyses and mRNA expression within 1 Mb of the analyzed SNP.

We used the mPhen function in the R package MultiPhen 2.0 to perform the pleiotropic 

GWAS 23. MultiPhen performs an inverted ordered logistic regression with SNP as the 

outcome and the phenotypes and covariates as the independent variables. The value for SNP 

used in mPhen is the dosage rounded to its nearest integer 0, 1 or 2. A chi-squared test 

statistic is calculated from the comparison of two models with a likelihood ratio test: one 

model containing all pleiotropic phenotypes plus covariates against a second model 

containing only covariates. The p-value is based on the resulting chi-square statistic, where 

the number of pleiotropic phenotypes equals the number of degrees of freedom.

In the pleiotropy GWAS, we pooled the data and adjusted for platform within the regression. 

Since the pathology phenotypes are associated with age at death and sex all 8 GWASes, (7 

univariate and 1 pleiotropic), were adjusted for age at death, sex, cohort (ROS or MAP) and 

the first 3 principal components to account for population substructure.24

Results

Discovery study for susceptibility to NFT accumulation

Characteristics of the participants (n=909 with full data), including means (SD) and 

frequency (%) of the pathology measures are reported in Table 1. The results of the primary 

analysis, a GWAS for NFT burden, are presented in Table 2. As expected, we find that the 

APOE locus on chromosome 19 is the top result, consistent with prior studies in this cohort8 

and studies in other populations2, 25. The Q-Q and Manhattan plots for the GWAS of NFT 

burden are presented in Supplemental Figures S1 and S2.

Outside of APOE, we find a SNP, rs560380, that exceeds a threshold of genome-wide 

significance in an intron of PTPRD (p=3.1 × 10−8) (Figure 1). The variance explained by the 

PTPRD locus is 3%, which is second only to the APOE locus (rs429358) at 9% in terms of 

contribution to overall variation in NFT burden. We were able to replicate this result (with 

the same direction of effect) in an independent dataset generated from participants in the 

Adult Changes in Thought (ACT) study, a longitudinal study of older participants who are 
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non-demented at enrollment. ACT participants do not have the same quantitative NFT 

measure, but we find a p=0.02 for association with the n=380 participants (46% male and 

average age at death of 87.2 years (SD=6.4)) with a complementary phenotype of the same 

pathology: Braak stage, a semi-quantitative rating scale based on the topographic 

progression of NFT. For completeness, we also evaluated the Braak stage in ROS and MAP 

participants in a secondary analysis, and we find that rs560380 is also associated with the 

Braak phenotype. Using an ordinal logistic regression analysis we see consistency across the 

three studies (ROS: β=0.31, p=0.0099; MAP: β=0.41, p=0.0002; ACT: β=0.30, p=0.021, β 
for each additional “A” (major) allele): together, the three sets of subjects have a meta-

analyzed p-value of 5.3×10−7. As expected, the quantitative NFT burden and Braak stage are 

strongly correlated (Spearman r=0.867) in the ROS and MAP cohorts. Having replicated 

evidence of association between a variant and NFT, we initiated additional analyses to 

investigate possible mechanisms of the association.

Besides NFT accumulation, many other neuropathologic traits are assessed in ROS and 

MAP, which we used to further characterize the impact of the PTPRD locus. rs560380 had a 

nominal association with neuritic plaques (NP; β=0.07, p=0.005). NP are the form of 

amyloid β plaques most closely associated with AD dementia, and the co-occurrence of NP 

and NFT neuropathologically characterizes AD. We find that rs560380 was nominally 

associated with a pathologic diagnosis of AD (OR = 1.27, 95%CI (1.04, 1.55), p=0.018). 

Since amyloid β accumulation is thought to precede the accumulation of NFT in the context 

of AD26, we evaluated whether the PTPRD association with NFT was driven by this specific 

pathophysiologic process. We first performed a mediation analysis that compares a model 

without NP to one with NP included as a covariate. In the basic model, rs560380 has a beta 

of 0.10 (p=3.8×10−8) for the association with NFT, and, in the model that also includes NP, 

we see a beta of 0.07 (p=1×10−6), a reduction of 33% of the effect size of the SNP. This 

indicates partial mediation of the SNP’s effect by NP accumulation; however, the majority of 

the SNP’s effect is not mediated through NP. Results are similar when using measures of 

amyloid β and Tau pathology derived from immunohistochemistry as previously reported for 

APOE27 (data not shown). Consistent with the effect of the PTPRD locus being due to more 

than one pathophysiologic process, we find that rs560380 remains associated with NFT 

burden in the absence of NP: in the subset of 132 participants with no NP on 

neuropathologic examination, we find a beta of 0.06 (p=0.02), which is similar to the SNP’s 

effect size (beta=0.07) in the analysis adjusting for NP (Figure 2).

We also find modest evidence that rs560380 is also associated with other neuropathologic 

traits: rs560380 is also weakly associated with cerebral amyloid angiopathy (p=0.002), a 

form of amyloid β vasculopathy. We repeated these analyses adjusting for APOE ε4 burden 

and with the exception of the APOE haplotype, we found no meaningful change in effects 

sizes or p-values. (Supplemental Table 1)

We assessed whether the rs560380 variant influences mRNA expression in RNA sequence 

data available from the dorsolateral prefrontal cortex (DLPFC) of 494 ROS and MAP 

participants, a subset of our dataset. We did not find evidence that rs560380 or the single 

SNP in LD (rs324543, R2> 0.5) had an effect on either the level of PTPRD expression or the 

abundance of its different isoforms in our sample (data not shown). Since these data are 
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generated from cerebral cortical samples, they do not exclude the possibility that the SNP 

has effects elsewhere in the CNS: as with many susceptibility variants28, its effect may be 

cell- or context-specific and is simply not appreciated in this particular location and mixture 

of cells. Further, given that many AD susceptibility alleles influence gene expression in 

myeloid cells, we also checked expression quantitative trait (eQTL) results generated from 

healthy participants of the ImmVar project28, but we found that the rs560380 variant has no 

effect on mRNA expression of PTPRD in ex vivo monocytes or naïve CD4+ T cells. As is 

standard in cis-eQTL analyses, we examined the expression of all other genes within a 1 Mb 

radius of the SNP, but PTPRD is the only gene found in this genomic segment. Thus, 

rs560380 does not appear to influence mRNA expression of PTPRD in the samples that we 

have queried to date, and, as is the case for a majority of disease-associated SNPs28, its 

mechanism of action remains unclear

Leveraging correlated neuropathologic traits to enhance gene discovery for NFT

Since the participants in the ROS and MAP datasets have information on a wealth of 

different but related neuropathologic phenotypes, we chose to pursue a complementary 

strategy for further gene discovery: we implemented a secondary analysis for pleiotropy to 

identify variants that affect not only NFT but also other neuropathologies. Such pleiotropic 

effects are likely in the context of neurodegeneration in which different insults may 

ultimately trigger similar responses in neurons and other CNS cells.

We first calculated a correlation matrix between seven neuropathologic outcomes that are 

available in almost all of our participants. Results are presented in Supplementary Table 2, 

showing, as expected, modest to strong correlations between findings, ranging from ρ = 0.41 

(p<0.001) between NFT and diffuse amyloid plaques (DP) to 0.69 (p<0.001) between NP 

and DP. Lewy body pathology was not correlated (ρ < 0.1) (ps > 0.05) with the other traits, 

and the two neurovascular pathology traits (microscopic and macroscopic strokes) showed 

only weak (ρ = 0.25, p<0.001) correlation with each other. Thus, the observed level of 

correlation, while substantial in certain cases, remains within the range in which a 

pleiotropic analysis can be considered: a prior study showed that, even in the presence of 

correlations as high as 0.9, the MULTIPHEN method shows no inflation in the type I 

error23.

We therefore used MULTIPHEN to implement a pleiotropy analysis integrating results from 

association studies of seven neuropathologic traits (see details in the online methods 

section). The APOE locus serves as a positive control since it is known to influence several 

of these traits29. Results are presented in Table 3; Q-Q and Manhattan plots for the 

MULTIPHEN GWAS are presented in Supplementary Figures S3 and S4. Overall, the most 

significant SNP in the APOE locus is rs429358 (p=2.9 × 10−33) which is in partial LD with 

the APOEε4 haplotype. This variant is strongly associated with 4 of the 7 neuropathologic 

outcomes (NP, p=3.0 × 10−24; DP, p=1.3 × 10−20; NFT, p=4.1 × 10−20, and cerebral amyloid 

angiopathy (CAA), p=5.2 × 10−25), but it had no significant association with microscopic 

infarcts, macroscopic infarcts, or Lewy bodies (ps > 0.05, results not shown). While our 

pleiotropy results for rs429358 are similar to what is reported in a recent GWAS of 

neuropathologic traits2, we do not replicate their association with our lewy body measure 
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(p=0.46, ever vs. none). However we were able to replicate their findings for rs6857 using 

similar phenotypes; NP as a continuous trait in our analyses (p = 6.2×10−20) versus an 

ordinal train in Beecham (3.1 × 10−47), NFT as a continuous trait in our analyses (p = 

5.0×10−18) versus an ordinal Braak score in Beecham (4.7 × 10−47), CAA as an ordinal trait 

in our analyses (p = 1.9×10−21) versus binary in Beecham (p=2.9 × 10−21) (Supplementary 

Table 3).

Looking at the top non-APOE results that are not significant but have a p < 1 × 10−5 in the 

pleiotropy analysis, we note a few interesting results. First, there are a few examples where a 

SNP such as rs12597858, near the HS3ST4 gene, has a modest association with NFT burden 

(p=0.0039) in the primary analysis and a much stronger pleiIiotropy score (p=9.5×10−6) 

[table 3] that is driven by a broad effect on 5 of the remaining 6 neuropathologic traits: NP 

burden (p=0.003), DP burden (p=0.03), Lewy bodies (p=0.03), CAA (p=0.03) and 

macroscopic infarcts (p=0.0003) (Figure 3). HS3ST4 encodes a protein involved in heparan 

sulfate biosynthesis. Notably, heparan sulfate proteoglycans have been implicated in many 

different biological and pathologic processes, including AD and the cellular propagation of 

both Tau and α-synuclein pathologies30–32. Another example of a SNP whose effect 

becomes appreciable only when considering multiple neuropathologic traits is in the POLD3 
gene: the top SNP, rs4145953 has a modest effect on NFT burden (p=2.4×10−4) and a 

stronger pleiotropic score (p=1.1 × 10−6) (Table 3), which is driven by additional, modest 

associations with NP burden (p=1.1×10−4), DP burden (p=2.7×10−5) and macroscopic 

infarcts (p=0.01).

As compared to HS3ST4 whose pleiotropic association is driven by a modest effect on many 

neuropathologies, a second type of locus, like PTPRD, has a strong effect on one trait and 

modest effects in 2 other traits: NP (p=0.005) and cerebral amyloid angiopathy (p=0.002). 

Thus, not surprisingly, this SNP is suggestive but not significant in the pleiotropy analysis 

(p=9.7 × 10−6), with this association being driven primarily by the NFT trait. In another 

example, SNP chr3:197113961 in the SLC29A4 gene is nearly significant genome-wide in 

the pleiotropic analysis (p=6.6×10−8) and is driven by effects on microscopic (p=3.4×10−6) 

and macroscopic (p=9.3×10−4) infarcts. However, this variant has no effects on non-vascular 

traits.

Tables with the top results for the GWAS for all the neuropathologies examined are 

presented in Supplementary Tables S4 – S9, and QQ plots and Manhattan plots for each trait 

are presented in Supplementary Figures S5–S16.

Role of known disease-associated variants in NFT accumulation and pleiotropy

We also evaluated more closely the role of SNPs known to be associated with tauopathies 

(AD and PSP)25, 33. Results are displayed in Table 4. In the 24 susceptibility loci that we 

evaluate33–36, we found a significant NFT association (using a significance cut-off of 

0.002=0.05/24) with the rs1476679 SNP in the ZCWPW1 locus (beta=0.07, p=4.9 × 10−4) 

(Table 4). As with the PTPRD variant, rs1476679 also influences NP (p=0.0043), and, when 

we adjust for NP, the beta of the NFT association (beta=0.037, p=0.024) was reduced by 

47%. Thus, in this case, much of the SNP’s effect appears to be mediated through pathologic 

processes that underlie NP. The only other locus to show some level of suggestive 
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association with NFT in our data is rs10948363, a SNP in the CD2AP gene (p = 0.0085), 

consistent with a recent report and our earlier results2, 37.

Since both ZCWPW1 and CD2AP are known AD susceptibility loci, we tested if this 

association is mediated through NFT pathology. In our data only the ZCWPW1 SNP 

(rs1476679) is associated with AD risk (beta = 0.32, p=0.003), and the effect is attenuated 

50% with the addition of NFT (beta = 0.15, p=0.23). No SNPs in CD2AP were associated 

with AD risk in our limited dataset.

Discussion

Our primary analysis reports a significant association between the PTPRD locus and the 

accumulation of NFT in older participants. While the detailed molecular mechanism of this 

association remains unclear at present, we find that the effect of the rs560380 SNP on NFT 

accumulation is not dependent on a single pathophysiologic process. NP mediates part of the 

SNP’s effect on NFT, but most of the effect is independent of NP, and the association is 

observed in individuals without substantial amyloid β pathology. This pattern of findings 

suggests that rs560380 may be a locus that influences the central nervous system’s response 

to different insults that can lead to neuronal dysfunction and neurodegeneration.

PTPRD is a large gene that has previously been associated with restless leg syndrome 

(RLS)38–40 and, less convincingly, obsessive compulsive disorder (OCD)41. The SNPs 

driving these associations are not found on the same susceptibility haplotype as the NFT-

associated PTPRD variant and suggest the presence of allelic heterogeneity and phenotypic 

heterogeneity: PTPRD is implicated in NFT accumulation as well as neurologic disorders 

without Tau pathology. The SNPs associated with OCD and RLS – two conditions that are 

not tauopathies – do not display an association with NFT burden in our data (data not 

shown). In terms of tauopathies, an existing PSP GWAS does not provide evidence of 

significant association with PTPRD. In terms of AD, a suggestive association of PTPRD 
with AD dementia susceptibility has been reported previously (p=4.5 × 10−5)36 in one AD 

GWAS and in our own data, we see a modest association with AD dementia susceptibility 

(p=0.04, with clinical diagnosis of AD dementia). Overall, further studies are needed to 

evaluate the extent of the role of this locus to clinical manifestations associated with the 

accumulation of NFT. Our evidence to date highlights a role for PTPRD in the accumulation 

of this pathologic feature, irrespective of its clinical manifestations.

PTPRD encodes the protein tyrosine phosphatase receptor-type delta protein, which is 

reported to have protein tyrosine phosphatase activity in vitro42. It is expressed in the brain 

where it has been implicated in synaptic differentiation43. A null allele in mice leads to 

memory impairment and altered electrophysiological responses in the hippocampus44. 

Further, in our prior work, PTPRD was considered among other AD candidate genes for 

studies using a Drosophila model, and knockdown of lar, the fly orthologue of PTPRD, was 

discovered to enhance Tau-induced retinal degeneration, consistent with its association with 

NFT accumulation in humans45. Further work in flies and other model systems is now 

necessary to delineate the molecular consequences of perturbations in PTPRD expression 

that lead to Tau pathology.
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Aside from PTPRD, we note that the validated AD susceptibility ZCWPW1 allele has a 

significant effect on NFT accumulation (Figure 2). However, unlike PTPRD, the effect of 

this variant appears to be mediated more strongly through an effect on amyloid β 
accumulation.

The other locus that deserves some discussion is HS3ST4, which had a modest effect of 

NFT burden but a strongly suggestive association in the pleiotropy analysis because of its 

effect on 6 of the 7 available neuropathologic measures. This association was also supported 

by our earlier work in Drosophila: the homolog of another gene encoding a heparan sulfate 

biosynthetic enzyme, HS6ST3, influenced Tau toxcity in a Drosophila transgenic model46. 

This result is consistent with the emerging potential role of heparan sulfate proteoglycans as 

receptors for the spread of Tau and synuclein pathologies47. Notably, variants at loci 

encoding other heparan sulfate sulfotranferases have been strongly suggested in AD 

(HS3ST1, rs448799, p=6.6×10−8)33 as well as a study of memory performance in non-

demented individuals (HS3ST4, rs11074779 p=3.1×10−8)48.

In comparing our study to the recently published GWAS of multiple neuropathologies2, we 

showed similar findings with the APOE region being associated with the NFT, NP and CAA 

outcomes plus a strong pleiotropic association, however were unable to replicate their novel 

findings. This discordance can be explained by the multiple differences between the two 

studies, specifically, differences in phenotype definitions and sample selection since our 

subjects come from prospective studies of aging and are not recruited in specialty dementia 

clinics.

Our study of older participants has certain limitations, including the fact that participants are 

non-demented at study entry, biasing us towards a population of older individuals that have 

survived to an advanced age without dementia. On the other hand, we have the advantage of 

performing all autopsies using a single structured protocol at a single site, minimizing 

phenotypic error. In contrast to the recent study that also performed a GWAS for NFT by 

repurposing genotypes generated for an AD study2, our participants were not originally 

selected to fit certain clinicopathologic criteria. Since such a selection of AD “cases” and 

“controls” will influence the distribution of pathology and may limit the generalizability of 

its results, it was not pursued here. These features and the moderate sample sizes used in this 

study and the earlier NFT GWAS of AD cases and controls25 could explain differences in 

the results of the two studies. However, we do have similar findings with the APOE region: 

we find it to be associated with the NFT, NP and CAA outcomes, but we were unable to 

replicate the novel finding of association with Lewy bodies. We note that the present study 

has high internal validity as follow-up rates exceeded 95% and autopsy rates exceeded 90% 

and the limited power due to small sample size should not detract from the positive results 

that meet reasonable thresholds of statistical significance.

In sum, this NFT GWAS begins to uncover genetic variation that influences the 

accumulation of Tau pathology in older individuals. In addition, we present evidence 

supporting the utility of a pleiotropic analysis approach in identifying genetic variation with 

shared effects in common brain pathologies. These two approaches - focused and pleiotropic 
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- are complementary and will both be necessary to dissect the complex web of inter-related 

factors that lead impaired cognition and, ultimately, dementing syndromes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regional association plot for PTPRD and Neurofibrillary Tangles (NFT)
The x-axis is the base pair position and the y-axis is the −log(p-value) for the association 

with NFT. The blue line represents the recombination rate.
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Figure 2. Association between PTPRD SNP, rs560380 and Neurofibrillary Tangles
The left plot includes all n=909 ROS and MAP brains and the right plot includes a subset of 

n=132 from participants with no neuritic plaques at death.
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Figure 3. Regional association plot for HS3ST4.
The x-axis is the base pair position centered around the top pleiotropy snp, rs12597858 and 

the y-axis is the −log(p-value). The blue line represents the recombination rate. The bottom 

level shows the pleiotropic results and the top level show results for each of the seven 

neuropathological phenotypes.
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Table 1

Characteristics of the ROS and MAP participants included in analyses

Variable MAP n=438 ROS n=471 p-value

age at death 89.4 ± (5.8) 87.5 ± (6.9) <.0001

Male 151 (34%) 174 (37%) 0.480

Pathology dx of AD* 275 (63%) 295 (63%) >0.99

 Pathology

Lewy Body 87 (20%) 108 (23%) 0.296

Neurofibrillary Tangles 0.70 ± (0.41) 0.66 ± (0.41) 0.171

Neuritic Plaque 0.74 ± (0.53) 0.74 ± (0.54) 0.993

Diffuse Plaque 0.64 ± (0.48) 0.71 ± (0.50) 0.029

Micro Infarct 113 (26%) 140 (30%) 0.213

Macro Infarct 162 (37%) 165 (35%) 0.586

CAA** 0.272

 None 78 (18%) 105 (22%)

 Mild 204 (47%) 200 (42%)

 Moderate 105 (24%) 104 (22%)

 Severe 51 (12%) 62 (13%)

*
NIA-Reagan Criteria,

**
CAA - Cerebral Amyloid Angiopathy
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