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Abstract

In this article we present an ongoing effort to formalise quantum algorithms and results in
quantum information theory using the proof assistant Isabelle/HOL. Formal methods being
critical for the safety and security of algorithms and protocols, we foresee their widespread use
for quantum computing in the future. We have developed a large library for quantum comput-
ing in Isabelle based on a matrix representation for quantum circuits, successfully formalising
the no-cloning theorem, quantum teleportation, Deutsch’s algorithm, the Deutsch—Jozsa algo-
rithm and the quantum Prisoner’s Dilemma. We discuss the design choices made and report
on an outcome of our work in the field of quantum game theory.

Keywords Isabelle/HOL - Certification - Quantum computing - No-cloning - Quantum
teleportation - Deutsch’s algorithm - Deutsch—Jozsa algorithm - Quantum prisoner’s
dilemma
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1 Introduction

On January 4th 2017 the computer scientist Laszl6 Babai retracted a claim he made in a
preprint! after the mathematician Andrés Helfgott spotted an error in his work. Back in 2015,
Babai’s result, dealing with the so-called graph isomorphism problem, a central problem in
the field of computer algorithms, was dubbed “the theoretical computer science advance of
the decade”. In the meantime Helfgott had spent months reviewing Babai’s algorithm in

1 https://arxiv.org/abs/1512.03547

Work on this paper was supported by the European Research Council Advanced Grant ALEXANDRIA
(Project 742178).

B Anthony Bordg
apdb3 @cam.ac.uk

Hanna Lachnitt

lachnitt@stanford.edu

Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
Computer Science Department, Stanford University, Stanford, USA

University of Cambridge, Cambridge, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09584-7&domain=pdf
http://orcid.org/0000-0003-1694-9467
https://arxiv.org/abs/1512.03547

692 A.Bordg et al.

preparation for a talk at the Bourbaki seminar to report on Babai’s major result. On January
9th 2017 in a new (last?) unexpected twist, Babai announced a fix for his error and he restored
his claim. It seems that Helfgott is confident that the fix is correct, but Babai’s paper is still
unpublished as of September 23, 2020.

This story exemplifies the difficulty making sure that an algorithm obeys its specification.
This challenge might be even harder with respect to quantum algorithms, since our intuition
weakens when one moves from the classical world to the quantum realm. Fortunately, formal
methods can help with the task of certifying that a quantum algorithm obeys its specification.
Recent work in that direction include the formalisation of Grover’s algorithm in Isabelle
by Liu et al. [1]. However, for their formalisation of Grover’s algorithm the authors use a
tailored quantum Hoare logic. One should also mention the QWIRE project by Rand et al.
[2] for quantum circuits, although the authors use a different approach since their work is an
embedding of the QWIRE quantum circuit language in the proof assistant Coq to formally
prove properties of those circuits. The closest to the present work is the work of Boender
et al. [3] which culminates in the formalisation of the quantum teleportation protocol using
the proof assistant Coq, this algorithm becoming the de facto benchmark in the field. This
benchmark is successfully reached and surpassed in our work.

In this paper we present a large formalisation of results in quantum computation and quan-
tum information theory developed in the proof assistant Isabelle. Our library? includes the
quantum teleportation protocol, the no-cloning theorem, Deutsch’s algorithm, the Deutsch—
Jozsa algorithm and the quantum Prisoner’s Dilemma. To the best of our knowledge a
formalisation of these last four classic results has never been done before. We start with
the basics of quantum computing in Sects. 2, 3 and 4 . We then introduce the aforementioned
results formalised in the library in Sect. 5. Throughout the article we discuss the design
choices made. Finally, we outline an unexpected outcome of our formalisation in Sect. 5.4.

2 Qubits and Quantum States

In the classical model of computation the bit is the fundamental unit of information. There
are two classical states for a bit, namely 0 and 1. In quantum computing the bit is superseded
by the quantum bit, the so-called qubit, which becomes the fundamental unit of information.
In the same way, any qubit has a (quantum) state, but the situation is more involved.

For the sake of simplicity, let us start with a 1-qubit system. In that case, the quantum
state of our qubit is a normalised vector in a 2-dimensional complex vector space. Using the
Dirac notation introduced in quantum mechanics, a column vector in that space is denoted
by |v), where ¥ is a mere label, and the vector |1/) is called a ket. In that context the two
elements of the computational basis, namely

() ()

are denoted by |0) and |1), respectively. Actually, the label for the nth element of the com-
putational basis corresponds to the binary expression of n, hence |0) should not be confused
with the zero vector, namely

0

NE

2 Isabelle Marries Dirac, freely available on GitHub https://github.com/AnthonyBordg/Isabelle_marries
_Dirac.
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locale state =
fixes n:: nat and v:: "complex mat"
assumes is column [simp]l: "dim col v = 1"
and dim row [simp]l: "dim row v = 2”n"
and is_normal [simp]: "|[col v @| = 1"

Fig.1 The locale state in Quantum.thy

definition state _gbit :: "nat = complex vec set" where
"state gbit n = {v| v:: complex vec. dim_vec v = 2°n A |v|| = 1}"

Fig.2 The definition of the set state_gbit in Quantum.thy

definition ket vec :: "complex vec = complex mat" ("| )") where
"|v) = mat (dim vec v) 1 (A(i,j). v $ i)"

Fig.3 Dirac’s ket notation

The zero vector being not normalised, it is not a quantum state.
So, in the computational basis a state of our qubit is a linear combination o |0) + o |1)
such that g and o1 are complex numbers satisfying the normalisation constraint

2 2
leo|” + loeg |~ = 1.

In the quantum world, the coefficients «g and « are called amplitudes, and one sometimes
uses the word superposition instead of the phrase linear combination.

For a 2-qubit system the state of a qubit becomes a normalised vector in a 4-dimensional
complex vector space. If |00), |01), |10}, |11) denote the elements of the computational basis,
then such a state is a superposition

apo 100) + aoq [01) + aqo [10) + g1 [11)

with Jargo|* + letor|* + laio* + i > = L.

In order to model the quantum states of qubits we exploit Isabelle’s system module for
dealing with a hierarchy of parametric theories, the so-called locales [4]. In our library the
locale state provides the context for talking about the quantum states of a n-qubit system
(Fig. 1).

In this locale v is a complex matrix, but the condition is_column ensures it is a column
matrix, i.e. a column vector. We choose to model quantum states by column matrices instead
of vectors, since this design choice will come in handy when applying quantum gates to
quantum states (more on that later). The condition dim_row relates to the dimension of the
ambient vector space and the condition is_normal provides the normalisation constraint. We
also introduce the corresponding set of quantum states of a given dimension, where this time
we can directly use complex vectors (Fig. 2).

Of course, given the context provided by the locale state we can prove that v (or rather
the first column of v) belongs to state_gbit n.

lemma (in state) state_to_state_gbit [simpl:

shows "col v 0 € state_gbit n"
using state def state gbit def by simp

One can also go the other way around, i.e. from vectors to column matrices. We take
this opportunity to introduce in our library Dirac’s ket notation, since Isabelle allows some
syntactic sugar (Fig. 3).

In our library we implicitly work in the computational basis, hence the amplitudes have
to be understood accordingly.
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definition dagger :: "complex mat = complex mat" ("_ ") where
"Mt = mat (dim_col M) (dim_row M) (A(i,j). cnj(M $$ (j,i)))"

definition unitary :: "complex mat = bool" where
"unitary M = (Mf) * M = 1, (dim_col M) A M * (Mf) = 1, (dim_row M)"

Fig.4 The definitions of the Hermitian conjugate of a matrix and the unitary predicate, respectively (see Quan-
tum.thy)

Fig.5 The locale gate in locale gate =
fixes n:: nat and A:: "complex mat"
uantum.th,
Q Y assumes dim row [simp]: "dim row A = 2”n"
and square_mat [simp]: "square mat A"
and unitary [simp]: "unitary A"

lemma unitary is length preserving [simp]:

fixes U:: "complex mat" and v:: "complex vec"
assumes "unitary U" and "dim vec v = dim col U"
shows "[[U * [v)[| = [lv]"

using assms unitary is_sq_length_preserving
by (metis cpx_vec_length_inner prod inner_prod_csqrt of_real hom.injectivity)

Fig.6 The statement and the proof that unitary matrices preserve length

3 Quantum Gates

Like their classical counterparts, quantum gates are used to manipulate information. More
exactly, quantum gates are ways of manipulating the quantum states of qubits. Usually there
are two kinds of representations for quantum gates, namely circuit representations and matrix
representations. Since it is not possible to directly work in Isabelle with circuits, we choose
in that context the more convenient matrix representations. In this process we take advantage
of the nice library for matrices developed by Thiemann and Yamada [5]. Then, a quantum
state |) being in particular a column matrix, the action of a quantum gate U on |/) is simply
given by the matrix multiplication U |v), denoted U * |) in Isabelle.

However, not every matrix is a quantum gate. Quantum gates belong to a specific class of
complex matrices. Actually, given a n-qubit system the quantum gates are exactly the 2" x 2"
matrices that are unitary. In order to explain what unitary means, we need to introduce the
Hermitian conjugate of a complex matrix. Let U be a complex matrix, its Hermitian conjugate
U is the complex conjugate of its transpose, namely (U?)*. In different contexts people use
different notations for the Hermitian conjugate, but the dagger operator is commonly used in
quantum mechanics, and we keep this notation in the library. A complex square matrix U is
said to be unitary if UT U = U UT = I, i.e. if its inverse is given by its Hermitian conjugate
(Fig. 4).

In Isabelle we encapsulate the definition of a quantum gate inside a dedicated locale (Fig.
5).

What is the idea behind unitarity? Unitary matrices are length-preserving. One has
IU [v)]| = |llv)|| for every unitary matrix U and every ket |v) such that their multiplica-
tion is well defined. Given the normalisation constraint in quantum states, it is no wonder
quantum gates should be unitary matrices (Figs. 6 and 7).

Actually, unitary matrices are the only matrices that preserve length. To prove this result
one needs the following key lemma.

M y)' = (yIMT,
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definition bra :: "complex mat = complex mat" ("(_|") where
"(v|] = mat 1 (dim_row v) (A(i,j). cnj(v $$ (j,1i)))"

lemma dagger of mat on ket:
fixes v:: "complex vec" and A :: "complex mat"
assumes "dim_col A = dim_vec v"
shows "(A * |v) )f = (v| * (AF)"
using assms by (metis bra_mat on_vec dagger of ket is bra mat_on_ket)

Fig.7 A key lemma to prove that length-preserving matrices are unitary

lemma length preserving is unitary:
fixes U:: "complex mat"
assumes "square_mat U" and "Vv::complex vec. dim_vec v = dim_col U — |[U * |v)|| = |v|"
shows "unitary U"

Fig.8 Length-preserving matrices are unitary

definition H ::"complex mat" where
"H = 1/sqrt(2) -» (mat 2 2 (A\(i,j). if i#j then 1 else (if i=0 then 1 else -1)))"

Fig.9 The definition of the Hadamard gate in Quantum.thy

Fig. 10 The formal proof in lemma H_is_gate [simp]:
. : "gate 1 H"
Isabell? Fhat H is a gate and is apply(simp add: gate def unitary def)
self-adjoint apply(simp add: H_def)
done
lemma dagger of H [simp]:
WHE = HY

using dagger def by (auto simp: H_def cong mat)

where (V| is Dirac’s bra notation, namely if |) is the column vector

ai

ann

then its bra is the corresponding row vector with conjugate coefficients

(af---az5).

Using this lemma and the many results on the dagger operator and unitary matrices pro-
vided in the library, one can eventually prove that length-preserving matrices are unitary
(Fig. 8).

Now, we introduce our first quantum gate, namely the Hadamard gate H (Fig. 9). Itis a
single-qubit gate, i.e. a 2 x 2 unitary matrix,

)

One can easily check that H is unitary and self-adjoint, i.e. H' = H (Fig. 10).
The action of H on the basis elements is given as follows.

1
0 — (10) + |1
|)Hﬁ(| )+ 11)

1
1 —(]0) — |1
|)Hﬁ(|) 1))

ap+o| ap—o]
As a consequence, H maps a state g [0) + a1 |1) to 7 |0) + 7 [1).
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Fig. 11 The formal proof that definition CNOT ::"complex mat" where
cNOT is a 2-qubit gate "CNOT = mat 4 4
(A(i,j). if i=0 A j=0 then 1 else
(if i=1 A j=1 then 1 else
(if i=2 A j=3 then 1 else
(if i=3 A j=2 then 1 else 0))))"

lemma CNOT_is gate [simp]:
"gate 2 CNOT"
apply(simp add: gate def unitary def)
apply(simp add: CNOT _def)
done

Since H creates a superposition, it is truly a quantum gate. Maybe somewhat puzzling
for the beginner is the fact that H is sometimes described as a “square-root of NOT” gate.
One simply means that it turns |0) (resp. |1)) into % (10) + [1)) (resp. % (10) — [1))), so
“halfway” between |0) and |1).

Before introducing our first example of a 2-qubit gate, we need to say a few words on the
initial states of a 2-qubit system. Actually, such states are given by the tensor product of the
states of each qubit. For instance, if the first qubit is in the initial state [0) = ((1)) and the
second one is in the initial state |1) = ((1)), then the initial state of the combined system is

0 I[1) = () ®(9)

0
— (1
=(3)

0
= |01).

Now, an interesting 2-qubit quantum gate is the controlled-NOT gate (cNOT). Its matrix
representation is given by

1000
0100
NOT=16001]"

0010

and one easily checks that the cNOT gate is unitary and it is again self-adjoint (Fig. 11).

The cNOT gate maps the basis elements |00), |01), [10), |11) to |00), |01), [11), [10),
respectively. In other words, the cNOT gate flips the second qubit (the so-called target qubit)
if the first qubit (the so-called control qubit) is 1 and does nothing otherwise. One summarizes
the action of the cNOT gate with the following handy piece of notation

[xy) = |x x © y),

where @ denotes the addition modulo 2.

The cNOT gate can be used to perform non-classical computations. For instance, starting
with the |00) state and applying a Hadamard gate to the first qubit followed by a cNOT gate,
one creates the state % (]00) +|11)), which is a highly non-classical state, a so-called Bell’s
state (more on that later).

To put everything together, let us assume that we have a 3-qubit system. Moreover, assume
that we want to apply an Hadamard gate to the first qubit and a cNOT gate to the second and
third qubits. The initial state of the combined system is given by |x) ® |y) ® |z) which is
a 8-dimensional column vector with |x) (resp. |y), |z)) denoting the initial state of the first
(resp. second, third) qubit. Since the tensor product is associative, we omit the parentheses

@ Springer
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lemma tensor_gate [simp]:
assumes "gate m G1" and "gate n G2"
shows "gate (m + n) (Gl @ G2)"
proof
show "dim row (Gl @ G2) = 2~(m+n)"
using assms dim_row tensor mat gate.dim row by (simp add: power add)
show "square mat (Gl @ G2)"
using assms gate.square mat by simp
thus "unitary (G1 @ G2)"
using assms unitary def by simp
qed

Fig. 12 The Kronecker product of two quantum gates is a quantum gate (see More_Tensor.thy)

definition bell@® ::"complex mat" ("|fes)") where
"bell00 = 1/sqrt(2) -n |vec 4 (Ai. if i=0 Vv i=3 then 1 else 0))"

definition bellOl ::"complex mat" ("|Be1)") where
"bell0l = 1/sqrt(2) n |vec 4 (Ai. if i=1 v i=2 then 1 else 0))"

definition bell1l0 ::"complex mat" ("|f31)") where
"belll0 = 1/sqrt(2) -m |vec 4 (Mi. if i=0 then 1 else if i=3 then -1 else 0))"

definition bellll ::"complex mat" ("|f311)") where
"bellll = 1/sqrt(2) n |vec 4 (Ai. if i=1 then 1 else if i=2 then -1 else 0))"

Fig. 13 The Bell’s states (see Quantum.thy)

in [x) ® |y) ® |z). Then one can sum up the two gate applications using only one 8 x 8
matrix, namely H ® cN OT, where ® denotes the Kronecker product between two matrices.
With this in mind we needed to formalize the Kronecker product in our library and proved
that the Kronecker product of two gates is a gate as shown in the snippet of code above.
This essentially amounts to proving that the Kronecker product of two unitary matrices is a
unitary matrix (Fig. 12).

At that point we faced a design choice connected to the important issue of legacy code
in formal mathematics. Indeed, there is already a formalisation of the Kronecker product
in [6] but for a legacy notion of matrix which is not the one developed in [5] and used
in our library. So, we could either restart the formalisation of the Kronecker product from
scratch or we could build a bridge between the two formalisations of matrices available and
reuse as much as possible the code in [6]. We chose the latter, using the code available as
a convenient scaffolding (cf. our theory Tensor.thy). This choice may ease in the future the
reuse of formalisations based on legacy matrices.

We come back to the state % (]00) 4 |11)) obtained as the result of the application of

the Hadamard gate followed by the cNOT gate to the state |00). Actually, this state is part
of a set of four states known as the Bell’s states (Fig. 13) or sometimes the EPR states (EPR
stands for Einstein, Podolsky and Rosen):

1
= — (|00) + |11
|Boo) 7 (100) + [11))

1
= — (|01) + |10
|Bor) 7 (101) + 110))

1
= —(|00) — |11
1B10) ﬁﬂ ) — [11)

1
= —(|01) —|10)) .
|B11) ﬁﬂ ) —[10))
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definition prod_state:: "nat = complex Matrix.mat = bool" where
"prod_state m u = if state m u then 3n p::nat.3v w. state n v A state p w A
n<mAp<mA u=v Q@ w else undefined"

definition entangled:: "nat = complex Matrix.mat = bool" where
"entangled n v = - (prod_state n v)"

Fig. 14 The property of being entangled (see Entanglement.thy)

Fig. 15 The proof that | Byg) is lemma bell@0 is entangled2 [simpl:
entangled (see Entanglement.thy) "entangled2 | fod)"

The peculiarity of these states resides in the fact that they cannot be written as the tensor
product of two 1-qubit states. These states are said to be entangled. Entanglement, one of the
key concepts in quantum mechanics, is simply the fact that not every state is a tensor product
of smaller states (Fig. 14).

In the case of the Bell’s state |Bpg) for instance it is very easy to prove that it cannot be
written as («p|0) + o1]1)) ® (a6|0) + ai [1)) using the distributivity of the tensor product
(Fig. 15).

Finally, in the library many other quantum gates are introduced like the Pauli matrices X,
Y and Z, the phase gate S, the T’ gate?.

4 Measurements

Given a n-qubit system, the state of a qubit involves 2" amplitudes linked by a normalisation
constraint. Can we determine those amplitudes? For instance take n = 1, a quantum state
has the form ao|0) + | 1) with |g|? + |1 |> = 1. Can we determine g and o1 ? The answer
is no. A quantum state cannot be directly observed and the amplitudes cannot be directly
determined.

Actually, the outcome of any measurement of our qubit through an apparatus is a classical
bit of information. Moreover, the measurement will disturb the state of the qubit. Indeed, the
outcome will be either 0 with probability |eg|? or 1 with probability |1 |%. The sum of the
probabilities should be 1, hence the normalisation constraint of quantum states. Moreover, if
the outcome happens to be O (resp. 1), then the post-measurement state is |0) (resp. |1)) and
the amplitudes vanish.

The generalisation to a multiple qubits system is straightforward. For a system of two
qubits, assuming the state of our system is

apo|00) + ao1|01) + a10[10) + a1 |11) ,
one has
pr(00) = |agol®
pr(01) = |ao|?
pr(10) = |aiol*
pr(ll) = |an|?,

where pr(00) (resp. pr(01), pr(10), pr(11)) denotes the probability of the outcome being 0 for
both qubits (resp. O for the first one and 1 for the second one, 1 for the first one and O for the
second one, 1 for both qubits), and the post-measurement state is |00) (resp. |01), |10), |11)).

3 See the theory Quantum of the library, especially the subsection entitled A Few Well-Known Quantum Gates.

@ Springer



Certified Quantum Computation in Isabelle 699

definition select index ::"nat = nat = nat = bool" where
"select_index n i j = (i<n-1) A (j<2”n - 1) A (j mod 2”(n-i) > 2”(n-1-i))"

Fig. 16 The select_index predicate (see Measurement.thy)
definition prob® ::"nat = complex mat = nat = real" where
"prob® n v i = Y je{k| k::nat. (k<2”"n) A - select_index n i k}. (cmod(v $$ (j,0)))2"
definition probl ::"nat = complex mat = nat = real" where

“probl n v i = Y je{k| k::nat. select index n i k}. (cmod(v $$ (j,0)))2"

Fig. 17 Computing the probabilities of outcomes (see Measurement.thy)

Now, what does happen if one has a 2-qubit system and one makes a partial measure-
ment, i.e. one measures the first qubit for instance (but not the second one)? What are the
probabilities pr(0) and pr(1) of the outcome being 0 and 1, respectively? One has

pr(0) = pr(00) + pr(01) = |agol* + lor |
pr(1) = pr(10) + pr(11) = |aiol* + 11 ]%.

In other words, we sum over the probabilities of measuring the whole system and getting
0 (resp. 1) for the first qubit. What is the post-measurement state of the system? To get the
answer we first rewrite

apo|00) + ao1|01) + a10[10) + g |11)
as
10) ® (ct00|0) + co111)) + |1) ® (e10]0) + ep1]1)).

If the outcome of measuring only the first qubit happens to be O (resp. 1), then the post-
measurement state of the system is
00|0) + «o1(1) @10/0) + a11]1)

0) @ —/———— (resp. |[1) @ ————).
ool + leor 2 Vol + la 2

In particular, the state of the second qubit after measuring O (resp. 1) for the first qubit is
00/0) + @o1]1) a10|0) + aq1]1)
—_— (resp. —),
Vleol? + leor |2 Viewol? + la 2

namely the normalised vector of «go|0) + ap1|1) (resp. a10]0) + @11]1)).

To translate measurements in Isabelle we first need a predicate select_index such that
select_index n i j outputs true if the jth element of the computational basis has a 1 at the ith
spot of its label and false otherwise (Fig. 16).

Then given the state of a n-qubit system, we can compute the probability* of the outcome
being O (resp. 1) when measuring the ith qubit (Fig. 17).

If the outcome of measuring the ith qubitis O (resp. 1), then post_measO (resp. post_measI)
gives the new state of the system (Fig. 18).

Entanglement has some interesting consequences with respect to measurement. In quan-
tum mechanics measurements of physical properties, such as momentum, position or spin,
on entangled particles are perfectly correlated. In quantum computing this phenomenon can
be illustrated through the Bell states. Given a Bell state, if one makes one measurement,
then one gets either 0 with probability 1/2 or 1 with probability 1/2 whatever the qubit
being measured (either the first or the second one). Moreover, in the case of two successive

4 We do not use any of the probability theory developed in Isabelle, we use ad hoc definitions instead.
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definition post meas® ::"nat = complex mat = nat = complex mat" where
"post meas® n v i =
of_real(1l/sqrt(prob® n v i)) -n |vec (27n) (Aj. if - select_index n i j then v $$ (j,0) else 0))"

definition post measl ::"nat = complex mat = nat = complex mat" where
"post measl n v i =
of_real(1l/sqrt(probl n v i)) -n |vec (2°n) (Aj. if select_index n i j then v $$ (j,0) else 0))"

Fig. 18 The new states of the system after outcome 0 and 1, respectively (see Measurement.thy)

locale quantum_machine =

fixes n:: nat and s:: "complex Matrix.vec" and U:: "complex Matrix.mat"
assumes dim_vec [simpl: "dim vec s = 2°n"
and dim_col [simp]: "dim_col U = 2”n * 2”n"

and square [simp]l: "square mat U" and unitary [simp]: "unitary U"

Fig. 19 A quantum machine in Isabelle (see No_Cloning.thy)

definition inner_prod :: "complex vec = complex vec = complex" ("(_| )") where
"inner prod u v = > i € {0..< dim_vec v}. cnj(u $ i) * (v $ i)"

Fig.20 The inner product of two complex vectors (see Quantum.thy)

measurements of the first and second qubit, the outcomes are correlated. Indeed, in the case
of |Boo) or |B1o) (resp. |Bo1) or |B11)) if one measures the second qubit after a measurement
of the first qubit (or the other way around) then one gets the same outcomes (resp. opposite
outcomes), i.e. the probability of measuring O for the second qubit after a measurement with
outcome 0 for the first qubit is 1 (resp. 0).

5 Theorems and Quantum Algorithms

We present briefly the main theorems and algorithms formalized in the library. For a detailed
presentation the reader is invited to consult a standard reference like [7].

5.1 The No-Cloning Theorem

A notable theorem in quantum computation and quantum information is the so-called no-
cloning theorem articulated by Wootters and Zurek [8] and by Dieks [9]. It is one of the
earliest results in the field. Roughly, the no-cloning theorem states it is impossible to make
an exact copy of an unknown quantum state. Since classical information can be copied
exactly, this no-go theorem’ is one of the main differences between classical and quantum
information. More precisely, given two non-orthogonal quantum states |¢) and |i), there
does not exist a quantum device that, when input with |¢) (resp. |¥)), outputs |¢p) ® |¢p)
(resp. |¥r) ® |r)). First, we use Isabelle’s locale mechanism to define a quantum machine. A
quantum machine consists of a natural number 7, a complex vector s, and a complex matrix
U, plus the assumptions that s has dimension 2" and U is a 22" x 22" unitary matrix (Fig.
19).

Second, we need to introduce the inner product (v|w) of two complex vectors v, w (Fig.
20).

Recall that for every complex vector v one has ||v 12 = (v|v) (Fig. 21), and two complex
vectors v, w being orthogonal means their inner product (v|w) is 0.

Thus, in Isabelle the no-cloning theorem is formalised as follows (Fig. 22).

5 In physics a no-go theorem states that a particular situation is physically impossible.
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lemma cpx_vec_length_inner prod [simp]:

“lviIz = {viv)"
proof -
have "|v|? = (3 i<dim vec v. (cmod (v $ i))?)"

using cpx_vec_length_def complex of real def
by (metis (no_types, lifting) real sqrt power real sqrt unique sum _nonneg zero le power2)
also have "... = (X i<dim vec v. cnj (v $ i) * (v $ i))"
using complex norm square mult.commute by (smt of real sum sum.cong)
finally show ?thesis
using inner prod def by (simp add: lessThan_atLeast0)
ged

Fig.21 The squared length of a complex vector is equal to its inner product with itself (see Quantum.thy)

theorem (in quantum_machine) no_cloning:
assumes [simp]l: "dim_vec v = 2”n" and [simp]l: "dim_vec w = 2”n" and
cloningl: "As. U * ( |v) ® [s)) = |v) @ |v)" and
cloning2: "As. U * ( |w) ® [s)) = |w) @ |w)" and
“(v]v) = 1" and "(w|w) = 1"
shows "v = w V (v|w) = 0"

Fig. 22 The no-cloning theorem (see No_Cloning.thy)

Fig.23 The Cauchy-Schwarz lemma cauchy_schwarz_ineq:

inequality (see No_Cloning.thy) assumes "dim_vec v = dim_vec w"
shows " (cmod((v|w)))2 < Re ({(v|v) * (w|w))"

In other words, if someone has built a quantum machine which is able to copy two quantum
states (i.e. two normalised complex vectors), then these two states are either identical or
orthogonal. The proof relies on the Cauchy-Schwarz inequality:

[(wlw)* < (v]v)(wl|w)

for every complex vectors v and w (Fig. 23).

In the snippet above one needs to take the real part of (v|v)(w|w), since Isabelle is not
able to notice immediately that (v|v)(w|w) is a real number and so the real part is required
for type-checking.

5.2 Quantum Teleportation

The quantum teleportation protocol has already been formalised with the proof assistant Coq
[3]. We follow closely this previous formalisation to give a counterpart in Isabelle.

First, we outline the protocol introduced in the seminal paper of Bennett et al. [10]. The
quantum teleportation allows the transmission of an unknown quantum state between a sender
and areceiver in the absence of a quantum channel using only an entangled pair and a classical
channel. Let us assume that Alice in London wants to send Bob in Paris an unknown quantum
state |¢). By sharing an EPR pair, each taking one qubit of the EPR pair, this feat can be
achieved. Indeed, Alice can take the tensor product of |¢) with her half of the EPR pair to
apply a cNOT gate (using |¢) as the control qubit) and then apply an Hadamard gate on |@).
Finally, she measures her two qubits, obtaining one of the four possible results: 00, 01, 10
or 11. She sends these two classical bits to Bob using the classical channel at her disposal.
Depending on Alice’s two bits, Bob performs one of four predetermined operations on his
half of the EPR pair. More precisely, if Alice’s two bits are 00 (resp. 01, 10, 11) then Bob
applies the identity (resp. Pauli’s X gate, Pauli’s Z gate, Pauli’s X gate followed by Pauli’s
Z gate). It can be shown that as a result Bob recovers |¢)!

In the quantum circuit below the single lines denote qubits, the top two lines being Alice’s
qubits while the last one is Bob’s qubit. The first gate represents a cNOT gate, H denotes an
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Fig. 24 Circuit implementing the
quantum teleportation protocol |p) ——

[Boo)

lemma teleportation:
assumes "state 1 ¢" and "state 3 q" and "List.member (alice_meas ¢) (p, q)"
shows "3Jr. state 2 r A bob g (alice out ¢ q) =1 @ "

Fig. 25 The quantum teleportation (see Quantum_Teleportation.thy)

definition bob:: "complex Matrix.mat => bit x bit = complex Matrix.mat" where
"bob q b =
L (fsite s ndRb) F= ero, zero) then g else
if (fst b, snd b) (zero, one) then (Id 2 @ X) * q else
if (fst b, snd b) = (one, zero) then (Id 2 @ Z) * q else
if (fst b, snd b) = (one, one) then (Id 2 @ Z * X) * g else
undefined"

(z

Fig.26 Bob’s decoding function

Hadamard gate, the meters represent measurements, the double lines are classical channels
carrying the classical bits M1 and M2 obtained after the measurements. This circuit gives a
concise description of the protocol outlined above (Fig. 24).
The formal specification of the protocol can be written in Isabelle as follows (Fig. 25).
The function alice_out ¢ g outputs the two classical bits sent by Alice after the measure-
ments.
definition alice out:: "complex Matrix.mat => complex Matrix.mat => bit x bit" where
"alice_out ¢ q =
if g = mat_of cols list 8 [[¢$$(0,0),¢$$(1,0),0,0,0,0,0,0]] then (zero,zero) else
if g = mat_of _cols_list 8 [[0,0,¢$$(1,0),¢$$(0,0),0,0,0,0]] then (zero,one) else
if g = mat_of cols list 8 [[0,0,0,0,9$$(0,0),-¢$$(1,0),0,0]] then (one,zero) else
if q = mat_of cols list 8 [[0,0,0,0,0,0,-0$$(1,0),»$$(0,0)]1] then (one,one) else
undefined"

The decoding function bob q (alice_out ¢ q) corresponds to the state of a 3-qubit system
whose first and the second qubits are Alice’s qubits after measurement and third qubit is
Bob’s qubit after performing his predetermined operation given the two classical bits sent by
Alice (Fig. 26).

Then the formal specification 25 asserts that the final state of Bob’s qubit is nothing but
|@), namely the state given as argument and representing the unknown state Alice started
with. The quantum state |¢) has been “teleported” from the first to the third position, i.e. from
Alice to Bob. The existential quantification in the statement asserting that whatever Alice’s
two classical bits sent to Bob the state of the combined system always “factors” through |¢).

5.3 The Deutsch-Jozsa Algorithm

Deutsch in [11] was the first to demonstrate that a quantum computer could perform a task
faster than any classical computer. His algorithm was improved later by numerous researchers.
We explain below the purpose of Deutsch’s algorithm.

A function taking values in {0, 1} is balanced if it outputs O for half of its inputs and 1 for
the other half. We start with a function f : {0, 1} — {0, 1}.
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0) = @ =

Uy
m Ve

Fig. 27 Circuit implementing Deutsch’s algorithm

definition (in deutsch) deutsch_algo:: "complex Matrix.mat" where
"deutsch_algo = (H @ Id 1) * (Ur * ((H * |zero)) ® (H * |one))))"

Fig. 28 Deutsch’s algorithm (see Deutsch.thy)

theorem (in deutsch) deutsch algo is correct:
shows "deutsch algo eval = @ — 1is const" and "deutsch algo eval = 1 — 1is balanced"
using deutsch algo eval is sum mod 2 sum mod 2 cases by auto

Fig. 29 Deutsch’s algorithm (see Deutsch.thy)

Classically one needs two evaluations of f to determine if the function f is constant or
balanced. Deutsch’s quantum algorithm determines if f is constant or balanced using only one
evaluation of f. This feat is made possible by quantum parallelism, i.e. the ability to evaluate
a function f(x) for many values of x simultaneously. The quantum circuit implementing
Deutsch’s algorithm is drawn above (Fig. 27).

Two qubits are prepared, one in the state |0) and another one in the state |1) . A Hadamard
gate is then applied to each of them followed by the unitary U s. Afterward the second qubit
remains unchanged while the first one is subject to another application of the Hadamard
transform. Finally, the first qubit is measured.

In Isabelle the set-up is provided by the following locale.
locale deutsch =

fixes f:: fnatF=TNhat®

assumes dom: "f € ({0,1} —e {0,1})"
Then we translate the algorithm in Isabelle, the last gate operation being translatedby H®1d 1
since it leaves the second qubit untouched. Note that if time flows from left to right in the
circuit, the code should be read from right to left, since the first matrix applied in a matrix
multiplication is the one on the right (Fig. 28).

Finally, we check the correctness of the algorithm (Fig. 29).
where deutsch_algo_eval is equal to f(0) & f (1), namely f(0) + f(1) modulo 2.

lemma (in deutsch) deutsch algo eval is sum mod 2:

shows "deutsch algo eval = (f 6 + f 1) mod 2"

using deutsch algo eval def f cases is const sum mod 2 is balanced sum mod 2
probl deutsch algo const probl deutsch algo balanced by auto

Deutsch’s algorithm has a generalisation, the so-called Deutsch—Jozsa algorithm, where
the domain of f has 2" values.

Letus assume that we have a function f : {0, ..., 2" —1} — {0, 1} whichis either constant
or balanced. In the following circuit for the Deutsch—Jozsa algorithm the wire annotated with
/" represents a set of n qubits (Fig. 30). For n = 1 one recovers the particular case of Deutsch’s
algorithm.

The set-up in Isabelle is given by two locales where Bob promises Alice that he will use
a function which is either constant or balanced.
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|0) //u | H®n | " - [ H@n ] [Efiiﬂ____
Uy
1) H Yy y @ f(x)

Fig.30 Circuit implementing the Deutsch—Jozsa algorithm

definition (in jozsa) jozsa_algo:: "complex Matrix.mat" where
"jozsa_algo = ((H ®2ns) @ Id 1) * (Us * (((H ®2ns) * ( |zero) ®sns)) @ (H * |one))))"

definition (in jozsa) jozsa_algo_eval:: "real" where
"jozsa_algo_eval = prob0_fst_qubits n jozsa_algo"

Fig.31 The Deutsch—Jozsa algorithm (see Deutsch_Jozsa.thy)

theorem (in jozsa) jozsa algo_is_correct:
shows "jozsa_algo_eval = 1 «— is_const"
and "jozsa algo_eval = 0 «— is_balanced"
using prob0® jozsa algo of const_1 prob@ jozsa algo of const 0 jozsa algo eval def
prob0®_jozsa algo_1 is _const is_const_def balanced prob0_jozsa_algo
prob0® jozsa algo of balanced by auto

Fig.32 The Deutsch-Jozsa algorithm (see Deutsch_Jozsa.thy)

locale bob fun =
fixes f:: "nat = nat" and n:: "nat"
assumes dom: "f € ({(i::nat). i < 2”n} —e {0,1})"
assumes dim: "n > 1"
locale jozsa = bob fun +
assumes const_or_balanced: "is const V is_balanced"

Classically in the worst-case scenario Alice needs % + 1 queries to determine if Bob’s
function f is constant or balanced. Indeed, Alice can get % Os before getting a 1. However,
using the Deutsch—Jozsa algorithm Alice can decide if f is constant or balanced using only
one evaluation of f.

The translation in Isabelle is similar to the one of Deutsch’s algorithm except that the
evaluation of the algorithm now requires the measurement of the first n qubits (Fig. 31).

Then one can certify the correctness of the Deutsch—Jozsa algorithm which outputs 1
(resp. 0) if and only if f is constant (resp. balanced) (Fig. 32).

5.4 The Quantum Prisoner’s Dilemma

We will assume that the reader is familiar with the Prisoner’s Dilemma and the basic concepts
of non-cooperative game theory [12]. The quantum version of the Prisoner’s Dilemma was
introduced by Eisert, Wilkens and Lewenstein in their classic article [13].
The strategic space of the quantum game is given by the set of unitary 2 x 2 matrices of
the form
A e'?cos(0/2) sin(6/2)
ve.¢) = ( —sin(6/2) e ¥ cos(9/2)>
with) < 6 < mand 0 < ¢ < m/2. As noted in [14] the strategic space used by Eisert
et al. consisting of these 2-parameter unitary matrices is only a subset of SU(2) and as a
consequence is unlikely to reflect any reasonable physical constraint. However, this subset
already exhibits interesting properties arising in the quantum regime and as a consequence
is worth studying.
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Fig.33 Our two players, Alice locale prisoner =
d Bob d thei fixes ~:: "real"
and Bob, and their parameters assumes "y < pi/2" and "y > @"

defining their strategies . )
locale strategic_space 2p = prisoner +

fixes dJa:: "real"
and @a:: "real"
and ¥g:: "real"
and ps:: "real"
assumes "0 < Ya A Ya < pi"
and "0 < pa A pa < pi/2"
and "0 < 98 A 98 < pi"
and "0 < g8 A @8 < pi/2"
Fig. 34 The final state of the lemma (in strategic_space_2p) equation_one:
game shows "(Jt) * ((Usn @ Us) * (J * |unit_vec 4 0))) = ¥¢"

using psi one psi two psi f by auto

definition (in strategic space 2p) alice payoff :: "real" where
"alice payoff = 3 * (prob00 ¢f) + 1 * (probll ¢s) + 0 * (prob0l f) + 5 * (probl® u¢)"

definition (in strategic space 2p) bob payoff :: "real" where
"bob_payoff = 3 * (prob00 f) + 1 * (probll ) + 5 * (prob0l wf) + @ * (probl® u¢)"

Fig.35 Alice’s and Bob’s expected payoffs

The quantization scheme is parametrized by areal y € [0, 7 /2] which is a measure of the
game’s entanglement. For y = 0 one recovers the classical game while y = /2 corresponds
to a maximally entangled game (Fig. 33).

Then one defines a unitary operator J as J:=exp{i y D ® D/2}, where D := U(m, 0) is
the strategy to defect while C:=U (0, 0) is the strategy to cooperate.
abbreviation (in prisoner) J :: "complex Matrix.mat" where
"J = mat of cols list 4 [[cos(y/2), 0, 0, i*sin(y/2)],

[0, cos(y/2), -i*sin(y/2), O],
[0, -i*sin(y/2), cos(y/2), 6],
[i*sin(y/2), 0, 0, cos(y/2)]1]"

It I}Azzl}(OA, @4) (resp. 03::[}(03, ¢p)) denotes Alice’s (resp. Bob’s) strategy, then

the final state of the game is given by (Fig. 34).

[Ws):=J" (Us ® Up) J |00).
Finally, Alice’s expected payoff is calculated according to the following formula
$4:=3Poo + P11 + 5P,
while Bob’s expected payoff is obtained by
$5:=3Pyo + P11 + 5P,

where ny:=|(xy|1ﬁf)|2 (Fig. 395).

To formalise in Isabelle the main results of [13], we need to introduce formal definitions
for Nash equilibriums and Pareto optimality in the context of our game and its restricted
strategic space (Fig. 36).

In the classical game (y = 0, also called the separable case) it is well known that both
players defecting (i.e. playing the strategy D, namely 94 = ¢p =0and 0y =0p =m)isa
Nash equilibrium.
lemma (in strategic_space 2p) separable case DD_is nash_eq:

assumes "y = 0"

shows "ga = 0 A Ja=pi A g =0 A ¥ =pli — 1is_nash_eq"
using is nash eq def separable case DD alice opt separable case DD bob opt assms by auto
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definition (in strategic_space 2p) is nash eq :: "bool" where
"is_nash_eq =
(VtA pA. strategic_space 2p v tA pA ¥s g8 —

alice payoff > strategic_space 2p.alice_payoff n tA pA Vs ¢s)
A
(VtB pB. strategic_space 2p v ¥a ¢a tB pB —

bob _payoff > strategic_space 2p.bob payoff v ¥a oa tB pB)"

definition (in strategic_space 2p) is_pareto_opt :: "bool" where

"is_pareto_opt = VtA pA tB pB. strategic_space 2p vy tA pA tB pB —

((strategic_space 2p.alice payoff  tA pA tB pB > alice payoff —
strategic_space 2p.bob payoff 4 tA pA tB pB < bob_payoff) A
(strategic_space 2p.bob_payoff o tA pA tB pB > bob payoff —
strategic_space 2p.alice payoff  tA pA tB pB < alice payoff))"

Fig.36 The formal definitions of Nash equilibrium and Pareto optimality, respectively

lemma (in strategic space 2p) max entangled QQ is nash eq:
assumes "y = pi/2"
shows "ga = pi/2 A Ja =0 A pg = pi/2 AN ¥Js = 0 — 1is_nash_eq"
using max_entangled alice opt max_entangled bob opt is nash_eq def assms by blast

lemma (in strategic_space 2p) max_entangled QQ is pareto optimal:
assumes "y = pi/2"
shows "pa = pi/2 A Ya =0 A @8 = pi/2 A U8 = 0 — 1is_pareto_opt"
using coop_is pareto opt max_entangled QQ assms by blast

Fig.37 In the quantum regime a new Nash equilibrium appears which is Pareto optimal

First, the authors prove that in the maximally entangled quantum game (y = /2) both
players defecting is no longer a Nash equilibrium.
lemma (in strategic_space_2p) max_entangled DD_is_not_nash_eq:

assumes "y = pi/2"
shows "pa = 0 A Ja=pi A o =0 A Jg = pi — -is nash eq"

Second, the authors introduce a new quantum strategy when y = /2, coined the quantum
move and denoted Q:=l7 (0, /2), with a high payoff (namely 3) for both players resolving
the prisoner’s dilemma. They prove that both players playing Q is a Nash equilibrium which
is also Pareto optimal (Fig. 37).

Finally, in the last part of their article Eisert et al. study an unfair version of the Prisoner’s
Dilemma where one player is restricted to classical strategies while the second player is not
subject to such a restriction, i.e. Alice can play any strategy, either classical or quantum,
while Bob can only play classical strategies. However, in the next section we point out a flaw
in their treatment of the unfair version of the game. Indeed, we will see it is not true that the
so-called miracle move as defined in [13] always gives quantum Alice a large reward against
classical Bob and outperforms the so-called tit-for-tat strategy in an iterated game.

6 The Unfair Version of the Quantum Prisoner’s Dilemma

Below we show the section in [13] on the quantum-classical version of the Prisoner’s
Dilemma, where Alice may use a quantum strategy while Bob is restricted to a classical
strategy, is flawed.

In particular, the claim that the so-called miracle move, defined as M:=U (/2,7/2),
gives Alice

at least reward r = 3 as pay-off, since $4 (M, U(®6,0)) > 3forany 6 € [0, 7], leaving
Bob with $5(M, U(9,0)) < 5 [13, p.3079]
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is false. Indeed, for a maximally entangled game y = 7, for # = 5 one has
1 N AT ~ooA T
7 < $a(M, U(E’O)) =$p(M, U(E’O)) =1<3.

In the situation where Alice plays the miracle move while Bob is restricted only to classical
strategies, for 0 < y < % we have

$4(M,U(0,0)) = é (21 + cos(y)* (=3 + 14 cos 0) + 3sin(y)> — 16siny sind) (1)
$p(M,U(0,0)) = % (11 + cos(y)2(7 — 6.cos ) — Tsin(y)? + 4siny sin6) . 2)

So, pluging y = 7 in equations (1) and (2) gives

$4(M, U, 0)) —$5(M, U0, 0)) = %(1 —sing)
admitting a minimum of 0 when 6 = 7.

In other words, the dilemma is not removed in favor of the quantum player contrary to the
claim in [15, III.C] which reproduced the error in [13] supported by erroneous computations
(the authors found $4 = 3 + 2sin6 and $p = %(1 — sin @) instead of $4 = 3 — 2sin 6 and
$5 = 5(1 +sin0)).

Indeed, Bob can immunize himself against Alice’s miracle move by playing the down-to-
earth move E

- 27 2 \~11)
the outcome being a draw $4 = $p = 1.
Assuming y = 7, ¢p = 0, we get the following pay-off matrix.

Alice Bob

¢ b E
¢ (3.3) ©.5) 3.9
D 5,0) a,n (3,%)
0 (1. 1) (5.0) G.3)
M G.h 3G.h (1,1

So, if Alice plays M, the dominant strategy of Bob becomes E, thereby doing substan-
tially worse than if they would both cooperate, reproducing the dilemma. Moreover, nothing
supports the claim that Alice

may choose “Always—M ” as her preferred strategy in an iterated game. This certainly
outperforms tit-for-tat [...] [13, p.3079].

In conclusion, the “miracle move” as defined in [13] is of no advantage.
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7 Conclusions and Future Work

Our work demonstrates that an extensive formalisation of quantum algorithms and quantum
information theory in Isabelle/HOL is possible and not a fruitless exercise. Indeed, the Letter
[13] of Eisert et al. is a pioneering and highly cited article published in Physical Review
Letters, a high-profile physics journal. The error uncovered therein is a notable unexpected
outcome of our library. Indeed, this error had gone unnoticed in the field until our work
and we found at least one subsequent published paper that reproduced it. After a private
communication Eisert et al. acknowledged their error and they actually found a fix to re-
establish their conclusions regarding what they call the “miracle move”. An erratum was
published by Physical Review Letters [16].

Possible future applications of our library could include the verification of quantum cryp-
tographic protocols, Isabelle having been successfully used in the past by Lawrence Paulson
for the verification of cryptographic protocols using inductive definitions [17]. A related
work is the formalisation in Isabelle of parts of the Quantum Key Distribution algorithm by
Florian Kammiiller using a framework extending attack trees to probabilistic reasoning on
attacks [18].

Last, there is ongoing work in our library to formalise the quantum Fourier transform and
unlock the potential formalisation of a wide range of more advanced quantum algorithms
relying on it.
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