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Automated segmentation of
colorectal liver metastasis and
liver ablation on contrast-
enhanced CT images
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and Kristy K. Brock1

1Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston,
TX, United States, 2UTHealth Graduate School of Biomedical Sciences, The University of Texas MD
Anderson Cancer Center, Houston, TX, United States, 3Department of Interventional Radiology,
The University of Texas MD Anderson Cancer Center, Houston, TX, United States, 4Department of
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Objectives: Colorectal cancer (CRC), the third most common cancer in the

USA, is a leading cause of cancer-related death worldwide. Up to 60% of

patients develop liver metastasis (CRLM). Treatments like radiation and ablation

therapies require disease segmentation for planning and therapy delivery. For

ablation, ablation-zone segmentation is required to evaluate disease coverage.

We hypothesize that fully convolutional (FC) neural networks, trained using

novel methods, will provide rapid and accurate identification and segmentation

of CRLM and ablation zones.

Methods: Four FC model styles were investigated: Standard 3D-UNet, Residual

3D-UNet, Dense 3D-UNet, and Hybrid-WNet. Models were trained on 92

patients from the liver tumor segmentation (LiTS) challenge. For the

evaluation, we acquired 15 patients from the 3D-IRCADb database, 18

patients from our institution (CRLM = 24, ablation-zone = 19), and those

submitted to the LiTS challenge (n = 70). Qualitative evaluations of our

institutional data were performed by two board-certified radiologists

(interventional and diagnostic) and a radiology-trained physician fellow, using

a Likert scale of 1–5.

Results: The most accurate model was the Hybrid-WNet. On a patient-by-

patient basis in the 3D-IRCADb dataset, the median (min–max) Dice similarity

coefficient (DSC) was 0.73 (0.41–0.88), the median surface distance was

1.75 mm (0.57–7.63 mm), and the number of false positives was 1 (0–4). In

the LiTS challenge (n= 70), the global DSCwas 0.810. Themodel sensitivity was

98% (47/48) for sites ≥15 mm in diameter. Qualitatively, 100% (24/24; minority

vote) of the CRLM and 84% (16/19; majority vote) of the ablation zones had

Likert scores ≥4.
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Conclusion: The Hybrid-WNet model provided fast (<30 s) and accurate

segmentations of CRLM and ablation zones on contrast-enhanced CT scans,

with positive physician reviews.
KEYWORDS

deep-learning, liver cancer, percutaneous ablation, computed tomography
biomechanical modeling
Introduction

Colorectal cancer in the United States

Colorectal cancer (CRC) is the third most common cancer in

the United States in both men and women (1) and a leading

cause of cancer-related death worldwide (2). The main cause of

death for CRC patients is metastasis (3). Up to 60% of patients

develop colorectal liver metastasis (CRLM) over the course of

their disease, with 25% presenting with CRLM at diagnosis (4).

Such facts highlight the importance of liver-directed loco-

regional therapies (LRT) for these patients.

While several treatment options are available for CRLM

(particularly radiation and ablation therapies), they all rely on

accurate estimation of disease extent, usually involving cross-

sectional imaging with contrast-enhanced CT (CECT) or MRI.

CRLM often appears as hypo-enhancing lesions on routine

CECT portal-venous phase images. However, their detection

can be challenging owing to ill-defined margins, particularly for

sub-centimeter lesions.

Both radiofrequency and microwave ablation interventions

aim for a minimum margin to be achieved around the disease to

ensure that all microscopic disease is treated. This requires both

segmentation of disease on pre-treatment images and the

ablation zone on post-treatment images to assess the ablation

margin (5). The ablation zone is hypo-enhanced on CECT

images, similar to the CRLM. A clinical trial is underway

(Identifier: NCT04083378) to map the CRLM from pre-

treatment to post-treatment imaging and assess treatment

efficacy, but manual segmentations of both the disease and the

ablation zone are still required (6), adding time to the procedure.

To date, automated liver disease segmentation tasks either

have largely focused on primary liver disease, or have not included

qualitative evaluation of generated contours (7–10). Furthermore,

hepatocellular carcinomas tend to have enhancement during the
ectal liver metastasis;
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arterial phase of contrast-enhanced CT with a hypodense rim (11,

12), while CRLM often shows hyperenhancement on the rim and

a hypo-enhancing center (13, 14). New institution- and society-

sponsored competitions, such as the liver tumor segmentation

(LiTS) challenge (15) and the 3D-IRCADb01 (7) dataset, have

included data from both primary and secondary liver cancers,

enabling investigation, development, and comparison of

automatic segmentation algorithms using public data.

It is hypothesized that fully convolutional neural networks,

trained using novel methods to account for the challenges of

varying disease size, will provide rapid and accurate

identification and segmentation of both CRLM and ablation

cavities. We believe that this approach will facilitate the

automated detection of CRLM, radiation treatment planning

for CRLM, and the evaluations of margin in ablation therapy.
Materials and methods

Quantitative training, validation, and
testing

To ensure reproducibility by other institutions, data were

provided by the publicly available LiTS challenge (15). LiTS

consists of CECT scans from 131 patients with primary and

secondary liver disease collected from seven different institutions

(15). Subjects suffered from primary tumor disease, such as HCC,

as well as secondary liver tumors and metastasis from breast, lung,

and CRC. Ground-truth segmentations of the liver and disease

were provided in the data; the goal of the model is to similarly

segment the disease. Each image was reviewed by BMA, BCO to

remove the data showing hyper-enhancing metastases, or lacking

image acquisition parameters. A total of 92 patients remained.

The model was evaluated via submission to the LiTS challenge

and the 3D-IRCADb01 publicly available dataset of 20 patients

(10 male and 10 female patients) with liver disease (16). Table 1

shows the image acquisition parameters for the training,

validation, and test sets. Five of the patients from the 3D-

IRCADb01 dataset were excluded: patients 5, 11, and 20 had no

disease; patient 12 had a large cystic lesion at the base of the liver;

and patient 18 had CRLM with atypical enhancement pattern.
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Data pre-processing

Image intensity manipulation
A patient-specific mean and standard deviation Hounsfield

unit was calculated for normalization on the basis of the full

width at half maximum of the values within the liver; this

reduced outliers as compared to using a global mean and

standard deviation. The image intensity outside of the masked

liver was set to be equal to 0.

Voxel size resampling
All training and validation images and ground-truth

segmentation were resampled to 1 mm slice thickness, and

0.75 mm in the axial plane, using bi-linear interpolation.

Training image “slabs”
Initial training on the entire patient liver resulted in a model

that struggled to identify disease sites. We believe that this is due

to the disparity in class representation, being that a majority of

the liver is “normal” and the model could achieve a high

segmentation accuracy by segmenting everything as “normal”.

Simple class weighting would not solve this problem as it would
Frontiers in Oncology 03
result in the model weighing cases with extensive disease cases as

more important than the less extensive disease cases.

To account for disparities in class representation, where

smaller structures (CRLM) are inherently “worth less” than

large structures (normal liver), training was distributed into

unique “slabs”. Each independent disease site was divided into

“slabs” of 32 × 120 × 120 voxels. This size was selected

arbitrarily as a balance of encompassing a large section of

liver while reducing memory requirements. This ensures a

representation of both disease and normal liver in each

training step. Figure 1 illustrates several disease slabs for one

patient. After extraction, the training dataset consisted of 572

unique samples.

The validation and test set were not broken into slabs, with

the entire liver being passed at once for evaluation and testing.
Architectures

Four architectures were investigated: Standard 3D-UNet,

Residual 3D-UNet, Dense 3D-UNet, and Hybrid-WNet (pre-

trained Standard 2D-UNet with a 3D-DenseUNet). The basic
FIGURE 1

Liver distributed into individual slabs of 32 × 120 × 120. Disease was labeled as disease, regardless of the center of the slab. The validation and
test set were not broken into slabs; our architectures accepted variable input sizes, with the entire liver being passed at once for evaluation
and testing.
TABLE 1 Image acquisition parameters of the LiTS challenge for the training, validation, and test sets.

Origin Distribution Mean (min–max)

Slice thickness (mm) Pixel size X (mm/voxel) Pixel size Y (mm/voxel)

LiTS Training (n = 72) 1.64 (0.7–5.0) 0.75 (0.60–0.98) 0.75 (0.60–0.98)

Validation (n = 20) 2.02 (0.7–5.0) 0.78 (0.68–0.98) 0.78 (0.68–0.98)

Test (n = 70) 2.43 (0.45–6.0) 0.75 (0.60–0.98) 0.75 (0.60–0.98)

3D-IRCADb Test (n = 15) 1.78 (1.0–4.0) 0.72 (0.56–0.87) 0.72 (0.56–0.87)
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framework remained the same for the Standard, Residual, and

Dense 3D-UNets (Figure 2A). The differences in the Standard,

Residual, and Dense 3D-UNets are represented in Figure 2B.

The Hybrid-WNet architecture is shown in Figure 3. A list of

parameters for each architecture is listed in Table 2.
Frontiers in Oncology 04
Residual 3D-UNet
The Standard 3D-UNet was expanded to include residual

connections for each convolution block in a layer, with

motivation from the “ResNet” architecture (17). Residual

connections have the benefit of allowing a “flow” of loss
FIGURE 3

Hybrid-WNet. (Left) Pre-trained 2D DenseNet 121 converted into UNet, where final features, filters from 2D prediction, are 32 and concatenated
into 3D DenseNet. (Right) 3D DenseNet architecture was defined as two layers, two convolution blocks in layer 0, three convolution blocks in
layer 1, and eight initial filters. BN, batch normalization.
B

A

FIGURE 2

Top (A): Basic architecture framework. Bottom (B): Difference in convolution blocks, surrounded by green to indicate the same region in (A).
Standard: previous feature maps are convolved and activated. Residual: previous feature maps are directly added to convolutional output in a
skip-connection before activation. Dense: previous feature maps are continually concatenated together before activation and convolution. BN,
batch normalization.
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from previous convolutions. This allows the model to create

skip connections over convolutions that might not

be necessary.

Dense 3D-UNet
A more complete “flow” of loss from previous convolutions

can be realized with the DenseNet architecture (18). This

architectural style allows previous convolutions to be re-used.

The reuse of previous convolutions allows the number of filters

to be significantly reduced; the increase in total number of filters

is referred to here as the “growth rate”.

Hybrid-WNet
The architecture combines 2D features extracted from the

pre-trained 2D DenseNet-121 (18) in Tensorflow (19) with a 3D

convolutional neural network. The term Hybrid-WNet was

coined on the basis of the W-shaped appearance of two UNets

beside each other (Figure 3).

The Hybrid-WNet architectural style was inspired by Li et al.

(9) with substantial alterations. First, in architecture training, the

training process was broken into four steps: (1) training only the

new decoding side of the DenseNet 121, (2) training the entire

DenseNet121, (3) training only the 3D network with the

extracted 2D features, and (4) entire end-to-end training. By

breaking up the training process in this fashion, we ensured that

high learning rates could be used without the risk of “untraining”

pretrained layers, as was noticed by a marked dip in performance

in the first iterations of subsequent training if previous layers

were not frozen. Second, the 3D DenseNet contained truly dense

layers, with extracted features shared throughout the entirety of

each layer; this enabled the use of significantly fewer features.
Model training

All model training was performed using NVIDIA-Tesla

V100 32GB GPUs (20). All model creation, training,

optimization, and evaluation was performed using
Frontiers in Oncology 05
Tensorflow2.2.0 (21). Models were optimized using a sparse

categorical cross entropy loss (https://www.tensorflow.org/api_

docs/python/tf/keras/losses/SparseCategoricalCrossentropy)

and Adam optimizer. Mixed precision was enabled to reduce the

training time.

The model was trained with two inputs: CT image and

binary mask of the liver. The mask automatically assigns a

background to any voxel outside the liver. Training involved

passing B*N*H*W*C tensors to the model, where the (B)atch

varied from 8 to 16, the (N)umber of slices was 32, the (H)

eight was 120, the (W)idth was 120, and the (C)hannels were

2 (image and liver mask). Thus, a single pass might be 8 × 32

× 120 × 120 × 2 in size.

Training the DenseNet121 UNet
When training the 2D aspect of the Hybrid-WNet, 3D slabs

were reshaped into stacked 2D images. For example, a batch of 8

× 32 × 120 × 120 × 1 would be transformed into 8 × 32 × 120 ×

120 × 1. In the first training iteration, all weights on the pre-

trained encoding architecture were frozen. Next, all weights were

made trainable, allowing the model to tweak any pre-

trained layers.

Training the combined 2D-3D WNet
After training the 2D part of the W-Net, 2D features are

concatenated to the input of the 3D model. Features extracted

from the 2D network would have dimensions of 8 × 32 × 120 ×

120 × 32, “2D Features”, Figure 3. All weights from the 2D

network were initially frozen, and only the 3D model trained.

Next, all weights were unfrozen, allowing the model to be

fine-tuned.

A visual representation of the combined architectures can be

seen in Figure 3.

Hyper-parameters
For training each model, a variation in the cyclical learning

rate (22) was used (GitHub link: anonymized for review), with

linear increase and decrease between min and max. Optimal
TABLE 2 Investigated architectural hyper-parameters for each architectural style.

Parameters Architecture style

Standard Residual Dense

Layers 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3

Convolution blocks Initial 1, 2, 3 1, 2, 3, 4 2, 3

Increase rate 0, 1, 2 0, 1, 2 0, 1

Maximum 4 4 4

Filters Initial 8, 16, 32 32 8, 12, 16, 32

Growth Rate – – 0, 4

Maximum 32, 64, 128 128 128, inf
fro
Note that the number of filters doubled after each pooling. “Growth Rate” is unique to the Dense network.
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learning rates vary based on each architecture parameter, with

the minimum and maximum learning rates identified using an

in-house function (Github link: anonymized for review),

Supplementary Figure 1. Augmentations of the training were

provided in the form of flipping and mirroring the input data.

Model optimization
Each model was run three times using randomly initialized

variables to reduce the likelihood of poor initialization. Plotnine

and Tensorflow’s Tensorboard (https://github.com/tensorflow/

tensorboard) was used to identify trends and direct model

training. The final model was selected on the basis of the Dice

similarity coefficient (DSC) between the validation set and the

ground truth.

Prediction images were visualized during training to assess

the training process (Figure 4) as a Tensorflow callback (Github

link: anonymized for review).
Model evaluation

Seed and threshold values
The disease predictions from the model ranged from 0 to 1.

The most inferior and superior aspects of a disease site often had

a lower probability than the center of the disease. For this reason,
Frontiers in Oncology 06
seed-point growth was investigated for the final prediction. Seed

points were created to define the likely starting point of a disease

site, and then grown outwards to a threshold value. Seed values

investigated from 0.25 to 0.95 in 0.01 increments, and threshold

values from 0.2 to 0.8 in 0.01 increments.

Quantitative evaluation
Model performance was evaluated on the test set using the

DSC and Median Surface Distance between the manual and

predicted segmentations. Predictions were reported in a disease

site-by-site, patient-by-patient, and “global” basis.

For the site-by-site comparison, each non-connected disease

segmentation of the test patients was considered an independent

case. Metrics were computed between the manual segmentation

and the closest continuous predicted disease segmentation, using

the distance between site centroids. For the patient-by-patient

comparison, metrics were computed between the manual and

predicted segmentations within the entire liver. For global DSC,

all images were stacked together; this metric comes from the

LiTS challenge (15); otherwise, DSC refers to a patient-wise

evaluation. All metrics were computed using the original

image resolution.

The sensitivity of the model was evaluated on a site-by-site

basis, where disease was considered identified if at least 45% of

the ground truth overlapped with prediction. False-positive
FIGURE 4

Example of visualization of prediction on validation data during training. Top row: Image being fed into the model, masked by the liver segmentation.
Middle row: Ground truth of disease contours. Bottom row: Prediction of disease contours, set with a threshold of 0.5 to the binary mask.
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volume was defined as the volume of the predicted segmentation

outside of the ground-truth segmentation and was composed of

two errors: over-segmentation and erroneous segmentation.

Erroneous false-positive volume was quantified as the volume

that was completely unconnected from any ground-truth

segmentations, and the over-segmentation false volume was

quantified as the total predicted volume minus the erroneous

volume (Figure 5).

Qualitative evaluation
For large structures, a high DSC can hide clinically

important inaccuracies, while for smaller structures, a low

DSC can be overly critical (23). The qualitative assessment of

both CRLM and ablation segmentations was performed by a

radiology-trained physician fellow (1, YML) and two board-

certified radiologists, an interventional radiologist (2, BCO) and

a diagnostic radiologist (3, HCK), both of whom have more than

10 years of experience. This will evaluate if the generated

contours are deemed clinically useable.

Eighteen patients, who had previously undergone targeted

thermal ablation therapy for colorectal liver metastasis at our

institution, were retrospectively identified under an Institutional

Review Board-approved study (IRB: 2019-0213); these patients

had 24 CRLM sites and 19 ablation sites. The predicted CRLM

and ablation contours were scored independently based on a

Likert quality scale of 1–5. A breakdown of these scores can be

found in Supplementary Table 1. A score of 4 is defined as

requiring minor changes on less than four slices, or changes that

would require less than 10 s to fix.
Frontiers in Oncology 07
Results

The best validation loss scores were Standard UNet: 0.041,

Residual UNet: 0.024, Dense UNet: 0.016, DenseNet2D

(Encoder frozen): 0.022, DenseNet2D (All trainable): 0.013,

DenseNet3D (2D frozen): 0.011, and DenseNet3D (All

trainable): 0.0092.
Quantitative

The best model was the Hybrid-WNet model: the 3D-UNet

contained two layers, two convolution blocks, and 32 filters and

had a convolution lambda of two. The model consisted of

14,497,600 parameters (14,408,960 trainable and 88,640

non-trainable).

A seed value of 0.67 and a threshold value of 0.30 resulted

in the highest overall DSC in the validation dataset. LiTS test

set (n = 70) predictions required a mean of 9.58 s, with a

standard deviation of 2.32 s.

Site-by-site evaluation
3D-IRCADb

On a site-by-site basis, the median surface distance, DSC,

and sensitivity are presented in Table 3. Sites are distributed into

two groups based on diameter: sites < 15 mm and ≥ 15 mm. For

sites ≥ 15 mm (n = 48), mean DSC was 0.74 and sensitivity was

98%. For sites < 15 mm (n = 73), mean DSC was 0.16 and

sensitivity was 23%.
FIGURE 5

(Left) Overlay between predicted (white) and ground-truth (red) disease segmentations. (Right) Subtraction of the predicted and ground-truth
disease segmentation and over-segmentation of the disease volume (blue) and unconnected erroneous false-positive region (green). The sum
of blue and green is a false-positive volume.
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Institutional Data

For the pre-treatment CECT CRLM target disease (n = 19

sites), the mean (min–max) DSC was 0.80 (0.59–0.91), with 84%

(16/19) having DSC ≥ 0.76. For the post-treatment CECT target

ablation zones (n = 14 sites), the mean (min–max) DSC was 0.75

(0.09–0.90), with 71% (10/14) having DSC ≥ 0.76.

Patient-by-patient evaluation
Patient-by-patient evaluation for 3D-IRCADb and

institutional data are summarized in Table 4.

3D-IRCADb

Quantitative metrics on a patient-by-patient basis for 3D-

IRCADb are summarized in the top of Table 4. Median DSC was
Frontiers in Oncology 08
0.74, median surface distance was 1.95 mm, and median false-

positive discoveries per patient was 1. Note that a single patient

might have multiple disease sites of varying sizes. The global

DSC score was 0.81.
Institutional data

Quantitative metrics for the institutional data are

summarized in the middle and bottom of Table 4. For the pre-

treatment CECT CRLM target disease (n = 15 patients), the

median DSC was 0.78, median surface distance was 0.78 mm,

and false-positive discoveries per patient was 1. For the post-

treatment CECT target ablation zones (n = 9 patients), the

median DSC was 0.79, median surface distance was 0.76 mm,

and false-positive discoveries per patient was 2.
TABLE 4 Metrics of Dice similarity coefficient, median surface distance (mm), false-positive discoveries (per patient), and false-positive volume
(cc) for 15 3D-IRCADb Test Patients.

Metric 3D-IRCADb Patients (N = 15)

Median Min Max Standard deviation

Dice similarity coefficient 0.74 0.40 0.89 0.16

Global Dice similarity coefficient 0.81 N/A N/A N/A

Median surface distance (mm) 1.95 0.57 8.00 1.90

False-positive discoveries (per patient) 1 0 7 2.0

False-positive volume (cc) 4.25 0.08 28.34 7.48

Erroneous false-positive volume (cc) 2.35 0.00 14.56 5.01

Over-segmentation false-positive volume (cc) 1.24 0.00 17.56 5.50

Metric CRLM Patients (N = 15)

Median Min Max Standard deviation

Dice similarity coefficient 0.78 0.28 0.91 0.17

Median surface distance (mm) 0.78 0.01 83.28 27

False-positive discoveries (per patient) 1 0 4 1.2

False-positive volume (cc) 2.43 0.28 14.47 4.68

Erroneous false-positive volume (cc) 1.05 0.00 14.23 4.54

Over-segmentation false-positive volume (cc) 0.73 0.23 3.68 0.97

Metric Ablation Patients (N = 9)

Median Min Max Standard deviation

Dice similarity coefficient 0.79 0.42 0.89 0.16

Median surface distance (mm) 0.76 0.01 5.72 1.76

False-positive discoveries (per patient) 2 0 6 1.6

False-positive volume (cc) 27.8 5.84 174.07 61.25

Erroneous false-positive volume (cc) 5.62 0.00 107.47 32.77

Over-segmentation false-positive volume (cc) 11.40 4.35 172.54 50.97
fron
TABLE 3 Mean, min, and max Dice similarity coefficient and median surface distance and sensitivity for individual disease sites by differing size
criteria of the 3D-IRCADb dataset.

Disease site diameter # Sites Dice similarity coefficient Median surface distance (mm) Sensitivity

Mean Min Max Median Min Max

<15 mm 73 0.16 0.00 0.89 28.25 0.67 108 23% (15 of 73)

≥15 mm 48 0.74 0.00 0.94 1.23 0.28 19.4 98% (47 of 48)
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Qualitative evaluation

Institutional data
Supplementary Table 2 shows the Likert scores of the two

radiologists and the radiology-trained physician fellow for each

targeted disease and ablation zone. The majority vote mean

(min–max) Likert scores for the target disease volumes (n = 24)

were 4.8 (4–5). The majority vote mean (min–max) Likert scores

for targeted ablation volume (n = 19) were 4.1 (2–5). All (24/24)

of the CRLM contours and 84% (16/19) of the ablation contours

had a majority Likert score ≥4. Figure 6 shows the scores of the

two radiologists and physician fellow on the CRLM and

ablation zones.
Discussion

While fully convolutional networks have been previously

investigated for the segmentation of CRLM (8), only a

quantitative assessment of model performance has been

reported. A comparison of the model results to those of other

authors is given in Table 5; the size distributions were varied to

match those of previous work, and compared in both a site-by-

site basis and patient-by-patient basis. While the model

performed better in larger-diameter sites (≥15 mm) by DSC

and sensitivity compared to Vorontsov et al. (8), it performed
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more poorly with sites <10 mm. Similar results have also been

reported by Christ et al. (7); however, their work focused on

primary liver disease.

Within our institutional data, 84% (16/19) of the disease

sites had a DSC > 0.76, which has been reported as the inter-

observer variability for CRLM segmentation (24).

In this study, we proposed a Hybrid-WNet model

architecture for the segmentation of the disease sites and

ablation areas in the context of CRLM treated with ablation

therapy. The model was further evaluated using the Likert

scoring method by two board-certified radiologists (BCO,

interventional radiologist and HCK, diagnostic radiologist)

and a radiology trained physician fellow (YML), with majority

voting scores ≥4 out of 5 for 100% (24/24) of the disease and 84%

(16/19) of the ablation segmentations. The prediction process

has been implemented in a treatment planning system

(RayStation 9B, RaySearch Laboratories, Sweden) (25) and can

perform segmentations in <30 s, making it suitable for

clinical use.

Our work is innovative because of the Hybrid-WNet model

architecture and the training of the model; the model had 98%

(47/48) sensitivity on disease sites ≥15 mm, with predictions in

<30 s.

The proposed Hybrid-WNet architecture in this study differs

from the model that inspired it (9) by adding additions to the 2D

feature extractor, and connecting all of the convolutional layers
FIGURE 6

(Top) Likert score by each reviewer for each disease site. (Bottom) Likert score by each reviewer for each ablation site. A higher value is
associated with higher quality.
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within the convolution blocks between the encoding and

decoding of the 3D-DenseNet. Previously published studies

proposed similar architectures that were focused only on dense

connections within a single convolutional block (26–28). The

proposed implementation allows the model to receive inputs

from every convolution of the same image size across the entire

network. This global passing of convolution layers across the

network removes bottlenecks in each convolution block,

something that is particularly important with dense

connections where convolutions can be re-used. The proposed

model wil l be publicly available (Github: redacted

for anonymization).

Segmentation of CRLM has historically been difficult

because of the relatively small size of lesions and the large

search area. The extent of disease can vary from patient to

patient, from a single lesion to multiple lesions. Simple class

weighting of disease would lead to favoring training in patients

with more disease sites. The proposed method of splitting the

liver into slabs that were centered specifically on disease sites

ensures that the model learns using a more balanced

representation of data. The training workflow was designed to

allow the model to learn from batches that contain cubic images

from multiple patients at once, enabling the creation of a more

generalized model.
Limitations

Our study has several limitations. The mean sensitivity was

only 7% in disease sites <10 mm in diameter compared with 98%

in sites >15 mm. We believe that the low sensitivity in small sites

may be partly due to the test data used, where several 10- to 15-

mm disease sites were present on a single scan slice. We
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furthermore believe that this model should not be used as a

strictly diagnostic device. If the diagnosis of smaller disease sites

is wanted, the “seed” and “threshold” values, discussed in Model

evaluation, can be reduced. Overall, this would increase

sensitivity, while also increasing false positives.

Unfortunately, manual contours were not present for all the

institutional CRLM and ablation data, limiting the quantitative

comparison to 19 of the 24 CLRM sites and 9 of the 19

ablation sites.

Majority voting showed poor Likert score (<4) for three

ablation sites. The predictions for these sites can be seen in

Supplementary Figure 2, where disagreement about the

boundary of the ablation zone and the time needed for

correction resulted in a range of scores from the reviewers. We

believe that suboptimal imaging quality during porto-venous CT

acquisition phase might have negatively impacted ablation zone

boundary identification in such patients. Optimizing imaging

acquisition protocol intra-procedurally during ablation

interventions might overcome this limitation.

The measurement of false-positive volume seemed to be

highly biased when there were small amounts of over-

segmentation on large tumors; this was the rationale for the

creation of the erroneous and over-segmentation false-positive

volumes. To ensure transparency, all three are shown and relied

on qualitative assessment to add weight to the quality of

the contours.
Conclusions

The proposed Hybrid-WNet model provided fast (<30 s)

and accurate CRLM and ablation zone segmentations for

CECT. The model’s results were well accepted by the
frontiersin.org
TABLE 5 Comparison of CRLM segmentation results from our model and the literature.

Method Model Disease diameter and source No. of sites Mean DSC Sensitivity

Presented method Hybrid-WNet <10 mm 42 0.00 7%

10–20 mm 49 0.43 59%

15–20 mm 18 0.68 94%

≥20 mm 30 0.77 98%

LiTS 70 patients 0.810 global –

3D-IRCADb 15 patients 0.69 –

Vorontsov et al. (8) FCN <10 mm 30 0.14 10%

10–20 mm 35 0.53 71%

>20 mm 40 0.68 85%

Li et al. (9) Hybrid Dense UNet LiTS 70 patients 0.824 global –

Seo et al. (10) mU-Net 3D-IRCADb 5 patients 0.68 –
Patients were specified instead of sites for LiTS test submission.
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reviewers, with all three scoring the disease segmentation (n =

24) as 4 or higher on the Likert scale, and 84% (16/19) as 4 or

higher with ablation segmentation. It is hoped that this model

can provide clinical benefits in the detection of CRLM, the

assessment of ablation therapy, and automated planning for

radiation therapy.

Our proposed Hybrid-WNet provided fast (<30 s) and

accurate segmentation of colorectal liver metastasis and

ablation zones, with largely positive physician reviews.
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