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Stroke patients often suffer from spasticity. Before treatment of spasticity, there are
often practical demands for objective and quantitative assessment of muscle spasticity.
However, the common quantitative spasticity assessment method, the tonic stretch
reflex threshold (TSRT), is time-consuming and complicated to implement due to the
requirement of multiple passive stretches. To evaluate spasticity conveniently, a novel
spasticity evaluation method based on surface electromyogram (sEMG) signals and
adaptive neuro fuzzy inference system (i.e., the sEMG-ANFIS method) was presented in
this paper. Eleven stroke patients with spasticity and four healthy subjects were recruited
to participate in the experiment. During the experiment, the Modified Ashworth scale
(MAS) scores of each subject was obtained and sEMG signals from four elbow flexors
or extensors were collected from several times (4–5) repetitions of passive stretching.
Four time-domain features (root mean square, the zero-cross rate, the wavelength and
a 4th-order autoregressive model coefficient) and one frequency-domain feature (the
mean power frequency) were extracted from the collected sEMG signals to reflect
the spasticity information. Using the ANFIS classifier, excellent regression performance
was achieved [mean accuracy = 0.96, mean root-mean-square error (RMSE) = 0.13],
outperforming the classical TSRT method (accuracy = 0.88, RMSE = 0.28). The
results showed that the sEMG-ANFIS method not only has higher accuracy but also
is convenient to implement by requiring fewer repetitions (4–5) of passive stretches. The
sEMG-ANFIS method can help stroke patients develop proper rehabilitation training
programs and can potentially be used to provide therapeutic feedback for some
new spasticity interventions, such as shockwave therapy and repetitive transcranial
magnetic stimulation.
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INTRODUCTION

Spasticity is a clinical symptom prevalent in stroke patients. In the
common definition, spasticity is a motor dysfunction resulting
from hyperexcitability of the stretch reflex, characterized by
a velocity-dependent increase in resistance during passive
stretches (Lance, 1980). The typical manifestation of upper
extremity is flexor spasticity (Trompetto et al., 2014), which
can cause pain and movement disorders, affecting the daily life
quality of patients (Truini et al., 2013). There are a variety
of methods for treating post-stroke spasticity, including non-
pharmacological treatments [such as physical therapy (Gracies,
2001), orthoses (Basaran et al., 2014), and rehabilitation
robotics (Crea et al., 2017)] and pharmacological treatments
[such as oral treatments (Hulme et al., 1985) and injectable
treatments (Patel, 2011)]. To design optimal spasticity treatment
plans, it is important to evaluate spasticity accurately (Park
et al., 2012). However, due to the complex and multifactorial
nature of this phenomenon, which may involve nerve factors
(central and peripheral) and non-neural factors (rheological
properties of the muscle), quantifying spasticity remains a
challenge and an unresolved problem (Stecco et al., 2014;
Li and Francisco, 2015).

In the field of stroke rehabilitation, a commonly used
evaluation method is the Modified Ashworth Scale (MAS).
Based on the perceived resistance and the range of the elbow
joint where resistance exists during passive stretching, the MAS
classifies the degree of spasticity into six grades (0, 1, 1+, 2,
3, 4) (Bohannon and Smith, 1987). The MAS is widely used in
the clinical field because of its simple operation. However, the
MAS relies heavily on the subjective judgments of rehabilitation
therapists and does not cohere with the velocity dependence
of the spasticity definition (Lance, 1980). In addition, the
semiquantitative descriptions in the MAS, such as “slight increase
in muscle tone” (MAS 1, MAS 1+) and “more marked increase
in muscle tone” (MAS 2), can easily lead to ambiguous results
between “1 and 1+” and “1+ and 2” (Pandyan et al., 1999).

To overcome the subjective shortcoming of the MAS, Levin
and Feldman proposed the tonic stretch reflection threshold
(TSRT) method to quantify the degree of spasticity (Levin and
Feldman, 1994). The TSRT evaluates the excitability of the motor
neurons caused by both descending and segmental effects, and
the measurement of these effects is the stretch reflex threshold
(SRT, also called DSRT), which is the integral part of the lambda
model of motor control (Feldman, 1986). The DSRT depends
on the angle at which motoneurons and muscles start to be
recruited (reflected in surface electromyogram (sEMG) signals)
when the patient’s elbow joint is passively stretched at a given
velocity (Levin et al., 2000). The TSRT can be obtained by
linear fitting of a series of stretching velocities with DSRT
values. The TSRT method is related to the resistance orientation
through the range of motion in the MAS and quantifies the
degree of spasticity from the objective joint angle. In addition,
the TSRT is highly consistent with the definition of spasticity
(Lance, 1980) and has been widely used to develop wearable
devices for measuring spasticity in recent years (Kim et al., 2011;
Germanotta et al., 2017).

However, in the TSRT method, a series of evaluation trials
[such as 56 repetitions (Levin and Feldman, 1994), 30 repetitions
(Marques et al., 2019), and 20 repetitions (Calota and Levin,
2009)] with different stretch velocities must be very carefully
implemented in advance, which can easily lead to the boredom
and fatigue of patients and therapists. Moreover, in a series of
passive stretching processes, the spasticity of the muscles will
decrease gradually (Watanabe, 2004). This decrease will lead
to inconsistent MAS scores corresponding to the initial and
final collected experimental data for one patient, resulting in
the accuracy deviation of the TSRT method. These two points
determine that the TSRT method still needs to be improved in
clinical applications. To solve the above two issues of the TSRT
method and evaluate spasticity more conveniently, we proposed
an evaluation method based on the sEMG and adaptive neuro
fuzzy inference system (i.e., the sEMG-ANFIS method).

sEMG signals can provide evidence of motor unit spontaneous
discharges in stroke patients with spasticity and are thus widely
used in the investigation of pathophysiology underlying spasticity
(Li et al., 2006; Kallenberg and Hermens, 2011). Among stroke
patients with spasticity, studies showed that there is an increase
in the amplitude and frequency components of sEMG signals
evoked from stretch reflex (Edgerton and Roy, 2010; Hu et al.,
2018). It is suggested that the features in the time-domain and
frequency-domain of sEMG signals can be utilized to evaluate
the spasticity. Although sEMG signals were used to detect the
SRT in TSRT method, the time-domain features and frequency-
domain features of sEMG signals were not analyzed. In addition,
time-domain features of root mean square (RMS) and frequency-
domain features of mean power frequency (MPF) in sEMG
signals have been used for MAS level classification (Zupan et al.,
1998; Wang et al., 2017). This finding shows that time-domain
and frequency-domain features of sEMG signals can be used for
spasticity assessment. However, the time-domain and frequency-
domain features of sEMG signals have not been used for the
quantitative assessment of spasticity.

ANFIS is a kind of artificial neural network that has the
advantages of the learning and adaptive abilities of a neural
network and the reasoning ability of a fuzzy system (Jang, 1993).
Thus, ANFIS is widely used to build regression models (Chang
and Chang, 2006; Dariane and Azimi, 2016). In addition, Raj
and Sivanandan (2017) proposed a combination of sEMG and
ANFIS in elbow kinematics estimation, and the results showed
that the ANFIS model was more accurate than the multi-layered
perceptron (MLP) model. This finding shows that ANFIS is
suitable to be combined with sEMG signals for the task of
regression. Therefore, we chose ANFIS as a classifier.

In summary, the sEMG-ANFIS method was proposed to
quantitatively evaluate the spasticity. Specifically, we collected
sEMG signals from four elbow flexors or extensors (biceps
brachii, triceps brachii, brachioradialis, and brachialis) of
spasticity patients and used ANFIS for building the spasticity
evaluation regression model. Only 4–5 repetitions passive
stretches were required. Compared with the multiple stretches
of the TSRT method, the implementation was greatly simplified.
The results showed that the sEMG-ANFIS method also had
higher accuracy than the TSRT method.
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The remaining structure of this paper is as follows: Section
Experimental Protocols introduces the experimental protocol,
which includes participants, data acquisition devices and
experimental setup. Section Materials and Methods is the
methods, which includes active segment detection, window
separation processing, feature extraction, feature reduction, the
regression model and the evaluation function. Sections Results
and Discussion provide experimental results and discussion,
respectively. Finally, Section Conclusion summarizes this paper.

EXPERIMENTAL PROTOCOLS

Participants
In this paper, 15 people were recruited to participate in
the experiment, including 11 stroke subjects and 4 healthy
subjects. Before participating in the experiment, all subjects were
informed of the experiment. This study was approved by the
Ethics Board of the Medical School, South China University of
Technology. All the research was performed in accordance with
the Declaration of Helsinki.

All stroke patients were screened by two rehabilitation
therapists. The inclusion criteria were as follows: (1) suffering
from upper extremity flexor elbow muscle spasticity; (2) no joint
contracture; and (3) voluntary participation in the experiment.
Stroke patients were excluded if they had the following
symptoms: (1) pain; (2) suffering from other central nervous
system diseases that can cause spasticity, such as Parkinson’s
syndrome or multiple sclerosis; (3) suffering from other diseases
that may hinder upper limb motion. Ultimately, 11 patients
participated in the experiment, as shown in Table 1. The specific
information of the four healthy subjects is shown in Table 2.

Data Acquisition

The sEMG data were recorded by a 16-channel wireless sEMG
acquisition system (UltiumTM Biomechanics system, Noraxon

TABLE 1 | Details of the 11 stroke subjects.

Subject Age Brain lesion Time since
stroke

(months)

spastic
side

MAS
grade

1 36–40 Brain infarction 21 Right 1+

2 66–70 Brain hemorrhage 3 Left 1+

3 36–40 Brain infarction 1 Right 2

4 56–60 Brain infarction 5 Left 2

5 56–60 Brain hemorrhage 3 Left 1

6 66–70 Brain infarction 1 Right 1

7 51–55 Brain hemorrhage 5 Right 1+

8 56–60 Brain infarction 6 Right 1

9 46–50 Brain hemorrhage 2 Left 1+

10 61–65 Brain infarction 8 Right 1+

11 66–70 Brainstem 3 Left 2

To protect patients’ identity privacy, the age was reported as a 5 years range.

TABLE 2 | Details of the four healthy subjects.

Subject Sex Age Tested side MAS grade

1 M 23 Left 0

2 F 25 Right 0

3 M 26 Right 0

4 M 25 Right 0

Ltd., United States) with a sampling rate of 2,000 Hz. The single
sEMG sensor also has a built-in 9-axis inertial sensor (MPU9250)
with a sampling rate of 400 Hz for recording three-axis gyroscope
data. The gyroscope data were interpolated to match the length of
sEMG data when all data was exported. In this study, sEMG data
were combined with gyroscope data to implement the sEMG-
ANFIS method and the TSRT method.

The collection of the sEMG signals was strictly in accordance
with the recommended standards (Hermens et al., 1999; Konrad,
2005). In this paper, four elbow flexors or extensors related to
elbow flexion and extension were selected: biceps brachii (BB),
triceps brachii (TB), brachioradialis (BR), and brachialis (BA)
(Andrews et al., 2012). After wiping with alcohol, four pairs of
electrodes were applied to the corresponding muscle surfaces.
The electrodes were placed as shown in Figure 1. The material
of the surface electrode was AgCl, and the distance between the
electrodes was 2 cm. The direction of the two electrodes was
parallel to the muscle fibers. Then, the 1st–4th channels of the
16-channal sEMG acquisition instrument were used to collect
the original sEMG signals. With an amplitude range of 100–
5,000 µV and a frequency component of 0–500 Hz (Merletti
et al., 1992), the sEMG signals were amplified 1,000 times
and filtered through a 10–500 Hz filter in the wireless sEMG
acquisition system.

Experimental Setup
To minimize the diagnostic bias caused by the therapist’s
subjective judgment, stroke patients were scored using MAS
by two experienced rehabilitation therapists half an hour
before the start of the experiment. The MAS score was the

FIGURE 1 | Electrode placement on the upper-limb muscles. BB, biceps
brachialis; TB, triceps brachialis; BR, brachioradialis; BA, brachialis.
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whole spasticity of patients’ flexors (i.e., biceps brachialis,
brachioradialis, and brachialis). If the two MAS scores given
separately were inconsistent, the therapists would exchange
views and reach a single result. The final unified result was
regarded as the patient’s true MAS score. We hypothesized that
the unified results assessed by two therapists were objective.
Then, one rehabilitation therapist held the elbow joint in one
hand and passively stretched the affected arm with the other
hand. In a single trial, the stretching start position was the
maximum flexion position of the elbow joint. In the start
position, as shown in Figure 2A, the rehabilitation therapist
only helped the patients maintain the posture without applying
any external force to the forearm. Next, the elbow joint was
stretched to the maximum position that the upper arm and
forearm could be extended, as shown in Figure 2B. Finally,
the elbow joint was returned to the initial position, and the
sEMG and gyroscope data were recorded. During the whole
experiment, the forearm was in a neutral position, without
any pronation or supination. The stretching speed was one
of three different velocities, slow, normal and fast, which
were distributed over 18–21 stretch experiments uniformly
and were determined by the therapists subjectively. Between
adjacent experiments, the patient rested for at least 10 s to
avoid the effects of psychological or physical fatigue on the
state of muscle tone.

MATERIALS AND METHODS

The data with fast stretching velocities were utilized in the
sEMG-ANFIS method, and all data with three velocities were
utilized in the TSRT method. All data were processed in
MATLAB 2018b (The MathWorks Inc., Natick, United States),
and the flowchart is shown in Figure 3. The sEMG signals
were first subjected to a 20–350 Hz bandpass filter to remove
ECG interference (Redfern et al., 1993), followed by a 50 Hz
notch wave filter to remove power frequency interference. The
three-axis gyroscope data of the brachioradialis were used to
calculate the elbow joint angle curve and was first subjected
to a 10 Hz low-pass filter to improve the signal-to-noise ratio.
Then, the three-axis angle vectors were obtained by integrating

FIGURE 2 | The start (A) and maximum (B) positions of spasticity
assessment passive motion.

the three-axis gyroscope signals, and the elbow joint angle
was the superposition of the three-axis angles. The joint angle
signal was corrected by the fact that the elbow joint angle in
the start position is consistent with that in the end position.
A representative elbow joint angle signal after correction is shown
in Figure 4.

Active Segment Detection
An improved threshold detection method based on empirical
mode decomposition, the Hilbert envelope and the double
threshold was employed to detect the corresponding onset of
sEMG response of patients in each stretch trial (Silva et al.,
2017). The onset and maximal elbow joint angles are marked
as blue and red dashed lines in Figure 4. After autodetection
of the onset and maximal elbow joint angle, feature vectors
were extracted from the sEMG signals of the sEMG onset and
maximal elbow joint angles. Since the stretch reflex threshold
of healthy people is out of biomechanical range (Levin, 2016),
the feature extraction progress of healthy subjects was from the
start of the joint angle (onset angle) to the maximum joint angle.
Double thresholds were set to detect the onset angle: the resultant
angular velocity of three-axis angular velocities of 7.1◦/s and
the elbow joint angle of 1.2◦, which were the peak value when
therapists held the patients elbow in the static state in preliminary
test, respectively. If the resultant angular velocity is greater than
7.1◦/s, and the elbow joint angle is greater than 1.2◦, the onset
angle is detected.

Analysis Window
Due to the randomness and non-stationarity of the sEMG
signals, the analysis window, rather than the instantaneous value
of the sEMG signals, was used (Smith et al., 2011). In the
pretest, we used 32, 64, 128, and 256 ms windows to process
sEMG signals and found that the 128 ms windows used in the
ANFIS model had the highest regression accuracy under the
same conditions. Therefore, an overlap analysis window with
a length of 128 ms (256 data points) and a window sliding
step size of 64 ms (128 data points) were used in this paper.
Subsequent feature extraction and regression were based on these
sliding windows.

Feature Extraction
Thus far, features of the time-domain and frequency-domain
have been widely used for sEMG signal processing (Phinyomark
et al., 2018). In this paper, four common time-domain features
and one common frequency-domain feature were selected to
construct feature vectors. They were root mean square (RMS),
variance (VAR), wavelength (WL) the 4th-order AR model
coefficient (4th-ARMC) and the mean power frequency (MPF).
Among these features, RMS and MPF have been used for
the assessment of spasticity in SVM classifier (Wang et al.,
2017) and ZCR has been used in the spasticity related research
(Zadnia et al., 2018). In addition, WL and 4th-ARMC have
also been used to combined with ANFIS for classification
(Caesarendra et al., 2017). There were 20 feature vectors
among the 4 channels in total. The respective features are
described below:
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FIGURE 3 | Flowchart of the procedure for sEMG processing.

FIGURE 4 | The sEMG of biceps brachialis and the corresponding elbow joint angle during a single passive stretching process. The blue dashed line shows the
onset of sEMG evoked by passive stretch, and the red dashed line shows the maximal elbow joint angle. The onset angle was used for feature extraction of healthy
subjects.

(1) The RMS is the square root of the average power of the
sEMG signals at a given analysis window. The formula is:

RMSi (t) =

√√√√ 1
M

M∑
k=1

sEMGt
i
(
k
)2 (1)

where i is the number of channels, t is the number of
analysis windows, M is the number of all points in a
window (M = 256), and k is the point currently in the
analysis window.

(2) The ZCR is the number of times that the sEMG signal
amplitude crosses the 0 axis; it can be formulated as:

sign (x) =
{

1 x > 0
0 else

ZCRi (t) = 1
M−1

M−1∑
k

sign
(
sEMGt

i(k)
∗sEMGt

i(k+ 1)
) (2)

(3) The WL is the cumulative length of the sEMG signal over
time. It can be calculated as follows:

WLi (t) =
M∑
k=1

∣∣sEMGt
i
(
k+ 1

)
− sEMGt

i
(
k
)∣∣ (3)
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(4) The AR model is a linear model used for time-series analysis
of sEMG signals. It is defined as:

sEMGt
i
(
k
)
=

q∑
j=1

ajsEMGt
i
(
k− j

)
+ eti(k) (4)

(5) The MPF is the average frequency and can be calculated as
the sum of the products of the EMG power spectrum and
the frequencies divided by the total sum of the spectrum
intensity (Oskoei and Hu, 2008). It can be formulated
as follows:

MPF =

∑M
j=1 fjPj∑M
j=1 Pj

(5)

where M is the length of the frequency bin, fj is the
frequency of the spectrum at frequency bin j and Pj is the
sEMG power spectrum at frequency bin j.

Feature Reduction
After feature extraction, principal component analysis (PCA)
was used for dimensionality reduction. PCA transforms the raw
data into a set of linearly independent representations of each
dimension through linear transformation (Wold et al., 1987).
It can be used to extract the main feature components of the
data, and it is often used for dimensionality reduction of high-
dimensional data. To minimize the loss of spasticity information,
nine components whose variance contributions were more than
95% were used in this study. In other words, after the PCA
dimension reduction, the feature matrix was reduced from the
previous 20 dimensions to 9 dimensions.

ANFIS Model
Adaptive Neuro Fuzzy Inference System (ANFIS)
The ANFIS model used in this paper, which combines a Sugeno
system with a neural network, can predict the discrete MAS score
exactly. For a general first-order Sugeno fuzzy model (Sugeno and
Kang, 1988), the rules are as follows:

Rule 1: If x is A1 and y is B1, then

f1 = p1x+ q1y+ r1 (6)

Rule 2: If x is A2 and y is B2, then

f2 = p2x+ q2y+ r2 (7)

The corresponding ANFIS architecture is as shown in Figure 5
(Jang, 1993). Nodes in the same layer have similar functions, and
the functions of nodes in each layer can be described as follows:

Layer 1: every node is an adaptive node. This layer outputs the
fuzzy membership grade of the inputs with the functions:

O1
i = µAi (x) i = 1, 2 (8)

O1
i = µBi−2

(
y
)

i = 3, 4 (9)

where x and y are the inputs of node i. Ai and Bi−2 generate a
linguistic label when coupled with node i. The membership

function for A can be any appropriate parameterized
membership function, such as the Gaussian function:

µAi (x) = e−
1
2 ( x−c

δ
)2

(10)

where {c, δ} represents the parameter set. In this layer, the
parameters are called premise parameters. If the values of this
parameter set change, the shape of the Gaussian function will
be changed accordingly. There are various possible membership
functions for the fuzzy set A.

Layer 2: every node is a fixed node labeled with 5. The
output of each node is the product of all the incoming signals,
representing the firing strength of each fuzzy rule. The output can
be represented as:

O2
i = wi = µAi (x) µBi

(
y
)
, i = 1, 2 (11)

Layer 3: every node is a fixed node labeled with N. The output of
the ith node in this layer is the ratio of the ith rule’s firing strength
to the sum of all rules’ firing strengths, indicating that it has a
normalization role. The output in this layer can be calculated as:

O3
i = w̄i =

wi

w1 + w2
, i = 1, 2 (12)

Layer 4: all the nodes are adaptive nodes. In this layer, parameters
are called consequent parameters. The output of each node in this
layer is the product of the normalized firing strength from layer 3
and a first-order polynomial. Thus, the outputs in this layer can
be calculated as:

O4
i = w̄ifi = w̄i

(
pix+ qiy+ ri

)
, i = 1, 2, . . . (13)

where w̄i is the normalized firing strength from layer 3 and{
pi, qi, ri

}
is the parameter set.

Layer 5: there is only one fixed node labeled with 6 in this
layer. The output of this node is the summation of all incoming
signals. Hence, the overall output of the model is given by:

O5
i =

2∑
i=1

w̄ifi =
(
∑2

i=1 wifi)
w1 + w2

(14)

Subtract Clustering
In this paper, the Sugeno-type FIS structure was generated
using subtractive clustering. Subtractive clustering is a fast
algorithm based on the density of data points in the feature
space, and the amount of calculation required is linear with
the data dimension. In this algorithm, the number and location
of clusters in the data can be estimated automatically. Using
subtractive clustering to generate fuzzy structure can greatly
reduce the number of fuzzy rules and improve the robustness
of structure with respect to noisy data (Chiu, 1994). In this
algorithm, the points with the largest number of neighbors
are selected as the cluster centers, and the candidates of the
cluster centers are all points. Suppose that the samples used
in training are n data points in m-dimensional space x = (x1,
x2, . . ., xn), where xi = (xi1, xi2, . . ., xim) and i = 1,2, . . ., n.
Considering that each data point is a potential cluster center,
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FIGURE 5 | The framework of ANFIS.

the density index Di of data point xi can be defined as:

Di =

n∑
j=1

exp

[
−
||xi − xj||2

(γa/2)2

]
(15)

where the radius γa is a positive constant. Obviously, if
a data point has multiple adjacent data points, that data
point will have a higher density index value. γa defines
a field of xi, and data points other than γa have little
influence on the density index of the point. The data point
with the largest density index is the first clustering center,
which is set as xc1, and the corresponding density index
is Dc1. Next, we recalculate the density index performance
of each data point according to the following formula:

Di = Di − Dc1 • exp
[
−
||xi − xc1||2

(γb/2)2

]
(16)

where γb = kγa is the neighborhood of cluster center xc1. γb
defines a neighborhood to be reduced in density measurement
to prevent a dense cluster center, typically γb = 1.5γa. When
Di < 0, setting the density index of this data point to 0 will
eliminate the possibility of this data point becoming the cluster
center. After the density measures of all points are revised,
the next cluster xc2 is selected, and the density measures of
all points are revised again. This process continues until the
density index of the remaining data points is less than a
certain threshold.

Parameters Setting
Next, the range of influence for the input variables was
empirically specified as 0.65. The network structure had four rules
and nine inputs, and each input had nine membership functions.
The membership function was Gaussian function. The training
epoch number was set as 20. The linear least-squares estimation
was used to train the network.

In this paper, to evaluate the degree of spasticity in each
patient using the sEMG-ANFIS method, the predicted value was
calibrated by the uniform MAS scores given by two rehabilitation
therapists. For convenience of calculation, the MAS scores 0, 1,
1+, and 2 were digitized as 0, 1, 1.5, and 2, respectively. A 15-
fold leave-one-out cross-validation was applied to evaluate the

performance of the sEMG-ANFIS method. The experimental
data of 14 subjects were used as the training set, and the
experimental data of the remaining subject were used as testing
data. Since the analysis windows were taken as the minimal
sample in this study, the average value of each window obtained
from the sEMG-ANFIS method in the test set was taken as the
last predicted score. After 15 rounds of circulation, each subject
had a corresponding predicted MAS score.

The implementation of TSRT method was already proposed
in a previous study (Zhang et al., 2019). In particular, the TSRT
of healthy subjects was set to 140 degrees according to the
biomechanical range (Levin, 2016). Similarly, to evaluate the
ability of the TSRT method to assess the degree of spasticity, a
15-fold leave-one-out cross-validation was also implemented.

FIGURE 6 | Comparison of the accuracy (R2 and RMSE) of the ANFIS model
using different numbers of passive stretches. The result of the 4-ANFIS model
has no significant differences with that of the 5-ANFIS model, but there is a
significant difference with those of other models (∗0.01 < p ≤ 0.05;
∗∗∗p ≤ 0.001).
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Evaluation Function
For all subjects, evaluation scores were obtained using the sEMG-
ANFIS method and the TSRT method. Both evaluation scores
were calibrated using the uniform MAS scores. Therefore, the
root-mean-square error (RMSE) and determination coefficient
(R2) between the predicted score and the uniform MAS scores
were used to evaluate the performance of the model. R2 and
RMSE were formulated as follows:

R2
= 1−

∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(17)

RMSE =

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2 (18)

where N is the number of samples, yi is the uniform MAS
score, ȳi is the mean value of uniform MAS scores and ŷi is the
predicted score.

To assess the subjectivity of the MAS, the Kappa statistic
between the uniform MAS scores and the MAS scores given
by the two therapists, the sEMG-ANFIS method and the TSRT
method was used. In addition, to evaluate the robustness of the
sEMG-ANFIS method, we randomly selected 1, 2, 3, 4, 5, and 6
data points of the fast passive stretching data from each subject
to construct the 1-ANFIS model, 2-ANFIS model, 3-ANFIS
model, 4-ANFIS model, 5-ANFIS model and 6-ANFIS model,
respectively. To eliminate the contingency of the experimental
results, we repeated the random selection process three times and
compared the R2 and RMSE of these models. In the experimental
process, due to operational errors and other reasons, only six
data points of fast passive stretching data were obtained in
some patients. Therefore, the process of establishing the 6-ANFIS
model only occurred one time. Comparison between these
models was achieved by a one-way analysis of variance (ANOVA)
followed by a post-hoc Tukey test with a significance level of 0.05.

RESULTS

Performance of the sEMG-ANFIS Method
Figure 6 shows the prediction accuracy of the sEMG-ANFIS
method with different passive stretching times in the form of
mean± SD. The results showed that the 4-ANFIS model and the
5-ANFIS model have higher accuracy than the other models, and
there were no statistically significant differences between them.
Then, the 4-ANFIS model (R2 = 0.96± 0.01, RMSE = 0.13± 0.01)
was used as the representative model of the sEMG-ANFIS
method for comparison with the TSRT method. There were also
statistically significant differences between the 4-ANFIS model
and the 1-ANFIS model, the 2-ANFIS model and the 3-ANFIS
model. From 1-ANFIS model to 4-ANFIS model, the accuracy
(R2) was significantly improved. After 4-ANFIS model, there was
no significant change in accuracy (R2). From the above, it can be
concluded that the sEMG-ANFIS method only requires several
(4–5) passive stretches to establish a spasticity evaluation model
with high accuracy and good robustness.

Figure 7A shows one of the three results in the 4-ANFIS
model with a scatter plot of the prediction scores and the uniform
MAS scores. With an R2 between the predicted score and the
uniform MAS scores of 0.97 and an RMSE of 0.12, the linear
regression analysis showed the strong goodness of fit of the 4-
ANFIS model. Figure 7B shows the evaluation scores obtained
from the TSRT method. The TSRT method had a relatively large
prediction error for patients with MAS grades 1 and 2. As a result,
the RMSE between the TSRT method prediction scores and the
corresponding MAS scores was 0.28, and the R2 was 0.88. It can
be seen from Figures 6, 7 that the R2 of the 4-ANFIS model
was higher than that of the TSRT method (0.97 > 0.88), and the
RMSE was smaller than that of the TSRT method (0.12 < 0.28).
Therefore, the conclusion that the sEMG-ANFIS method was
better than the TSRT method in assessing the degree of spasticity
was obtained from this study.

FIGURE 7 | (A) The evaluation scores from the sEMG-ANFIS method and the uniform MAS scores. (B) The evaluation scores from the TSRT method and the
uniform MAS scores.
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The Subjectivity of MAS
Figure 8 is a distribution map of the uniform MAS scores and the
individual MAS scores given by pairs of therapists. The Kappa
coefficients between the results given by the two rehabilitation
therapists and uniform scores were 0.59 and 0.28. The Pearson
correlation coefficients and Kappa coefficients between the
uniform results and the results from the two therapists and
two objective methods are shown in Table 3. For the sEMG-
ANFIS method and the TSRT method, the prediction results
were rounded to calculate the Kappa coefficient. From Table 3,
the consistency of the diagnostic results between each of the
two rehabilitation therapists and the uniform results were fair
and moderate. The conclusion was drawn that the objectivity of
MAS was poor. In comparison, the results of the sEMG-ANFIS
method had the highest Kappa coefficient (0.86) and Pearson
correlation coefficient (0.98), which indicates the objectivity of
the sEMG-ANFIS method.

DISCUSSION

This paper proposes a novel spasticity evaluation method that
combines sEMG with ANFIS and compares it with the classical
TSRT method. Considering the multiple passive stretches
required in the TSRT method, the sEMG-ANFIS method, which
only requires several (4–5) passive stretches, is convenient for

FIGURE 8 | The distribution of the MAS scores. (A) Therapist A, (B) therapist
B, (C) uniform results.

TABLE 3 | Kappa coefficients, Pearson correlation coefficients between the scores
of the two rehabilitation therapists, and the two methods, and the uniform scores.

Method Kappa coefficient Correlation coefficient

A and US 0.59 0.82

B and US 0.28 0.65

M1 and US 0.86 0.98

M2 and US 0.41 0.84

A, therapist A; B, therapist B; US, uniform scores; M1, the sEMG-ANFIS method;
M2, the TSRT method.

operation. The RMS, WL, ZCR, 4th-ARMC, and MPF of the
active segment sEMG signals were extracted to establish the
ANFIS model for spasticity evaluation in this paper. From the
comparison of R2 and RMSE, the sEMG-ANFIS method showed
better accuracy than the TSRT method. Based on the sEMG-
ANFIS method, a spasticity evaluation system can be established
that does not rely on doctors or other professionals.

In this paper, a quantitative spasticity evaluation method that
only needs several passive stretches was provided. Compared with
the 56 (Levin and Feldman, 1994), 30 (Marques et al., 2019),
or 20 (Calota and Levin, 2009) stretches of the TSRT method,
our method is greatly improved in implementation simplicity.
The main reason why the TSRT method requires many stretches
lies in the unique definition of TSRT. TSRT refers to the angle
at which motor neurons and muscles begin to be recruited at
rest (i.e., at a velocity of zero). Under the actual experimental
conditions, passive stretching could not be implemented at a
velocity of zero. Therefore, the calculation of the TSRT value
could only be obtained through a series of linear regressions of
DSRT values at different stretch velocities (Levin et al., 2000). Due
to the introduction of the intermediate variable DSRT, the TSRT
method could not conveniently evaluate the degree of spasticity,
and multiple passive stretches must be performed in advance.
In contrast, our sEMG-ANFIS method maps directly from
sEMG signals to a spasticity state without intermediate process
conversion. The sEMG data for each group of passive stretches
contains spasticity information, and we only need to decode
the spasticity information from these sEMG data. Without an
intermediate process, spasticity assessment could be performed
several times for passive stretches. Moreover, since only a few
passive stretches were required, the effect of the spasticity changes
caused by multiple stretches on the assessment can be reduced.

In addition to the greatly improved simplicity, the accuracy
of our method has also been improved. The mean R2 of the 4-
ANFIS method reached as high as 0.96 ± 0.01 in this paper.
Compared to the TSRT method, from the results (R2: 0.96 > 0.88,
RSME: 0.13 < 0.28), the evaluation feasibility of the sEMG-
ANFIS method was significantly improved. The performance
of the sEMG-ANFIS method was also better than the method
combined with the lambda model and the kinematic model
(R2 = 0.93) in the previous study (Zhang et al., 2019). Compared
to the previous study, the TSRT method in this paper had better
performance. One reason for explaining the better performance
of the TSRT method may lie in the fact that two therapists
provided MAS scores and obtained more objective uniform
MAS scores. In addition, compared to biomechanical method
by measuring torque to evaluate spasticity (Wang et al., 2018),
our method is portable and has more application prospects for
wearable devices. Compared to recent proposed method using
active movement to evaluate spasticity (Wang et al., 2019), our
method has a wider audiences of spasticity patients for some of
them suffer from muscle weakness.

In this paper, we also studied the subjectivity of MAS. Limited
by the experimental conditions, we only found two rehabilitation
therapists to evaluate the MAS levels. In this experiment,
Therapist A’s assessment was closer to the uniform scores. There
are many reasons for the low consistency between the results
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from the rehabilitation therapists and the uniform results. When
interacting with different rehabilitation therapists, some patients
may feel nervous. This could result in changes of muscle tone and
affect the MAS assessment. In addition, different postures of the
patient’s upper limb also change muscle tone (Watanabe, 2004),
affecting the evaluation results of therapists.

In this study, continuous spasticity scores were output instead
of several levels as in the MAS, which would play a positive
role in the treatment of subsequent spasticity patients. In clinical
situations, when therapists apply new methods, such as repetitive
transcranial magnetic stimulation or shockwave therapy, to
spasticity treatment (Wassermann, 1998; Wang, 2012), the MAS
score cannot meet the requirement of reflecting therapy efficacy
due to its subjectivity. Therefore, objective treatment feedback
cannot be obtained during treatment. Our sEMG-ANFIS method
has the potential to provide quantitative and objective feedback
on spasticity treatment efficacy in the place of MAS and to
promote related research on spasticity treatment. Our method
can be packaged into easy-to-use operating software for the
use of physiotherapists, which is also our future work. It is
worthy to mention that since subtractive clustering was used to
generate the ANFIS structure, our method was not relative time-
consuming. After feature extraction, with a server configured
with 48 GB graphics card and 128 GB of running memory, the
mean processing delays of 1-2-3-4-5-6 ANFIS model were about
8, 10, 11, 15, 15, and 16 s, respectively. In addition, the study
shows that sEMG signals can be used for compensation detection
(Ma et al., 2019) and rehabilitation robot control (Koh et al.,
2017). As the sEMG-ANFIS method was based on a 128 ms
window, it can be combined with a compensation detection
method to monitor the spasticity state and compensation pattern
in real time and as feedback control in the application of a
rehabilitation robot. Another application of the sEMG-ANFIS
method is to help patients monitor their spasticity routinely when
they are in the community.

There are still some defects in this study. First, the age of
healthy subjects and patients were not matched, the healthy
subjects were younger than patients. However, Zhang et al. (2019)
has recruited age-mismatched participants to participant in the
experiments for spasticity assessment and achieved good result,
which shows that recruiting age-matched healthy subjects is not
a crucial parameter that affects the experimental results. Then,
there were no patients with MAS grades of 3 and 4 because of
high stiffness or cognitive disability, which made it difficult for
them to participate in the experiment. However, compared to
the description of MAS grades 1–2 such as “slight increase in
muscle tone” (MAS 1, MAS 1+) and “more marked increase in
muscle tone” (MAS 2), the description of MAS grades 3–4 such
as “considerable increase in muscle tone,” “passive movement
difficult,” (MAS 3) and “affected part rigid” (MAS 4) are easier to
distinguish (Pandyan et al., 1999). Therefore, our method can be
combined with MAS to provide objective spasticity feedback for
all grades of patients. Moreover, the feasibility and effectiveness
of the regression framework based on sEMG and ANFIS signals
were achieved offline. In our next study, we will achieve real-
time output of the spasticity to promote the application of
rehabilitation robots in the field of stroke rehabilitation.

CONCLUSION

We developed a novel method based on sEMG and ANFIS
for the convenient, objective and quantitative evaluation of
spasticity. Four healthy subjects and 11 stroke patients with
spasticity were recruited to participate in the experiment, and
the sEMG signals from four elbow flexors or extensors were
collected during fast passive stretching. Five time-domain or
frequency-domain features were extracted from sEMG signals,
and the ANFIS model was established. Our results showed the
existence of a strong relationship between the MAS scores given
by therapists and the predicted scores based on our methods
(mean R2 = 0.96, mean RMSE = 0.13). Compared to the classic
TSRT method (R2 = 0.88, RMSE = 0.28), the sEMG-ANFIS
method is not only convenient for implementation but also has
higher accuracy. This proves that our method can be used as a
more convenient and quantitative method to replace traditional
MAS and TSRT methods.
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