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ABSTRACT Every seed germinating in soils, wastewater treatment, and stream conflu-
ence exemplify microbial community coalescence—the blending of previously isolated
communities. Here, we present theoretical and experimental knowledge on how sepa-
rated microbial communities mix, with particular focus on managed ecosystems. We
adopt the community coalescence framework, which integrates metacommunity theory
and meta-ecosystem dynamics, and highlight the prevalence of these coalescence
events within microbial systems. Specifically, we (i) describe fundamental types of com-
munity coalescences using naturally occurring and managed examples, (ii) offer ways
forward to leverage community coalescence in managed systems, and (iii) emphasize
the importance of microbial ecological theory to achieving desired coalescence out-
comes. Further, considering the massive dispersal events of microbiomes and their coa-
lescences is pivotal to better predict microbial community dynamics and responses to
disturbances. We conclude our piece by highlighting some challenges and unanswered
question yet to be tackled.
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ecosystems, microbiome engineering

COMMUNITY COALESCENCE: DEFINITION, OCCURRENCES, AND KNOWLEDGE
SYNTHESIS FROM CASE-STUDIES

Community coalescence—dispersal en masse—is a pervasive process in the micro-
bial realm (1–4). For example, leaf and soil microbiomes make contact and inte-

grate during litterfall (5). Blending separated communities often occurs in tandem with
their respective environments, characteristic of stream confluences (2). Community co-
alescence can be ephemeral (e.g., monsoonal erosion) or perpetual (e.g., tidal ebb/
flow), with restricted spatial distribution (e.g., bird fecal deposits) or be widespread
(soil blowing across the landscape). These naturally occurring coalescences may be im-
portant components of ecosystem function but are also key features of managed sys-
tems where the coalescences are intentionally implemented or controlled (1, 6).

Microbial engineering historically focused on isolating and imposing directed artifi-
cial selection, or selective enrichment, on one or a few microorganisms, to optimize
the strain(s) for a particular function or set of functions. This approach largely overlooks
the biotic interactions with the receiving community for the success/failure of these
strains (7–9) (Fig. 1a). Embracing a top-down approach, Swenson et al. introduced the
concept of “ecosystem selection” (10), wherein whole ecosystems, comprising many
species and their interactions, are targeted and tested for optimizing engineered sys-
tems, without the colossal task of examining every species or all possible interactions.
A recent study demonstrates that applying repeated perturbations on microbial communities
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as an artificial selection strategy results in microbial consortia with high functionality and
invasion resistance (11). As such, using wholescale mixing of isolated communities in design-
ing microbial consortia (Fig. 1b) should enable more predictive outcomes for microbiome
engineering (12), agriculture (13), and wastewater systems (6) (Fig. 1c). Here, we expand on
this concept by exemplifying the utility of community coalescence pertinent to managed
systems and offer insight into how aspects of community ecology should inform the
engineering of microbial communities.

We start by introducing one of the most important managed systems—a municipal
effluent and wastewater treatment plant (WWTP), where coalescing of communities
occurs consistently and smoothly through incidental and intentional merging (Fig. 2a).
Entry into the WWTP unidirectionally coalesces eutrophic sewage into a distinct system
with acute abiotic disturbances and optimized microbial consortia to reduce the nutri-
ent, microbial, and toxin loads of the effluent (14–16). In other environmental contexts,
similar convergence of drastically different microbial communities also occurs with the
bidirectional movement of marine waters into freshwater wetlands along every coastal
margin, or where leaky mine tailings unidirectionally flow into stream networks. The
merged WWTP effluent continues through a series of engineered abiotic disturbances
(Fig. 2a) (17), where supplemental microbial consortia are added to optimize nitrifica-
tion and denitrification in order to mitigate the nutrient load (18). The supplemented
microbial consortia in the WWTP are effectively repeated community coalescences,
recycled to amend municipal effluent. Like a sourdough bread starter, the consortia are
added to the system to acquire a desired function, then subset and retained to repeat
the process. As demonstrated in silico by Chang et al. (11), imposing repeated community
coalescence perturbations on microbial communities can be an effective strategy of artifi-
cial community selection for developing high-performing microbial consortia.

Ideally, the reintroduction of the now cleaned WWTP water into the natural envi-
ronment comprises oligotrophic water and a low-diversity microbial community
(Fig. 2a) (18). In other instances, the managed microbiome may instead be optimized
for high diversity and to withstand reassembly into the environment. For example, mi-
crobial consortia added to agricultural systems for enhanced productivity or reduced
pathogen load are intended to persevere in the merged community (19). Reentry of
the clean WWTP effluent into natural systems should, however, not persist. Natural
coalescences, such as saltwater intrusion, show that the community with higher initial
diversity does not necessarily prevail (20–22). Consequently, clean effluent with a very
low-diversity microbiome does not unquestionably indicate a successful cleanup and
reentry; a comprehensive understanding of the particular system is crucial for predicting

FIG 1 Conceptual representation of intentional microbiome management. The three panels depict how (a) engineering with
regard to manipulating abiotic conditions only or (b) mixing two previously isolated communities and associated environments
can result in different community outcomes; in contrast (c), combining approaches of intentional microbiome engineering of
specific synthetic communities and considering/addressing how environmental conditions affect resultant community assembly
refines the predictability of microbiome management.
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what communities will prevail or subside once coalesced with other communities. These
pioneer studies indicate that microbial coalescences are often characterized by “surpris-
ing” outcomes where dominant taxa are replaced by initially rare ones or where a com-
munity of high biomass and diversity is readily replaced by a low-biomass-diversity coun-
terpart. Such observations indicate that coalescences that are extremely pervasive in
natural or managed systems present opportunities to understand the predictability
of the system or even intervention points to manage microbial communities for a given
outcome.

LEVERAGING COALESCENCES FOR EFFICIENT MICROBIOME ENGINEERING

The previous examples demonstrate that microbial community coalescence repre-
sents a massive biotic perturbation capable of modifying all the attributes of micro-
biomes, including diversity, composition, function, or resilience to disturbances. As we
improve our capacity to predict the outcomes of community coalescence in various envi-
ronmental contexts, it becomes more evident that this framework offers tremendous pos-
sibilities to engineer microbial communities to energize or produce targeted functions.

Community coalescence can be harnessed to construct a target microbial community,
comprising (i) robust inoculants with a high degree of compositional and functional re-
sistance/resilience to changing conditions (e.g., wastewater treatment plant, agricultural
soils) or intentionally not persistent, as would be the ideal target for the WWTP clean out-
flow, (ii) communities occupying a specific niche or with competitive capacities to prevent
(e.g., pests or pathogens) or stimulate (e.g., beneficial or keystone organisms) the pres-
ence of specific taxa, (iii) the optimization of microbial consortia performing specific mi-
crobial functions (e.g., biogas production from organic waste, ruminal fermentation in ani-
mals), and (iv) the restoration of communities following important biotic or abiotic
disturbances (e.g., soil remediation, antibiotic treatment, disease).

Performing entire microbial community mixing with or without their source envi-
ronment may prove more efficient than using the inoculation of a single microbial
strain (10). Single-strain inoculation has faced many challenges hampering its success

FIG 2 Examples of community coalescences in managed systems in (a) wastewater and (b) seed-soil systems. We use the wastewater system (WWTP) in
panel a to illustrate various forms of managed coalescence: (I) redirected coalescence, where municipal effluent occurs regardless, but allowing raw sewage
to coalesce directly with urban and natural areas is not optimal (41, 42), so WWTPs redirect the coalescence of raw sewage, itself a mixture from urban
infrastructure, for preprocessing; (II) intentional application of microbial consortia, which constitutes an engineered microbiome able to withstand repeated
coalescence exposure while maintaining desired community function; and (III) mitigating the release of microbiomes back into nature. In panel b, we
illustrate coalescence in a host-associated context with the distinct microbiome of a plant seed interacting with the resident soil microbial community to
result in the plant root (i.e., rhizosphere) microbiome, where the importance of rare taxon emergence and pathogen inhibition are optimal criteria for
engineered seed microbiomes.
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in the past decade, mainly due to a lack of persistence in the target environment lead-
ing to a low efficacy and reapplication costs (23, 24). Several examples of successful
microbiome engineering, based on community coalescence, offer some degree of
assurance in the reliability of the approach. In the human health context, the use of
fecal microbiota transplantation to treat several conditions (e.g., Clostridium difficile
infection, ulcerative colitis, antibiotic-treated patients) demonstrates the efficiency of
the approach to restore microbiomes by outcompeting unwanted taxa (25–27). Other
examples with good reliability include soil restoration by mixing complex soil inocula
or amendments, highlighting the efficacy of community blending to increase soil fertil-
ity via boosted microbial activity, increased biodiversity, and suppressed soilborne
pathogens (Fig. 2b) (28–31).

The integration of ecological theory and engineering design principles into micro-
biome engineering remains challenging, given the complex interplay between envi-
ronmental factors and biotic interactions (32). Metacommunity theory has proposed
mechanisms linking the spatial dynamics of local and regional species pools, particu-
larly the performance or fitness of local and immigrant species in the receiving envi-
ronments (33). The community coalescence framework builds on earlier models of im-
migration dynamics by considering a distinct set of assembly processes that involves
fusing whole communities along with the respective environments (1). Although this
framework was developed to provide a mechanistic understanding of community as-
sembly processes in natural systems, recent work highlights its utility to the ecological
principles of optimizing community coalescence in engineering-based management
(4, 34). For example, the harnessing of environmental filtering (environments select
certain species) and priority effects (early colonizer impacts on the success of subse-
quent arrivals) (35) can inform the design and construction of target microbial consor-
tia. Preconditioned microbial assemblages may be able to colonize newly blended
communities successfully and rapidly to outperform species with undesired functions.
This scenario is particularly useful for the maintenance and optimal performance of a
target microbiome highly optimized for removing contaminants in wastewater treat-
ment systems during the short water-retention period. Microbial responses to a coales-
cence event can be modulated by the history and environmental setting of the com-
munity (36). Preexposure of populations to a defined and coalesced environment
enhances their resistance and recovery capacities when they are confronted with sub-
sequent perturbations (37). In an environment or managed system exposed to pertur-
bations (the change in the environment that resulted in coalescence), species with pre-
exposure are likely to spread genes involved in the tolerance of those perturbations
between organisms via horizontal gene transfer and thereby create genetic “memory”
in the newly assembled communities. It is therefore important to consider the history
of a source community when designing robust consortia for use in microbiome engi-
neering. Communities subjected to repeated coalescence events may possess desired
functions through the repeated biotic disturbance but be highly resistant to subse-
quent invasions as a potential “side effect” (11). In fact, Chang et al. (11) found that
repeated perturbations of coalescence render the microbial communities more resil-
ient to subsequent invasions. This emergence of resilience and resistance may or may
not be a desired trait of the engineered consortia. In this regard, understanding how
consortia were previously selected and how they respond to subsequent community
merging events is crucial information for strategies of titrating the optimal resistance
or resilience of the engineered community.

While great advances have been made in understanding microbial community coa-
lescence and applying the theoretical framework in both natural and engineered con-
texts, many hurdles remain, and it is still difficult to predict outcomes. Community coa-
lescence events often promote new abiotic and biotic conditions where interactions
between species with unknown traits occur. Moreover, some degree of stochasticity in
community assembly, including priority effects and drift (38), makes the reproducibility
of community coalescence difficult to predict in engineered systems. Likewise, the
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roles of higher-order interactions (32, 39, 40) and trophic interactions (e.g., viral preda-
tion) are still largely unknown and therefore make predicting microbiome dynamics
challenging. How do we parameterize the collective interactions and account for sto-
chastic events in engineered systems that require an intentional outcome? What are
the unknown physiological traits that mediate successful establishment postcoales-
cence? Despite these challenges, the move from single species to whole community in
microbiome engineering clearly demonstrates that systems can be engineered to be
robust and resilient (10), with plenty of work yet to be done. The advancement of the
community coalescence framework will benefit the design of effective microbiomes by
addressing these open questions and will also provide novel insight and interpreta-
tions of community dynamics and consequences for ecosystem function.
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