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Estimating the impact post randomization
changes in staff behavior in infection
prevention trials: a mathematical modeling
approach
Eric T. Lofgren1,2

Abstract

Background: Randomized controlled trials (RCTs) of behavior-based interventions are particularly vulnerable to
post-randomization changes between study arms. We assess the impact of such a change in a large, multicenter
study of universal contact precautions to prevent infection transmission in intensive care units.

Methods: We construct a stochastic mathematical model of methicillin-resistant Staphylococcus aureus (MRSA) acquisition
in a simulated 18-bed intensive care unit (ICU). Using parameters from a recent study of contact precautions that reported
a post-randomization change in contact rates, with fewer visits observed in the treatment arm, we explore the impact of
several possible interpretations of this change on MRSA acquisition rates.

Results: Scenarios where contact precautions resulted in less patient visitation resulted in a mean decrease in
MRSA acquisition rate of 37%, accounting for much of the effect reported in the trial.

Conclusions: Behavior changes that impact the contact rate have the potential to drastically alter the results of
RCTs in infection control settings. Careful monitoring for these changes, and an assessment of which changes
will likely have the greatest impact on the study before the study begins are both recommended.
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Background
The randomized controlled trial is often considered the
“gold standard” study design for interventional studies.
The process of randomization removes any differences
between the treatment and control arms of the trial,
yielding a theoretically unbiased estimate of a causal
effect. But this protection only applies to differences
between the treatment and control arms that arise before
randomization – differences that arise afterward, such as
differential rates of dropout between the arms can bias
this effect.
In multi-center trials of hospital-level policy interventions

these post-randomization changes can arise not only from

differences in the patients between the two arms, but differ-
ences in the behavior of healthcare personnel at different
sites [1]. If these differences in behavior result in differential
quality of care between the two study arms, bias can arise.
This problem is especially pernicious in infectious disease
epidemiology [2], as each patient who is infected (or whose
infection is prevented) alters not only their own outcome
but the outcome of other patients in the same facility, amp-
lifying the impact of what may be fairly subtle differences.
A failure to detect and quantify these effects can potentially
lead to errant clinical practice, hospital policy, and profes-
sional guidelines.
Mathematical models are ideal for assessing whether

these post-randomization changes are largely harmless,
or serious threats to the validity of a study [3]. By simulat-
ing the study population in a counterfactual scenario
where only the behavior change (and not the intervention)
occurred, they can quantify how much of the joint effect
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of both the intervention and the behavior change is due to
spurious factors, rather than the true effect.
Here, as a motivating example, we examine the impact

of a post-randomization change in the frequency at which
healthcare workers (HCWs) reported visiting patients on
a major multicenter clinical trial of universal glove and
gown use on the acquisition of antibiotic resistant organ-
isms [4]. This study, which is the largest of its kind exam-
ining the use of gowning and gloving, took place between
January and October 2012 and involved 20 medical and
surgical intensive care units (ICUs). Healthcare workers
were required to wear gloves and gowns for all patient
contact and when entering a patient’s room, rather than
following these precautions only for patients known to
have infection or colonization with antibiotic resistant
bacteria, per CDC guidelines [5]. This study found that
the use of a universal gowning and gloving policy reduced
MRSA acquisitions by 40.2%, reflecting 2.98 fewer acquisi-
tions per 1000 patient days (95% Confidence Interval (CI):
5.58 to 0.38).
In Harris et al., the authors report 0.96 fewer healthcare

worker visits per hour in the intervention arm of the trial,
as well as a rise in hand-hygiene compliance on room exit
in the intervention arm. Both of these behavior changes
may alter the estimated effect of the intervention, poten-
tially dramatically reducing the reported effectiveness of
universal gowning and gloving. To date, this impact has not
been quantified, and the magnitude of the potential bias
(and thus the effectiveness of the intervention) remains
largely speculative and rooted in personal opinion and
anecdote. A mathematical model of methicillin-resistant
Staphylococcus aureus (MRSA) acquisition in an ICU was
used to examine the magnitude of the potential bias present
in the study, modeling the change in visitation and hand-
hygiene with no concurrent gowning or gloving based
intervention.

Methods
Transmission model
The transmission of MRSA through an ICU was mod-
eled as a series of compartments representing patient
health, as well as whether or not a healthcare worker’s
hands were presently contaminated with MRSA (Fig. 1).
HCWs were modeled as being either uncontaminated
(S) or presently carrying MRSA on their hands or gloves
(H). Patients were divided into two states – those not
presently colonized with MRSA (U) and those colonized
(C). The interactions between these compartments was
governed by a series of eight stochastic transitions, the
details of which are presented in Table 1. The recorded
outcome was incident MRSA colonization (i.e. transi-
tions from U to C).
Because there is evidence that MRSA can be transmitted

by surface-contamination as well as direct contact [6],

surface contamination is indirectly modeled by defining
contact between patients and HCWs as direct care
tasks [7, 8], which could involve either interaction with
the patient, or interaction with the environment near
the patient. The model makes several simplifying assump-
tions. First, all HCWs are assumed to visit all patients –
there is no cohorting or other individual assignment of
HCWs to particular patients. Patients were assumed not to
interact with each other and were assumed to be in single-
occupant rooms. Hospitals were assumed to follow stand-
ard contact precaution guidelines set forward by the CDC
and to detect MRSA colonization with perfect accuracy,
and colonization was assumed to be permanent. Finally, all
HCWs are assumed wash or decontaminate their hands
after each direct care task, and change their gloves and/or
gowns on entry and exit to a patient room. These assump-
tions are intended to examine the effect of the contact rate
changes in settings that are otherwise largely free of major
failings in their infection control programs.

Parameterization and model calibration
As the raw data from Harris et al. is not publically available,
the model described in the previous section was parameter-
ized using data drawn from the literature. The values of
each parameter, and the source they were drawn from, are
described in Table 1, with a differential equation represen-
tation of the model available in Additional file 1. In many
cases, parameters were drawn from the study itself or from
studies conducted at one of the hospitals participating in
the trial [9, 10]. These parameters are designed to mimic
the control-arm of the trial, save for the change in hand
hygiene and patient contact rates. This allows for the

Fig. 1 Schematic representation of the compartmental flow of a
mathematical model of methicillin-resistant Staphylococcus aureus
(MRSA) acquisition in an intensive care unit. Solid arrows indicate
possible transition states, while dashed lines indicate the potential
routes of MRSA colonization/contamination. Healthcare workers are
classified as uncontaminated (S) or contaminated (H), while patients
are classified as uncolonized (U) or colonized (C). Greek characters
represent the parameters governing each transition
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isolation of the impact of these changes separate from those
of direct effect of the intervention.
A single parameter (ψ), the probability that contact

between a contaminated healthcare worker and a unco-
lonized patient would result in effective colonization,
was used to calibrate the model. Approximate Bayesian
Computation (ABC) [11] was used to obtain a Bayesian
posterior estimate of this parameter that matched the
MRSA incidence rate in the model with that in the original
study. Specifically, a candidate parameter value was drawn
from a uniform distribution bounded by 0 and 0.20, and
the model system was simulated with this parameter 25
times. The candidate parameter was accepted if the average
incidence of these 25 model runs was within the 95% confi-
dence interval of the original study’s MRSA acquisition rate
in control hospitals during the study period (4.59 to 7.67
cases/1000 patient days) [4]. This process was then re-
peated 1000 times to yield a distribution of accepted
candidate parameters, which also an approximation of
the Bayesian posterior for the parameter. The median
of this distribution was then used as the value for ψ,
yielding a modeled incidence density similar to that of
the parent study.

Modeled scenarios
The model was used to simulate the transmission of
MRSA in a single 18-bed ICU (the average ICU in the
trial) staffed by six nurses and a single dedicated intensivist.
Each time a patient was discharged, another patient imme-
diately took their place to maintain a fixed ICU population
[12]. Five scenarios were considered – first, a baseline
scenario where no behavior change took place and the
contact rate between patients and HCWs remained constant.
Second, a scenario where the number of visits decreased and

proportionally fewer direct care tasks were performed,
representing HCWs actively avoiding visiting patients
due to the inconvenience of having to don gowns and
gloves as part of the intervention. This is modeled as a
17.7% reduction in overall contact, the weighted average of
the reduction in contact between those in the treatment
arm and those in the control arm (both on and off contact
precautions). Third, a scenario where the number of visits
went down by 17.7%, but the number of direct care tasks
remained the same, representing HCWs trying to pack
more tasks into a single visit. This scenario is modeled as
more tasks being performed before the HCW has an op-
portunity to change out of their gown and gloves, increas-
ing the risk of contamination. Finally, the last two scenarios
considered the 2nd and 3rd scenario in the presence of an
increase in the hand-hygiene compliance rate to 64.25%
(the weighted average of entry and exit hand-hygiene com-
pliance reported in the trial’s intervention arm).
Each scenario was stochastically simulated 1000 times

in order to capture the variability in the system using
Gillespie’s Direct Method [13]. This gives the model two
important properties. First, individuals within the model
are treated as discrete units, which prevents small frac-
tions of individuals existing in any compartment. Second,
because individuals are treated this way and the model is
probabilistic, we can capture variability in the system due
to random chance, which is important for understanding
the underlying dynamics of infectious diseases in small
populations. The models were run for a full year with each
time step in the model representing a single hour.

Statistical analysis and parameter sensitivity
The primary outcome of interest was the rate of hospital-
attributable MRSA colonizations (i.e. those whose infection

Table 1 Transitions and Parameters for a Mathematical Model of MRSA Acquisition in an Intensive Care Unit

Transition Equation Parameter description Parameter value Source

H to S ιH ι: Effective hand-decontaminations per hour (# of
direct care tasks × hand hygiene compliance × efficacy)

ι: 5.74 (10.862 direct care tasks ×
56.55% compliance × ~ 95% efficacy)

ι: [4, 8, 9, 20]

H to S τH C
CþU τ: Effective gown/glove changes per hour (2 × # of visits ×

compliance)
τ: 2.389 (2.89 changes per hour ×
82.66% compliance)

τ: [4, 21]

S to H ρσC S
SþHþCþUð Þ ρ: Contact rate between patients and HCWs.

σ: Probability that a HCW’s hands are contaminated
by contact with a colonized patient or their environment

ρ: 4.154 direct care tasks/h
σ: 0.054

ρ: [8, 9]
σ: [21]

U to C ρψU H
SþHþCþUð Þ ψ: Probability of successful colonization of an uncolonized

patient due to contact with a contaminated HCW.
ψ: 0.0931 ψ: Fitted to [4]

U Discharge to
U Admission

θνUU θ: Probability of discharge (1/average length of stay)
νU: Proportion of admissions uncolonized with MRSA

θ: 0.00949
νU: 0.922

θ: [4]
νU: [4]

U Discharge to
C Admission

θνCU νC: Proportion of admissions colonized with MRSA νC: 0.078 νC: [4]

C Discharge to
U Admission

θνUC

C Discharge to
C Admission

θνCC
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source was within the hospital) occurring over the course
of the simulation. In order to assess the sensitivity of the
model’s findings to errors in parameter values or model
structure, two types of sensitivity analysis were performed.
First, the baseline scenario and both types of behavior
change (absent a co-occurring change in hand hygiene
compliance) were re-run, allowing all parameters to vary
uniformly within ±20% of their original value. Second, the
impact of a change in contact rates was explored over a
much wider range of values (0% to 50%) for both types of
behavior changes (absent a co-occurring change in hand
hygiene compliance) by simulating both scenarios 5000
times randomly drawing the contact rate change from a
uniform distribution ranging from a 0% reduction to a 50%
reduction, rather than being fixed at 17.7%, creating a data
set of contact rates and their corresponding incidence rates.
The results of this analysis were analyzed using a Poisson
regression model to provide an incidence density ratio
(IDR) reflecting the expected increase or decrease in the
MRSA acquisition rate corresponding to a 1% chance in
contact rate.
All simulations were performed in Python 2.7 using

the StochPy library [14], and all statistical analysis was
performed in R version 2.15. The code and simulation re-
sults are available online at https://github.com/epimodels/
contactchange.

Results
Model calibration and baseline
The fitted model produced an average incidence density
of 5.89 acquisitions per 1000 patient-days (standard devi-
ation (SD) = 1.35), slightly lower than the trial’s reported
rate of 5.94 cases per 1000 patient-days, but well within the
bounds of expected variability (Fig. 2). Overall, the model
produced results in line with the “typical” transmission of
MRSA in hospitals – low levels of MRSA colonization,
many of which involve patients who were colonized when
admitted, with the occasional more serious, hospital-driven
outbreak. Contamination of healthcare worker hands was
present at low levels, but this contamination was com-
monly transient, with no long-term sustained hand con-
tamination. A time-series of a single exemplar run of the
model is shown in Fig. 3.

Behavior change scenarios
Compared to the baseline, no-intervention scenario, the
decrease in visits resulting in less contact resulted in a
36.9% decrease without an accompanying hand hygiene
compliance, or a mean of 3.72 acquisitions per 1000
patient-days (SD = 0.97). If instead the amount of pa-
tient contact remained the same, but patient care tasks
were grouped into fewer visits, the acquisition rates
remained essentially unchanged with a 0.2% decrease
or an average of 5.87 acquisitions per 1000 patient-days

(SD = 1.39). The results of the three scenarios without a
change in hand hygiene is shown in Fig. 4. The observed
change in hand-hygiene compliance co-occurring with
each scenario increased the resulting reductions to 3.18
acquisitions per 1000 patient-days (SD = 0.86) and 5.08
acquisitions per 1000 patient-days (SD = 1.23) respectively.

Sensitivity analysis
The sensitivity analysis showed broadly similar findings
(double-digit percentage change for the reduced contact
scenario and a negligible difference for the efficient con-
tact scenario) as the reported results when allowing for
parameter uncertainty. For the wider parameter sweep, a
one-unit decrease in contact rate for the reduced contact
scenario corresponded to an incidence rate ratio (IRR)
of 0.97 (95% CI: 0.97,0.97), while for the efficient contact
scenario it resulted in an IRR of 1.00 (95% CI: 1.00,1.00).
While both were statistically significant at p > 0.001, the
latter is of questionable clinical impact. These simulation
results and the corresponding regression fit are shown
in Fig. 5.

Conclusions
If the reduction in HCW visits reported in Harris et al.
represents a reduction in patient contact, then the observed
reduction in MRSA acquisitions can be almost entirely
explained by the post-randomization changes in HCW
visitation rates and hand hygiene. Universal gowning and
gloving may in fact have much a much more modest
impact on MRSA acquisitions, but the true effect can-
not be known without further investigation of the behavior
change itself. Hospitals considering the implementation of
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Fig. 2 Calibration results of a mathematical model of methicillin-resistant
Staphylococcus aureus (MRSA) acquisition in an intensive care unit. The
solid black line represents the kernel-smoothed incidence density of 1000
runs of a stochastic simulation, with the solid vertical red line showing the
median of this distribution and the dashed black line the rate reported in
the original trial
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universal gowning and gloving protocols should consider
whether a smaller anticipated effect still meets their infec-
tion control objectives.
Whether the post-randomization behavior changes are

themselves desirable remains an open question. While
improved hand hygiene rates are beneficial for the pre-
vention of healthcare-associated infections, the desirably
of decreased visitation rates is less obvious. There are
concerns that fewer visits by healthcare workers might
result in poorer care and a lower likelihood of adverse

events being thwarted by vigilant clinical staff [15, 16],
though Harris et al. found no increase in adverse events
between the treatment and control arm, and this concern
remains controversial [17]. It is also possible that fewer
visits – without a corresponding decrease in care – might
be beneficial to patients, reducing unnecessary disruptions
to their schedules and sleep [18]. One might argue that the
standard intent-to-treat (ITT) analysis used in Harris et al.
incorporates this post-randomization change, however if
the majority of the effect seen in the ITT analysis is, as this
model suggests, the result of unintended effects of the
intervention, it is possible that similar gains may be made
without the need for an expensive and time-consuming
universal gowning and gloving intervention.
This study is not without limitations. As with all mathem-

atical models, the model’s structure and assumptions heavily
influence its results. Particularly, this model’s parameters are
drawn from a number of different data sources, rather than
being a direct computational simulation of the original study
from its own data. It is likely however, even with the original
data, that a large number of parameters would need to be
derived from the literature. Where possible, parameters have
been drawn from studies similar to the setting of the original
study to minimize the divergence between the study’s hospi-
tals and those simulated in the model. Furthermore, allow-
ing all the parameters in the model to vary produced similar
findings, suggesting the model is robust to a reasonable
degree of uncertainty. The findings of the model remain
consistent over a broad range of changes in contact rate and
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Fig. 3 A single stochastic realization of a mathematical model of methicillin-resistant Staphylococcus aureus (MRSA) acquisition in an intensive care
unit. The top panel shows the level of hand contamination in healthcare workers, while the bottom panel depicts the number of colonized and
uncolonized patients, both over a 1-year period
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Fig. 4 Violin plot of the outcome of 3000 simulations of methicillin-
resistant Staphylococcus aureus (MRSA) acquisition in an intensive care
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should be applicable beyond the single motivating example
of Harris et al. The results of the model are not an attempt
to estimate a precise effect or adjustment to the original
study by Harris et al. Rather, it uses this study as a motivat-
ing example (partially due to the richness of results pre-
sented), to demonstrate the magnitude of confounding that
a post-randomization change in contact rates poses to a
study of this type.
More broadly, this study illustrates the growing need for

the involvement of experts in infectious disease modeling at
the outset of a study’s design, similar to the role biostatisti-
cians play today. As interventions grow more sophisticated
and involve complex behavioral changes, the use of dynamic
models can identify critical aspects of disease transmission
that may affect the outcome of the study. These can then be
accounted for, or at the very least measured, in order to
disentangle the study’s primary effect from co-occurring
behavioral changes. These models may also be able to iden-
tify where a proposed intervention is unlikely to succeed at
all [9, 19]. By combining infectious disease dynamics with
conventional observational studies and clinical trials, we can
strengthen the overall evidence produced by these studies,
critically evaluate alternative explanations for their observed
effects, and avoid foreseeable errors in the design and evalu-
ation of interventional studies.

Additional file

Additional file 1: Ordinary differential equation representation of a
mathematical model of MRSA acquisition in an intensive care unit. (DOCX
76 kb)
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