
Cdh11 Acts as a Tumor Suppressor in a Murine
Retinoblastoma Model by Facilitating Tumor Cell Death
Mellone N. Marchong1,2¤, Christine Yurkowski1,3, Clement Ma4, Clarellen Spencer1, Sanja Pajovic1,

Brenda L. Gallie1,2,3,4,5*

1 Campbell Family Institute for Cancer Research, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada, 2 Department

of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, 3 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada,

4 Department of Biostatistics, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada, 5 Department of Ophthalmology,

University of Toronto, Toronto, Ontario, Canada

Abstract

CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in
TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of
Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal
volumes in mice crossed with TAg-RB mice (p = 0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at
postnatal day 8 (PND8) (p = 0.01) and had fewer multifocal tumors at PND28 (p = 0.016), compared to mice with normal
Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003). In tumors of
Cdh11-null mice, cell death was decreased 5- to 10-fold (p,0.03 for all markers), while proliferation in vivo remained
unaffected (p = 0.121). Activated caspase-3 was significantly decreased and b-catenin expression increased in Cdh11
knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in
murine retinoblastoma through promotion of cell death.
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Introduction

Retinoblastoma is initiated by loss of both RB1 alleles, denoted

M1 and M2 mutational events [1]. These initiating events are

sufficient for the development of the benign tumor, retinoma, but

not enough to drive to malignancy; additional mutational events

(M3-Mn) are required for development to retinoblastoma [1–3].

Early cytogenetic analysis performed on human retinoblastoma

samples revealed recurrent chromosomal abnormalities [4]. Five

comparative genomic hybridization (CGH) studies and one matrix

CGH study confirmed these results and identified common

genomic regions of gain and loss in retinoblastoma tumors

[5–10]. Based on the location of these genomic changes, potential

oncogenes (KIF14, E2F3 and DEK) and tumor suppressor genes

(p75NTR and CDH11) have been identified and shown to have

involvement in retinoblastoma development and progression

[2,11–13]. Based on the frequency of and correlation between

these mutational events, we proposed a genetic cascade to

malignancy. Subsequent to loss of RB1, the most frequent event

is gain of 1q (involving KIF14) [11], followed by gain of 6p

(involving E2F3 and DEK) [12,14], and then, loss of 16q (involving

CDH11) [13] or gain of MYCN [15].

Understanding the pathway to tumorigenesis is important for

the development of new and better therapeutics that can

ultimately be used to halt retinoblastoma progression at an early

stage. Importantly, delineating the order of mutational events in

retinoblastoma, the prototypical model of cancer, is pertinent to

the understanding of oncogenesis in general.

In previous work, we narrowed the minimal region of genomic

loss on chromosomal arm 16q22.1 to CDH11 [13]. This gene was

lost in 58% of 71 retinoblastoma tumors, and its expression

showed gradual loss in tumors of the murine retinoblastoma model

(TAg-RB) induced by simian virus 40 large T-Antigen (TAg)

expression [16], with some advanced tumors (3 of 8) showing loss

of Cdh11. Thus, we proposed that Cdh11 acts as a tumor

suppressor gene in retinoblastoma.

Gratias et al, 2007, identified a complex pattern of 16q loss of

heterozygosity (LOH) in 18 out of 58 retinoblastoma samples.

One tumor showed LOH at 16q24, the region where CDH13 is

located; however, CDH13 did not show reduced expression in

retinoblastoma tumors, confirming our previous findings [13,17].

Gratias et al, 2007 did not test markers for CDH11 directly, as it

was outside their minimal region of loss. They also correlated 16q

allelic loss with diffuse intraocular seeding, implicating 16q loss as

a late mutational event, in agreement with our proposed

sequence of mutational events described in Bowles et al, 2007

[15]. Laurie et al., 2009, recently reported that loss of Cdh11

correlated with optic nerve invasion using an in vivo model of in
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vitro cell lines derived from an in vivo murine retinoblastoma

model [18].

In our present study, we use the TAg-RB retinoblastoma mouse

model to study the function of Cdh11 in tumorigenesis. This murine

model, unlike any other RB mouse model, displays both molecular

and histological features similar to the human disease [2,11–13,19].

Moreover, it is widely used as a pre-clinical model for testing

therapeutics [14,20–25]. Perhaps the strongest resemblance to

human tumors is evidenced by its initiation in the inner nuclear

layer (INL) of the retina and the presence of Flexner-Wintersteiner

rosettes. The latter is an important feature not recapitulated in any

of the other mouse models of retinoblastoma [26–30].

We now address the roles of Cdh11 in developing retina and

retinoblastoma. We report that Cdh11 is developmentally regulated

during retinogenesis. We show that Cdh11 loss impacts the number

of tumors that develop initially, and that it significantly increases the

average tumor volume at PND84 per tumor initiating cell defined at

PND8 in animals with mutant Cdh11 alleles with respect to animals

with wild type alleles. We also show clear in vivo and in vitro evidence

that more cell death occurs in tumors with wild type alleles than

with mutant Cdh11 alleles, while cell proliferation remains

unchanged regardless of Cdh11 allele status. Taken together, these

data provide substantial evidence to suggest that in retinoblastoma

Cdh11 acts as a tumor suppressor by facilitating cell death.

Results

Spatio-temporal expression and co-localization of
cadherin-11 in the developing retina

To assess the role of Cdh11 in the murine retina, we analyzed

the spatio-temporal expression of cadherin-11 by immunostaining.

Cadherin-11 was highly expressed by cells that typically

differentiate at ED (embryonic day) 18.5 (Figure 1A). At PND3,

expression was observed in areas where cells are migrating, and

this became more visible in individual cells at PND6. At PND15

(data not shown) and adult (PND60), cadherin-11 was expressed in

the inner nuclear layer (INL) by Müller glia cell bodies and

processes at the outer border of the outer nuclear (ONL) and inner

border of the ganglion cell layer (GCL) (Figure 1B).

To identify retinal cell types that express cadherin-11 in the

INL, we performed co-localization studies in adult retina, using

retinal specific cell type markers. Cadherin-11 co-expressed with

markers of horizontal cells and Müller glia cells and their

processes, (Figure 2A and 2B) but not with markers of bipolar or

amacrine cells (Figure 2C and 2D).

Retinal development in the absence of Cdh11
To examine the role of Cdh11 in the developing retina, we

studied littermates of Cdh11 knockout animals. We analyzed

retinas of Cdh11+/+, Cdh11+/-, and Cdh11-/- on a 129/C57Bl-6

mixed background at developmental time points ED18.5, PND3,

PND6, PND15 and PND60. To accurately compare the retina of

varying genotypes, retinal sections were cut every 5 mm through-

out the eyes in the papillary-optic nerve plane.

Hematoxylin and eosin (H&E) analysis of retinal sections at all

developmental time points revealed no gross phenotypic differ-

ences between the Cdh11 genotypes (Figure 3). Staining of retinal

cell type markers was performed to determine if Cdh11 influenced

differentiation. There was no obvious change in cell populations

that expressed Chx-10 (progenitor cells and bipolar cells),

neurofilament (160 kDA for horizontal cells), cellular retinalde-

hyde-binding protein (CRALBP for Müller glia cells) or syntaxin

(HPC-1 for amacrine cells) (Figure S1). The number of S-phase

cells also seemed unaffected with loss of Cdh11, determined by

immunohistochemical analysis of BrdU positive cells (Figure S1).

It is possible that the lack of gross phenotype in Cdh11-/- retinas

is due to functional compensation by cadherins similar to Cdh11.

Cdh2, also known as neuronal cadherin (N-cadherin), shares 53%

amino acid similarity to Cdh11 and is a mesenchymal cadherin like

Cdh11 [31]. However, immunohistochemical analysis showed no

change in expression of Cdh2 in the absence of Cdh11 (Figure S1).

Cadherin-11 expression in TAg-RB murine retinoblastoma
tumors

To evaluate cadherin-11 expression in developing tumors of the

TAg-RB mouse model, we stained for cadherin-11 at PND9,

PND28, PND35, PND84 and PND140. At PND9, early initiating

tumour cells showed complete overlap of TAg and cadherin-11

staining (Figure 4A). At later time points, cadherin-11 expression

was gradually lost from tumors: at PND28, some tumors showed

loss and others showed expression (Figure 4B); at PND35, most

tumors had lost expression of cadherin-11 (Figure 4C); by

PND140, large, late stage tumors showed complete absence of

cadherin-11 expression (Figure 4D).

Tumor development in TAg-RB mice
TAg-RB tumor development has been characterized (unpub-

lished data). At PND8, TAg was first expressed by single cells in

the INL of the retina (Figure 5A). At PND28, clusters of TAg-

positive cells emerged (Figure 6A), consistent with multifocal

tumors, each derived from single TAg expressing cells already

present at PND8. These small tumor foci showed evidence of

Homer Wright rosettes (data not shown). At PND84, tumors

resembled human retinoblastoma (Figure 7A).

Loss of Cdh11 reduces the number of cells expressing
TAg

To examine the tumor suppressor role of Cdh11 in retinoblas-

toma development, we crossed Cdh11-/- mice with TAg-RB mice

and analyzed genotypes Cdh11+/+;TAg+/-, Cdh11+/-;TAg+/-, and

Cdh11-/-;TAg+/-, on a mixed 129/C57Bl-6 background. Gross

phenotypes at varying time points were assessed by H&E staining.

At PND8, retinal histology of mice with normal and Cdh11

allelic losses showed no differences in H&E staining (Figure 5A).

Immunostaining showed that TAg was expressed by large, spindle

shaped single cells in the INL (Figure 5A). Tissue sections taken

Author Summary

Despite over two decades since loss of RB1 was implicated
in initiating retinoblastoma, the unique tissue specificity of
this process remains puzzling. Indeed, functional loss of
both alleles of the RB1 tumor suppressor gene results in
.40,000-fold increase in predisposition to retinal cancer
during childhood, while one constitutional RB1 mutant
allele confers a broader but much lower cancer predispo-
sition later in life. We have proposed a specific signature of
progressive genomic changes that leads to full tumor
development. One of these changes is genomic loss of the
CDH11 gene, suggesting that this gene normally suppress-
es the development of retinoblastoma. We present novel
data indicating that Cdh11 functions as a tumor suppressor
gene in retinoblastoma by facilitating cell death. Our
insight into the sequence of events that contribute to
retinoblastoma development is important for future
therapies and fundamental understanding of cancer.

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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every 300 mm spanning the entire eye were manually counted for

TAg-positive cells and the total number of TAg-positive cells per

eye was extrapolated to the entire retina based on the total number

of sections that were produced per eye (Figure 5B, for detailed

report of this method see [32]). A striking reduction in the number

of TAg-positive cells was observed in retinas of mice with mutant

Cdh11 alleles compared to mice with normal Cdh11 alleles.

Animals of the Cdh11+/+;TAg+/- genotype had a mean of 6,417

TAg-positive cells per entire retina compared to 3,874 and 2,230

in Cdh11+/-;TAg+/- and Cdh11-/-;TAg+/- genotypes respectively,

describing a significant allele dosage effect (p = 0.01, n = 5)

(Figure 5B). As a control and to normalize the total TAg-positive

cells per retina, retinal area was measured for each of the selected

sections, using the Image J software and then extrapolated to the

entire retina. Total retinal areas at PND8 were found to be similar

in all Cdh11 genotypes (p = 0.83, n = 5) (Figure 5B). To quantify

tumor-initiating cells with respect to retinal area, we determined

the ratio of TAg-positive cells per retinal area, which showed a

significant reduction correlated with Cdh11 genomic loss (p = 0.01)

(Figure 5C). This effect continued at later stages in development,

since at PND28, fewer multifocal tumors developed in mice with

Cdh11 loss. These data suggest that in this model, the expression of

TAg may be dependent on Cdh11.

Evaluating tumor volume at PND28 and PND84
At PND28, we observed a significant decrease in the number of

multifocal tumors with decreasing number of functional copies of

Cdh11 as assessed by both H&E and TAg stain (Figure 6A). Tumor

volumes as a percent of retina were estimated to be 5.0%, 3.2%

and 1.5% in Cdh11+/+;TAg+/-, Cdh11+/-;TAg+/- and Cdh11-/-;

TAg+/- genotypes respectively (5 animals analyzed per genotype).

These analyses describe a significant decrease in tumor volume as

Cdh11 alleles are lost (p = 0.016, Figure 6B).

At PND84, tumor morphology of the varying genotypes did not

differ by H&E or TAg staining (Figure 7A). All three genotypes

showed tumors highly reminiscent of human retinoblastoma,

presenting with large tumors originating from the INL, bulging

into adjacent layers, and displaying features of Homer Wright

rosettes (Figure 7A).

In stark contrast to earlier timepoints, total tumor volume at

PND84 was not significantly different in mice of Cdh11+/+;TAg+/-,

Cdh11+/-;TAg+/- and Cdh11-/-;TAg+/- genotypes (p = 0.26; n = 8, 8,

and 9 respectively, Figure 7B). However, unlike in the younger

mice, total retinal size was significantly larger (p = 0.01) in the

Cdh11 null mice compared to Cdh11 normal mice (Figure 7B),

suggesting that loss of Cdh11 may affect the overall size of the adult

retina in TAg mice. Tumor volume as a percentage of the entire

retina was not significantly different between genotypes (p = 0.07,

Figure 7C). The similarity of tumor volume at PND84 suggests

faster tumor growth may be occurring in mice with mutant Cdh11

alleles, considering that fewer multifocal tumors were initially

present at PND28. These data suggest two roles for Cdh11 in

retina: 1) Cdh11 displays tumor suppressor abilities in vivo and 2)

Cdh11 loss affects retinal development in TAg mice, reflected in

increase in overall size of the adult retina. This difference was not

observed up to PND60 in Cdh11-/- mice (Figure 3).

Figure 1. Expression of cadherin-11 in developing murine retina. (A) Cadherin-11 was expressed in the differentiating layer at (embryonic day) ED18.5,
by retinoblasts at (post natal day) PND3 and again in a differentiating layer at PND6. (B) In adult mice, (PND60) cadherin-11 expression was restricted to cell
types of the INL, with high expression by Müller glia processes that span the entire retina. GCL: ganglion cell layer; INL: inner cell layer; ONL outer nuclear layer.
doi:10.1371/journal.pgen.1000923.g001

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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Faster tumor growth is observed from PND8 to PND84 in
mice with mutated Cdh11 alleles

To establish whether tumors developing in Cdh11 mutant

animals grew faster, we studied the rate of tumor growth between

PND8 and PND84. This was done by calculating the ratio of

tumor volume at PND84 (in pixels) to the mean number of TAg-

positive cells (single tumor initiating cells) at PND8. The analysis

revealed significant differences between the genotypes (p = 0.003,

Figure 8A), indicative of faster growing tumors in mice with

mutant Cdh11 alleles. We performed a second comparison to

Figure 2. Co-expression of cadherin-11 and retinal cell types in adult retina. (A, B) Cadherin-11 expression co-localizes with Müller glia cell
bodies (CRALBP, 1006 magnification), Müller glia cell processes (glutamine synthetase, 406 magnification) and horizontal cells (160 kDa, 406
magnification) (C, D) but not with bipolar (Chx-10, 406 and 1006magnification) or amacrine (HPC-1, 406magnification) (white arrows) cells.
doi:10.1371/journal.pgen.1000923.g002

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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account for the difference in retinal size between genotypes at

PND84 by calculating the ratio of percent tumor volume per

retina at PND84 to the mean number of TAg-positive cells in the

entire PND8 retina per genotype. Even after adjusting for retinal

size, the tumor volume per initiating cell in mice with mutant

Cdh11 alleles remained significantly greater (p = 0.01, data not

shown). In addition, we noticed that while the retinal size at PND8

was similar between genotypes (p = 0.83, Figure 5B), the PND84

retinal size was significantly larger (p = 0.01, Figure 7B), suggesting

a role for Cdh11 in the retinal development of TAg-RB mice.

Cdh11 mediates its tumor suppressor function through
apoptosis and not proliferation

Since ‘‘growth’’ reflects a positive balance between cell

proliferation and cell death we evaluated both cell proliferation

and death in tumors at PND84.

At PND84, tumors are well defined and easily quantifiable. We

performed PCNA staining (a marker of cells in early G1 and S

phase) of PND84 tumors in selected sections of Cdh11+/+;TAg+/-

(n = 2) and Cdh11-/-; TAg+/- (n = 2) mice and calculated the percent

PCNA positive cells per tumor volume revealing little difference

between the two genotypes. To improve the power of this analysis,

BrdU incorporation in PND84 tumors was evaluated in an

additional larger cohort of animals. Again, we noticed no

significant difference between the genotypes (p = 0.121, n = 6 for

each genotype, Figure 8B). These data strongly support that Cdh11

is not acting to impede proliferation of tumor cells.

To assess cell death, selected sections of Cdh11+/+;TAg+/- (n = 8)

and Cdh11-/-; TAg+/- (n = 6) were manually counted for activated

caspase-3 positive cells per tumor area and extrapolated to the

entire tumor volume. Non-tumor retina showed no activated

caspase-3 positive cells. We found significantly more cell death in

tumors of mice with normal Cdh11 alleles than in tumors of mice

with mutated Cdh11 alleles (p = 0.04, Figure 8C). Interestingly, b-

catenin mRNA was upregulated in the Cdh11-/- TAg+/- mice

relative to the Cdh11+/+Tag+/- mice (Figure S2C).

Furthermore, we observed a wide distribution of cell death

among Cdh11+/+;TAg+/- mice (mean = 2.90610203, standard

deviation 62.08610203) compared to mice with mutant Cdh11

alleles (mean = 6.94610204, standard deviation 67.25610204,

Figure 8C). To further support the role of Cdh11 in apoptosis, we

assayed by immunohistochemistry, in an additional cohort of

animals, five pro-apoptotic proteins: activated caspases 3, 8, 9,

TRAIL and BAX. Depending on the cell death marker, we

Figure 3. Retinal histology of Cdh11+/+, Cdh11+/-, and Cdh11-/- littermates. Hematoxylin and eosin (H&E) staining of 5 mm sections cut through
the papillary-optic nerve plane. At developmental time points, ED18.5, PND3, PND6, PND15 (data not shown) and PND60 (adult), no gross retinal
phenotypic differences were observed between (A) Cdh11+/+, (B) Cdh11+/-, and (C) Cdh11-/- littermates.
doi:10.1371/journal.pgen.1000923.g003

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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Figure 4. Gradual loss of cadherin-11 expression in TAg-RB tumors. (A) At PND9 TAg-RB mice displayed single TAg-positive cells (green) also
positive for cadherin-11 (red). (B) At PND28 TAg-RB mice displayed multifocal tumors (clusters) which stained positive for TAg (green). Some of these
multifocal tumors lost cadherin-11 expression (left cluster in box), while some retained expression (right cluster in box), suggesting a partial loss of
cadherin-11 expression from PND28 tumors. (C) At PND35, regions of tumors that were positive for TAg were completely negative for cadherin-11
and adjacent normal cells retained cadherin-11 expression (arrow). (D) By PND140, entire tumors showed no cadherin-11 expression.
doi:10.1371/journal.pgen.1000923.g004

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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Figure 5. Cdh11 genomic copy number correlates with number of TAg-positive cells (origin of tumors in TAg-RB mice) at PND8. (A)
Representative sections of Cdh11+/+;TAg+/-, Cdh11+/-;TAg+/-, and Cdh11-/-;TAg+/- genotypes by H&E stain and TAg staining. The single TAg-positive cells
in the INL of the retina are reduced in number with reduced Cdh11 allele dosage. H&E staining reveals no major phenotypic differences between the
three genotypes. (B) Manual counts of TAg-positive cells per retinal area were extrapolated to the entire retina. The total number of TAg-positive cells

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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observed 5 to 10 fold less expression in CDH11 mutant animals

than in animals with normal Cdh11 alleles (p,0.03 for all five cell

death markers, Figure 8C).

We also assessed cell death in vitro in a primary cell line derived

from TAg-RB tumors (T+539). This tumor cell line, when treated

with cadherin-11 siRNA, showed significant cadherin-11 knock-

down (Figure 8D). Following knockdown, caspase-3 expression

was decreased (Figure 8D), providing further evidence that Cdh11

acts to promote apoptosis. In addition, we studied RNA from the

T+539 cell line treated either with Cdh11 siRNA or scrambled

siRNA by RT-PCR for proliferation markers PCNA and Ki67,

and found no difference in expression (Figure S3). These data

strongly support the hypothesis that Cdh11 has a pro-apoptotic role

in TAg-RB tumors, but does not suggest a role in cell division or

proliferation.

Discussion

Cdh11 displays tumor suppressor-like properties in vivo
We have previously described copy number and expression loss

of CDH11 in human retinoblastomas, suggesting a tumor

suppressor role [13]. We now confirm the tumor suppressor role

Cdh11 in retinoblastoma through functional experiments. The

97kD Cdh11 isoform that is retained in the Cdh11 knockout model

of origin of retinoblastoma was 2-fold and 3-fold less (p = 0.01) (light grey bars) when one or two alleles of Cdh11 were respectively lost, as compared
to mice with normal Cdh11. The retinal size (dark grey bars) was similar (p = 0.83) between the Cdh11 genotypes. (C) The ratio of TAg-positive cells to
total retinal area was significantly reduced with reduced Cdh11 gene dose (p = 0.01). The Kruskal-Wallis Test was used to assess difference between
groups and error bars represent standard deviations.
doi:10.1371/journal.pgen.1000923.g005

Figure 6. At PND28, fewer multifocal tumors developed when Cdh11 alleles were lost. (A) A distinct Cdh11 loss phenotype was observed
from representative sections of TAg and H&E stains. Fewer TAg-positive multifocal tumors were present in mice with mutant Cdh11 alleles; H&E
showed more advanced tumors in Cdh11+/+ mice than in Cdh11+/- or Cdh11-/- mice. (B) The number of multifocal tumors was significantly less
(p = 0.016) in mice with Cdh11 allelic loss, correlating with fewer tumor initiating cells at PND8. Total tumor volume was calculated using image J
software measuring tumor area (TAg stained region) as a percentage of retinal area (manually traced) for every 60th section (approximately 300 mm
apart) through the eye and extrapolated to the entire retina.
doi:10.1371/journal.pgen.1000923.g006

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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Figure 7. At PND84, total tumor volume was similar in all three genotypes. (A) Representative H&E and TAg stained sections showed large
tumors originating from the INL of the retina. Tumors were composed of disorganized cells, rosette formations and disrupted laminated layers. No
gross phenotypic differences were observed in different genotypes on H&E stained sections. (B) Retinal area and tumor area of every 60th section

Cdh11 Is a Tumor Suppressor in Retinoblastoma
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we studied, has been documented to lack adhesion properties and

thus likely represents a non-functional protein [33,34]. By crossing

this CDH11 functional knockout with the TAg-RB mice, we report

an unexpected result: Cdh11 allelic loss results in fewer tumor

initiating TAg positive cells at PND8 (Figure 5), and consequently

fewer multifocal tumors at PND28 (Figure 6) compared to animals

with normal Cdh11 alleles. This suggests that TAg transgene

expression may be affected by the loss of Cdh11 (Figure 5).

Loss of Cdh11 in Cdh11-/- mice did not affect retinal size up to

PND60 (Figure 3). At PND8 retinal volumes were similar in

Cdh11+/+;TAg+/-, Cdh11+/+;TAg+/-, and Cdh11+/+;TAg+/- mice, but

at PND84, the total retinal size was significantly larger (p = 0.01) in

the Cdh11-/-;TAg+/- mice compared to Cdh11+/+;TAg+/- mice

(Figure 7B), suggesting that loss of Cdh11, when combined with the

expression of TAg, affects the overall size of the adult retina in

TAg-RB mice. Our previous studies of the Cdh11-/- retina,

quantifying the individual retinal cell types visualized by

immunofluorescence with cell-specific antibodies, showed no

difference between the Cdh11-/- and wild type retina [35].

At PND84, we show that absolute tumor volume was not

statistically different between all three genotypes (total tumor

volume alone or as a percentage of the retinal volume). However,

since these tumors arise from fewer tumor-initiating cells, we

conclude that tumor growth per initiating cell was greater in mice

with mutant Cdh11 alleles (Figure 7B and 7C, Figure 8A). We

conclude that Cdh11 functions as a tumor suppressor. Since tumor

‘‘growth’’ results from an imbalance between cell death and

proliferation, we examined cell proliferation (Figure 8B) and cell

death (Figure 8C) in TAg-RB tumors of mice with normal Cdh11

alleles versus mutated Cdh11 alleles. Our data indicate that when

Cdh11 is lost, cell death is deficient while proliferation remains

unchanged, suggesting that the tumor suppressor function of

Cdh11 is mediated through promotion of apoptosis rather than

inhibition of cell proliferation. This is further supported by our in

vitro data showing significant decrease in caspase-3 and increase in

b-catenin expression in Cdh11 knockdown experiments using

siRNA (Figure 8D and Figure S2A, S2B), while proliferation

markers PCNA and Ki67 remain unchanged (Figure S3).

The spread of tumor volumes across the various time points is

narrowed in mice that have lost both Cdh11 alleles. We speculate

that tumors in mice with normal Cdh11 alleles could be losing

functional Cdh11 at varying timepoints during tumor development,

and the wide spread in tumor volume reflects heterogeneity for

Cdh11. In contrast, mice with both Cdh11 alleles mutated have

more consistent measures of cell death (Figure 8C). This agrees

with our previous report where some tumors display loss of Cdh11,

while others retain it at later timepoints [13]. In summary, we

describe a mechanism by which Cdh11 may be functioning as a

tumor suppressor gene in retinoblastoma.

Additional experiments need to be performed to assess the

mechanism by which Cdh11 facilitates cell death in these tumors.

Our preliminary experiments have shown increased protein and

mRNA levels of b-catenin when Cdh11 is knocked down, and

increased b-catenin mRNA in PND84 Cdh11-/-TAg+/- mice

relative to Cdh11+/+TAg+/- mice (Figure S2A, S2B, S2C). Upon

cell-cell contact, cadherin molecules form the adherens junction.

The cadherin binds directly to b-catenin, which recruits a-catenin

to link the complex to the cytoskeleton. This is necessary to

maintain cell-cell adhesion and cellular architecture [36]. These

junctions are dynamic and the structure and signaling provided by

the complex ultimately determines the cellular phenotype and

behavior [37]. b-catenin is additionally a major regulator of the

Wnt signaling pathway. The Wnt-signaling pathway is implicated

in other cancers [38,39] and suppresses apoptosis through both b-

catenin dependent and independent pathways [40]. Many studies

have shown that cadherin protein levels impact canonical Wnt-

signaling and b-catenin levels. Gain and loss of function studies

support cadherins directly sequestering b-catenin from the

nucleus, acting as a sink for the cytosolic pool [41–43].

Additionally, downregulation of E-cadherin expression has been

paralleled with an upregulation of b-catenin in hepatocellular

carcinoma tumors [44]. Next investigations would test the

possibility that down regulation of cadherin-11 affects the levels

of canonical Wnt signaling in these TAg-RB cell lines, that may

lead to the decrease in cell death and faster growing tumors.

Cdh11 supports the tumor initiating cell in the TAg-RB
mouse model

Previous studies of cell adhesion molecules in the neural retina

have described that expression of cadherin subtypes is restricted to

different retinal cell populations. Based on these studies the

authors suggested that cadherins play a role in maintaining

selective neuronal associations [45,46]. In order to understand the

role of Cdh11 in retinoblastoma progression, we examined its

presence during healthy retinal development.

We showed that Cdh11 is developmentally regulated. Expression

was restricted to differentiating/migrating retinal cells at E18.5

through to PND6, and to the INL at PND60 (adult) (Figure 1).

Cadherin-11 co-expresses with markers of Müller glia cell bodies

and processes that span the entire retina (Figure 1B and Figure 2B).

Prominent expression of cadherin-11 by retinoblasts at PND3 and

PND6 in the developing retina and co-expression with Müller glia

and horizontal cell types, suggests roles for cadherin-11 in

morphogenesis, such as cell migration, sorting or positioning of

these cells (Figure 1A) during retinal development.

The tumor -initiating cell in the TAg-RB mouse model has been

identified to belong to a subset of the Müller glia (unpublished

data). Our results indicate that when Cdh11 alleles are mutated in

TAg-RB mice, fewer cells express TAg and develop into

retinoblastoma. It is possible that Cdh11 loss affects the expression

of the TAg transgene in this murine model, or that it affects

development of the subpopulation of Müller glia that gives rise to

the TAg-RB tumours. We were unable to discern the latter, since

Cdh11-/- mice do not show a significant change in retinal cell type

distribution in the retina, and so few of this retinal subtype express

TAg in this model (unpublished data). From these data, we suggest

that Cdh11 has an important role in the expression of TAg from

the transgene in this murine model.

Summary and significance
We describe the use of the retinoblastoma TAg-RB mouse

model to study specific gene function in tumor development. This

was achieved by crossing TAg-RB mice to Cdh11-/- mice. We

showed that Cdh11 is a suppressor of retinoblastoma progression

were tabulated and extrapolated to the entire retina. Total tumor volume per genotype was not statistically different (p = 0.26), but total retinal areas
were significantly larger when Cdh11 was lost (p = 0.01). (C) To accommodate for varying retinal size per genotype, total tumor volume was
represented as a percentage total retinal area in all mice, showing no statistical difference between genotypes (p = 0.07), although a strong trend is
observed, perhaps due to overall larger retinas. This suggested faster growing tumors in mice with Cdh11 loss, since there were fewer tumor-
originating cells and consequently fewer multifocal tumors initially (PND28). Tumor volume was calculated as described in Figure 5.
doi:10.1371/journal.pgen.1000923.g007
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Figure 8. Allelic loss of Cdh11 led to faster growing tumors due to decreased cell death. (A) The number of single tumor initiating cells at
PND8 was estimated by averaging the total number of TAg-positive cells in 5 mice per genotype. The ratio of tumor volume in pixels at PND84 to the
average number of TAg-positive cells per eye at PND8 for the three genotypes was used to estimate tumor growth rate. A significant difference in
growth rate between groups was observed (p = 0.003), with a 3-fold increase between Cdh11-/- and wild type mice. After controlling for larger retinas
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by using a unique and highly sensitive method to identify and

quantify tumor volume. Although fewer multifocal tumors initiate

in mice with mutant Cdh11 alleles, suggesting that Cdh11 loss

modulates the number of TAg-espressing cells in this murine

model, the resulting tumors grow faster, describing a tumor

suppressor role for Cdh11 in retinoblastoma progression. Signifi-

cantly reduced numbers of cells stained for pro-apoptotic proteins

in tumors of mice with absent Cdh11 alleles, indicating that

promotion of cell death is an important part of the tumor

suppressor action of Cdh11.

Materials and Methods

Animals
All animals were maintained and sacrificed using protocols

approved by the Animal Care Committee of the Ontario Cancer

Institute (OCI) which adhere to the EC Directive 86/609/EEC

for animal experiments.

Cdh11-/- mice, background strain 129, were provided by Dr. M.

Takeichi [33]. To study the role of Cdh11 in retinal development,

one-generation crosses were made between Cdh11-/- 129 and

Cdh11+/+ C57-Bl-6 to get a mixed background of 129/C57Bl-6.

Littermates, Cdh11+/+, Cdh11+/- and Cdh11-/- on this 129/C57Bl-

6, mixed background were sacrificed at developmental time points:

embryonic day (ED)18.5, post-natal day (PND)3, PND6, PND15

and PND60. To analyze proliferating cells, pregnant mothers at

ED18.5, pups at PND3 and PND6, and adults at PND84 were

injected with bromodeoxyuridine (BrdU) reagent (5-bromo-29-

deoxyuridine and 5-fluoro-29-deoxyuridine, 10:1, used at 1 ml

reagent per 100 g body weight, Cat# 00-0103, Lot# 60203722,

Zymed Laboratories) for 2 hours and then sacrificed.

TAg-RB (TAg+/-), background strain C57/Bl-6, mice were

provided as a gift from Joan O’Brien [16]. One generation crosses

were made between Cdh11-/- and TAg+/- mice to get double

heterozygotes, Cdh11+/-; TAg+/-, on a 129/C56/Bl-6 mixed

background. Mice were further crossed with Cdh11-/-, Cdh11+/-

or Cdh11+/+ of a 129/C56Bl-6 mixed background to get the three

genotypes analyzed for this study: Cdh11+/+;TAg+/-,

Cdh11+/-;TAg+/- and Cdh11-/-;TAg+/-. These animals were sacri-

ficed at PND8, PND28 and PND84, the latest time point we could

study in compliance with our Animal Protocol at the Ontario

Cancer Institute.

Genotyping of Cdh11-/- mice and littermates were carried out

using PCR conditions: 94uC, 2 min, 1 cycle, [94uC, 30 sec, 50uC,

30 sec, 72uC 30 sec] 30 cycles, 72uC 10 min, and 4uC cool block.

Primers used were: forward, 59 to 39 (21 bp): ttc agt cgg cag aag

cag gac and backward, 59 to 39 (19 bp): gtg tat tgg ttg cac cat g,

and neo, 59 to 39 (23 bp): tct atc gcc ttc ttg acg agt tc. Sizes of

expected PCR products were: Cdh11+/+: 240 bp, Cdh11+/-: 480 bp

and 240 bp, and Cdh11-/-: 480 bp. Genotyping of TAg+/- mice and

their littermates were carried out using similar PCR conditions:

94uC, 2 min, 1cycle, [94uC, 1 min 58uC, 1 min, 72uC 1 min] 30

cycles, 72uC 10 min, 1 cycle and 4uC cool block. Primers used

were: forward 59 to 39: gac ttt gga ggc ttc tgg gat gca act gag and

backward 59 to 39: ggc att cca cca ctg ctc cca ttc atc agt. Size of

expected PCR product was 420 bp.

Histology and slide selection
Heads and/or eyes were fixed in freshly prepared 4% PFA/PBS

for 48 hrs and then stored in 70% Ethanol. Heads were decalcified

(8% formic acid following 4% PFA) for approximately 1 week.

Both heads and/or eyes were paraffin embedded and 5 mm

sectioned.

For Cdh11+/+, Cdh11+/- and Cdh11-/- littermates: Serial sections

were made specifically through the papillary-optic nerve plane

(approx. 20 sections in total) for consistent comparison between

genotypes.

For Cdh11+/+;TAg+/-, Cdh11+/-;TAg+/- and Cdh11-/-;TAg+/-

mice: Serial sections were made through the entire eye

(approximately 270–420 sections per eye with 5–7 sections made

per slide). To estimate tumor volume per eye, we selected one slide

every 60th section (approx. one slide every 300 mm) for analysis. A

total of about 5–8 slides were analyzed per eye. Only one eye was

analyzed per mouse.

Immunohistochemistry
Slides selected for analysis were studied using the immunohis-

tochemical protocol described previously[12]. Briefly, slides were

incubated with primary, then biotinylated secondary antibodies,

either anti-mouse, anti-rabbit, anti-goat, or anti-sheep, used at a

dilution of 1:200 with 10% DakoCytomation Antibody Diluent in

1% BSA/TBST for 1 hr at room temperature. To visualize TAg,

BrdU and Brn3b (ganglion) stained cells, we employed an

Immunopure DAB Substrate Kit (Cat# 34065, Pierce). After

incubation with primary and biotinylated secondary antibodies,

slides were incubated for 1 hr at room temperature in an ABC

prepared solution (Vectastain ABC Elite, Vector Laboratories).

Stained cells could be visualized after a maximum of half an hour

incubation in DAB substrate solution (Pierce) prepared fresh with

10% DAB/Metal Concentrate, 106 (Product# 1856090) made in

Stable Peroxide Substrate Buffer, 16 (Product# 1855910). All

other proteins were visualized by immunofluorescence; after

incubation with primary and secondary antibodies, slides were

washed in 16TBS and then incubated with Streptavidin-Alexa488

or Streptavidin-Alexa594, used at 1:200, prepared in 16TBS for

15 min at room temperature. Slides were washed briefly in

16TBS and incubated in 49, 6-diamino-2-phenylindole (DAPI)

used at 1:50, followed by wash in 16TBS and mouniting with

DakoCytomation Fluorescent Mounting Medium (S3023). Select-

ed slides were Haematoxylin and eosin (H&E) stained for light

microscopy analysis. Table 1 provides a complete list of all

antibodies used. Antibodies to recognize specific cell types were:

Hes-5 [47], CRALBP [48] and glutamine synthetase [49] (early

Müller glia, Müller glia cell bodies and processes), syntaxin [50]

(HPC-1 for amacrine cells), neurofilament 160kDa [51] (horizon-

tal cells), Brn3b [52] (ganglion cells) and Chx-10[53] (bipolar cells).

(Figure 6B), growth rate remained significantly larger in Cdh11-/- mice (data not shown). (B) Cdh11+/+;TAg+/- and Cdh11-/-;TAg+/- PND84 eyes were
stained for BrdU incorporation (n = 6 per group). Proliferation was analyzed by averaging slides for the % BrdU positive cells (in pixels) per tumor area
(determined by TAg staining in pixels). No significant difference was observed (p = 0.121). (C) Every 60th section of Cdh11+/+;TAg+/- (n = 8) and
Cdh11-/-;TAg+/- (n = 6) PND84 eyes, was counted for tumor cells positive for activated caspase-3, extrapolated to the entire retina and represented as a
ratio to tumor volume per eye. The number of dying cells in tumors of mice with normal Cdh11 alleles are significantly more abundant (p = 0.04) than
in tumors of mice with mutant Cdh11 alleles. (D) To further support this data, we analyzed for the expression of five pro-apoptotic proteins (activated
caspase-3, 8, 9, Trail and Bax) in an additional cohort of Cdh11+/+;TAg+/- and Cdh11-/-;TAg+/- PND84 animals. Staining and analysis were performed as
performed previously. Results revealed between five to ten times less apoptotic activity in TAg-RB tumors null for Cdh11 (p = 0.014, 0.029, 0.014,
0.008, and 0.029, respectively; n = 4 per group). (E) Cadherin-11 was knocked down using stealth siRNA in a cadherin-11 expressing cell line derived
from TAg-RB tumors, T +539. Knockdown of Cdh11 clearly decreased caspase-3 expression compared to control.
doi:10.1371/journal.pgen.1000923.g008
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Image analysis and quantification of tumor volume in
mouse retina

Of the techniques described to measure tumor volume in

murine retinoblastoma, none are useful to quantify small,

developing tumors at very early time points [20–22,24,25].

Therefore, we developed a novel technique to quantitate tumor

volume in the eyes of TAg-RB mice by analyzing every 60th

section through the entire eye [32]. Tumor development was

tracked by staining for TAg. Diamino benzidine (DAB) typically

stains TAg cells brown with very little background, however in

some cases, background staining is visible in the GCL and retinal

pigment epithelium (Figure 4, Figure 5, and Figure 6). Total tumor

area per eye was quantified as a percentage of total retinal area

(measured in pixels) using Image J software. The selected sections

were scanned at the Advanced Optical Microscopy Facility at the

Ontario Cancer Institute using an Aperio ScanScope CS. Images

were retrieved using ImageScope software and analyzed as a TIFF

image using public domain image software: ImageJ: Image

Processing and Analysis in Java available from http://rsb.info.

nih.gov/ij/. Retinas were manually traced for each eye and area

was measured in pixels. For time point, PND8, TAg positive cells

in the retina were manually counted under a 406 inverted

microscope (Leica DMLB) and for PND28 and PDN84, the traced

retinas were converted into an 8-bit format, and using a manually

selected threshold tool, the tumor area (DAB stained) within the

selected retina was highlighted and measured by the program in

pixels. Total retina and tumor areas of all 5–8 analyzed sections

per retina in one eye per animal were estimated calculating for

percent tumor area [(tumor area in pixels/retina area in pixels)

* 100]. For PND8, number of tumor cells per retinal area was used

instead. BrdU positive cells were measured in pixels and quantified

as an average/tumor area at PND84. Positively stained apoptotic

cells were also analyzed at PND84 and manually counted per

section obtaining an average number per section.

Statistical analysis
Five animals per genotype were analyzed at PND8 and PND28.

Seven animals of Cdh11+/+;TAg+/- genotype, eight animals of

Cdh11+/-;TAg+/- genotype, and ten animals of Cdh11-/-;TAg+/-

genotype, were analyzed at PND84. The Kruskal-Wallis (K-W)

Table 1. Antibody list.

Antibody Name Company Dilution for IHC

SV40 TAg (Pab 101) Santa Cruz Biotechnology 1:200

mouse monoclonal Cat# SC-147, Lot# A2506

CDH11 - clone CDH113H Gift from Dr. St. John 1:2500

mouse monoclonal at ICOS Corp.

CDH2 (N-cadherin) BD Biosciences Pharmigen 1:2000

mouse monoclonal Cat# 610920, Lot# 06247

BrdU (purified anti-bromodeoxyuridine) BD Biosciences Pharmigen 1:200

mouse monoclonal Cat# 555627, Lot#52817

Progenitors and Bipolars: Chx-10 sheep polycolonal Gift from Rod Bremner, UHN 1:1000

Early Müller Glia: Hes-5 ABCAM 1:50

rabbit polyclonal Cat# AB25374

Müller Glia: CRALBP; rabbit polyclonal Gift from John Saari 1:6000

Müller Glia: Vimentin Santa Cruz Biotechnology 1:100

goat polyclonal Cat#SC-7557

Ganglion: Brn3b Santa Cruz Biotechnology 1:100

goat polyclonal Cat# SC-6026

Amacrine: Syntaxin clone, HPC-1 Sigma 1:200

mouse monoclonal Cat# S0664

Horizontal: Neurofilament 160 kDa Sigma 1:40

mouse monoclonal Cat# N5264

TRAIL Abcam 1:100

goat polyclonal Cat# SC-6079

BAX Santa Cruz Biotechnology 1:100

goat polyclonal Cat# SC-526

Activated Caspase-8 Abnova 1:1000

rabbit polyclonal Cat# PAB0246

Cleaved Caspase-9 Cell Signaling Technology 1:100

rabbit polyclonal Cat# 9509

Activated Caspase-3 R&D Systems 1:500

rabbit polyclonal Cat# AF835, Lot# CFZ326011

This table describes all antibodies used in this study.
doi:10.1371/journal.pgen.1000923.t001
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Test was the main statistical method used to investigate differences

in tumor and retinal size between the genotypes at various ages.

Statistical analyses were performed using SAS version 9.1 (SAS

Institute, Cary, NC). All tests are two-sided and p-values equal or

less than 0.05 were considered statistically significant.

Cell lines and siRNA knockdown experiments
Cdh11 was knocked down in the TAg-RB derived cell line

T+539 using three different stealth siRNAs: MSS202865 (siRNA

#1), MSS202866 (siRNA #2) and MSS202867 (siRNA #3)

(Invitrogen Cat# 1320003), using GL-2 vector siRNA (Qiagen) as

a control. T+539 cells were transfected in triplicate with the

siRNA at time of plating, using media without the addition of

penicillin and streptomycin. The procedure included transfection

of 125 pmol of each siRNA oligo in Lipofectamine 2000

(Invitrogen), in a total of 2 ml plating medium. Cells were

incubated for 24 hrs, 48 hrs, 72 hrs, 5 days, 7 days or 10 days.

Knockdown was confirmed by immunoblot or RT-PCR for Cdh11

(see below). Ideal inhibition was achieved 7 and 10 days post-

transfection.

RNA isolation and RT–PCR
RNA was isolated from the T+539 cell lines using the Trizol

method. RNA was isolated from paraffin embedded tissue using

modified GTC (guanidine isothyocionate)/ proteinase K protocol.

In short tissue was deparafinized through series of incubation in

xylene and 100% ethanol followed by incubation in 1M GTC/

6 mg/ml proteinase K solution for 6 hrs. GTC/proteinase K was

removed by phenol extraction and RNA was precipitated by equal

volume of isopropanol.

Primers used for RT-PCR analysis were as follows: mCdh11:

forward: 59 atg agc ctc cca tgt tct tg 39, and reverse: 59ggg tga tcg

ctc tca cag at 39; mKi67: forward: 59 agc ctg tga ggc tga gac at 39,

and reverse: 59 ttt ctg cca gtg tgc tgt tc 39; mPCNA: forward: 59gaa

ggc ttc gac aca tac cg 39 , and reverse: 59 cag cat ctc caa tgt ggc ta

39; mTBP: forward: 59 agc aac tgc agc agc ctc agt aca 39, and

reverse: 59 tct tcc tga atc cct tta aga tg 39; mb-catenin: forward: 59

caa gat gat ggt gtg cca ag 39, and reverse: 59 ctg cac aaa caa tgg aat

gg 39.

Protein isolation and immunoblot
Protein isolation and immunoblot analysis were performed as

described previously [13]. Dilutions for cadherin-11, caspase-3

and b-catenin antibodies used in immunoblot analysis are included

in Table 1.

Supporting Information

Figure S1 No gross differences were revealed in differentiation

of retinal cell types, proliferation or expression of cadherin-2

between retinas of Cdh11+/+ Cdh11+/- and Cdh11-/- littermate mice.

All INL cell types were assayed to detect disruptions in retinal

phenotype of Cdh11+/+ versus Cdh11-/- littermates. Retinal cell

type markers for bipolar & progenitor (Chx-10), horizontal (160

kDa), amacrine (HPC-1) and Müller glia (CRALBP) showed no

evident change at developmental time points (A) ED18.5, (B)

PND3 and (C) PND6. As well, no gross changes were seen in

proportion of S-phase cells (via BrdU incorporation) or cadherin-2

expression.

Found at: doi:10.1371/journal.pgen.1000923.s001 (3.65 MB TIF)

Figure S2 b-catenin protein and mRNA levels increase after

knockdown of Cdh11. (A) Knockdown of Cdh11 by 2 out of 3

stealth siRNAs targeted to Cdh11 increased expression levels of b-

catenin analyzed via immunoblot in the cadherin-11 positive TAg-

RB cell line, T+539. (B) Following Cdh11 knockdown with siRNA

#3, mRNA analysis showed an increase in b-catenin expression

levels in the TAg-RB cell line T+539. (C) RT-PCR for b-catenin

was performed on RNA isolated from TAg-RB tumours from

paraffin-embedded retinal sections of PND84 Cdh11+/+Tag+/- and

Cdh11-/- TAg+/- mice. b-catenin was upregulated in the Cdh11-/-

TAg+/- mice relative to the Cdh11+/+Tag+/- mice.

Found at: doi:10.1371/journal.pgen.1000923.s002 (0.50 MB TIF)

Figure S3 Proliferation markers Ki67 and PCNA are not

affected by knockdown of Cdh11. RT-PCR for Cdh11, Ki67,

PCNA and TBP was performed on RNA isolated from the TAg-

RB cell line T+539 treated with scrambled or Cdh11 siRNA #3.

Cdh11 knockdown had no observable effect on expression of

proliferation markers Ki67 and PCNA.

Found at: doi:10.1371/journal.pgen.1000923.s003 (0.20 MB TIF)
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