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Abstract
Eating more potassium may reduce blood pressure and the occurrence of other cardiovascular diseases by actions on various
systems, including the vasculature, the sympathetic nervous system, systemic metabolism, and body fluid volume. Among these,
the kidney plays a major role in the potassium-rich diet–mediated blood pressure reduction.
Purpose of Review To provide an overview of recent discoveries about the mechanisms by which a potassium-rich diet leads to
natriuresis.
Recent Findings Although the distal convoluted tubule (DCT) is a short part of the nephron that reabsorbs salt, via the sodium-
chloride cotransporter (NCC), it is highly sensitive to changes in plasma potassium concentration. Activation or inhibition of
NCC raises or lowers blood pressure. Recent work suggests that extracellular potassium concentration is sensed by the DCT via
intracellular chloride concentration which regulates WNK kinases in the DCT.
Summary High-potassium diet targets NCC in the DCT, resulting in natriuresis and fluid volume reduction, which are protective
from hypertension and other cardiovascular problems.
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Introduction

Hypertension is a worldwide health problem affecting 40% of
the population over the age of 25 [1]. A new assessment by the
Global Burden of Disease consortium indicates that unless
better approaches can be devised, hypertension will remain
the predominant factor contributing to risk-attributable years

of life lost in 2040 [2]. While multiple therapeutic strategies
have been developed to treat hypertension, challenges still
exist, with many patients remaining poorly controlled. High
blood pressure usually does not cause symptoms, but it is one
of the most common risk factors for non-communicable dis-
eases and is a leading cause of healthy life loss, making it
second to smoking as a preventable cause of mortality [3].
Hypertension is one of the strongest risk factors for cardiovas-
cular diseases, including coronary disease, left ventricular hy-
pertrophy, valvular heart disease, cardiac arrhythmias, cere-
bral stroke, and kidney failure. Lifestyle and nutrition are im-
portant factors that modulate blood pressure. Guideline-driven
initial management of hypertension or pre-hypertension em-
phasizes non-pharmacological approaches, such as increasing
physical activity, losing body weight, decreasing alcohol con-
sumption, reducing sodium intake, and stopping tobacco
smoking [4–6].

Dietary Sodium and Hypertension

Among all nutritional factors, recommendations are mainly
focused on the reduction of dietary sodium intake.
Epidemiological and clinical studies have demonstrated
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associations between salt intake and blood pressure [7]. High-
sodium diet is known to aggravate hypertension [8, 9] and
increase cardiovascular diseases incidence [10–16].
Nevertheless, dietary sodium restriction activates the renin-
angiotensin-aldosterone system (RAAS) and sympathetic ner-
vous system (SNS) [17–19], which may counteract some pur-
ported benefits. Sympathetic nervous system hyperactivity
has been recognized as a hallmark of progressive heart disease
and congestive heart failure [20]. Although SNS activation is
a compensatory protective mechanism in the short term,
chronic activation has been shown to produce adverse effects
on the cardiovascular system and may accelerate disease pro-
gression [20, 21]. For instance, peripheral stimulation of the
sympathetic nerves of the failing heart may lead to ventricular
arrhythmias [22]. Angiotensin II (AngII) affects both physio-
logical processes and pathophysiological factors, many of
which are critical in cardiovascular diseases, including vascu-
lar tone, cellular function, and cell growth [23–25]. AngII
itself can contribute to fibrosis, endothelial cell dysfunction,
thrombosis, and atherosclerosis [25–27]. These countervailing
effects have led to continuous debates during the past 50 years
about the “optimal” dietary salt intake, and debates that con-
tinue today [8, 28].

Dietary Potassium and Blood Pressure

Other than sodium, many dietary constituents are included in
the recommendations for healthy nutrition in patients at risk
for hypertension, such as potassium, calcium, proteins, and
magnesium. Both sodium and potassium are essential nutri-
ents to help maintain fluid volume and cell structure. The
typical diet consumed by many people in industrialized soci-
eties usually contains high amounts of sodium with less po-
tassium, which differs from the Paleolithic diet, in which this
ratio is reversed [29]. Most of potassium’s beneficial effects
appear to be related to sodium, rather than an isolated response
[30]. Most of the population consumes well above the recom-
mended daily allowance of dietary sodium, and less than rec-
ommended potassium. Potassium is one of the four major
shortfall nutrients (potassium, calcium, iron, and magnesium)
in the western diet according to the 2015 Dietary Guidelines
for American’s Advisory Committee [31]. Potassium intake
has been related inversely to blood pressure and the occur-
rence of cardiovascular diseases [32]. This inverse relation
has been further supported by large epidemiologic studies as
well as smaller controlled trials [29, 30, 33–35]. Many suggest
that higher potassium intake attenuates salt-sensitivity [36,
37], an effect corroborated in animal models [38]. The bene-
ficial effects potassium may not, however, be uniform; recent
animal studies and a meta-analysis of randomized-controlled
trials suggest that excessive potassium intake may increase
blood pressure [39, 40•]. The most impressive pressure-

lowering effects of potassium are consistently observed when
dietary salt consumption is also high.

Potassium Effects on Systems Outside the Kidney

One mechanism by which high dietary potassium intake is
reported to lower blood pressure is through vasodilatory ef-
fects. High dietary potassium stimulates the potassium chan-
nel, Kir2.1, and the Na/K pump in the vascular smoothmuscle
cell membrane, both of which tend to hyperpolarize the cell
[41–43]. Stimulation of the Na/K pump decreases the intra-
cellular sodium content, so that the sodium calcium exchanger
type 1 (NCX1) favors calcium efflux, leading to vasodilation.
Besides the direct vasodilation effects on vascular smooth
muscle cells, high-potassium diet opens potassium channels
and stimulates the Na/K pump in endothelial cells [42]. The
endothelial hyperpolarization is transmitted to the vascular
smooth muscle cell via myoendothelial gap junctions and by
intracellular calcium sparks, which activates calcium-
activated potassium channels [44]. This way, vascular smooth
muscle cells are hyperpolarized indirectly, which leads to
endothelium-dependent vasodilation. In addition to the vascu-
lar tone, high dietary potassium inhibits atherosclerosis and
medial hypertrophy of the arterial wall [45, 46].

Brain and its interstitial fluid potassium content is tightly
regulated and fluctuations in cerebrospinal fluid (CSF) potas-
sium concentration ([K+]) may initiate responses to maintain
CSF [K+] [47]. A sensing region of the brain near the ventri-
cles can respond to changes in the sodium and potassium
concentrations in the cerebrospinal fluid and regulates blood
pressure [48, 49]. Increasing the potassium in the CSF by
intraventricular potassium administration reduces blood pres-
sure, whereas increasing sodium raises it [47, 50]. The central
actions of potassium and sodium changes are mediated by
altering the Na/K pump, and the effects are significantly at-
tenuated by prior ouabain (Na/K pump inhibitor) central ad-
ministration [50]. Antagonizing adrenergic and dopaminergic
effects also blunted the potassium-induced blood pressure and
heart rate reduction, indicating that central administration of
potassium lowers the SNS outflow.

Hyperkalemia increases insulin secretion by depolarizing
pancreatic beta cells, whereas hypokalemia inhibits insulin
secretion and is associated with glucose intolerance [51, 52].
Insulin stimulates skeletal muscle blood flow by nitric oxide–
mediated vasodilation and contributes to insulin sensitivity
and responsiveness [53]. Compared with potassium-wasting
diuretics, other classes of anti-hypertensive agents, including
ACE inhibitors and calcium channel blockers, have a lower
risk of insulin resistance, glucose intolerance, and onset of
diabetes mellitus [54]. Potassium supplementation to treat
diuretic-induced hypokalemia may reverse glucose intoler-
ance and prevent the future development of diabetes [55].
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Potassium Effects on Blood Pressure Via the Kidney

Blood pressure is modulated by the nervous system, by vas-
cular tone, through effects of baroreceptors and chemorecep-
tors and via cardiac output [56]. Over the long term, however,
blood pressure regulation requires a balance between salt and
water intake and output. The kidney is the major organ deter-
mining the salt and water output. This is exemplified by
chronic kidney disease, in which small increases in extracel-
lular fluid volume lead to blood pressure increases, which are
often responsive to diuretics [57].

The kidney is the major organ responsible for electrolyte ho-
meostasis. Unbound potassium and sodium are freely filtered
across the glomerulus, and about 90% of the filtered load is
reabsorbed along the proximal tubule and thick ascending limb
[58]. This relation holds under most physiological conditions, so
that final excretion is primarily determined in the distal nephron.
Classical models focused on the role of the collecting duct in
secreting potassium into the lumen [59]. Yet, it has more recently
become clear that upstream segments, such as the distal convo-
luted tubule (DCT), the portion of the nephron immediately
downstream of the macula densa, and the connecting tubule
(CNT), play unique and important roles [60]. This is also the site
along which fine control of sodium excretion is fulfilled via
regulated sodium transport in kidney tubule segments beyond
the macula densa, the first of which is the DCT [61]. Although
the DCT is the shortest segment of the nephron, spanning only
about 5 mm in length in humans [62], it is now recognized as a
critical site in a variety of homeostatic processes, including sodi-
um chloride reabsorption, potassium secretion, and calcium and
magnesiumhandling. Potassium secretion begins in the lateDCT
and progressively increases along the distal nephron into the
cortical collecting duct (CCD) via electrogenic potassium chan-
nels. Under normal conditions, the late DCT and CNT are the
most pivotal in potassium secretion, whereas the CCD is critical
primarily when animals are stressed or have high aldosterone
levels [63].

The DCT reabsorbs roughly 5–7% of the filtered sodium
load [64]. The electroneutral sodium-chloride cotransporter
(NCC; SLC12A3) in the apical membrane is chiefly responsi-
ble for this process. Gitelman syndrome is the most common
inherited tubular disease and results from mutations in the
SLC12A3 gene encoding NCC [65]. Patients with Gitelman
syndrome exhibit potassium wasting, hypokalemia, hypo-
magnesemia, hypocalciuria, and hypovolemia-induced elevat-
ed angiotensin II and aldosterone levels, but they tend to have
normal or even low blood pressure [66–68]. On the other
hand, heterozygous mutations in NCC may prevent hyperten-
sion and cardiovascular diseases [69].

Recently, the DCT has been identified as a critical site for
potassium homeostasis, although potassium secretion is not
observed in the early DCT [70•, 71]. Regulation of NaCl
reabsorption rates by NCC in the DCT is essential in adjusting

the rate of potassium excretion. Patients with less NCC activ-
ity (Gitelman syndrome) exhibit kidney potassium wasting
and hypokalemia, whereas patients with activated NCC, as
occurs in the disease familial hyperkalemic hypertension
(Gordon syndrome or pseudohypoaldosteronism type 2), ex-
hibit decreased kidney potassium excretion and hyperkalemia.
Clearly, mammals without normal regulation of NCC activity
cannot maintain normal potassium balance, and a primary
physiologic role of NCC is in potassium homeostasis [38].
Therefore, NCC is crucial in regulating electrolyte homeosta-
sis, extracellular volume, and blood pressure.

Potassium Switch [72]

The natriuretic effect of potassium in humans was reported more
than 80 years ago [73]. Later, the blood pressure–lowering ef-
fects of potassium supplementation were also reported [14, 74,
75]. Although the beneficial effects of high potassium intake
involve the vasculature, circulating factors, and the sympathetic
nervous system, it has become clear recently that an essential
mechanism is via natriuresis [76, 77]. Within the kidney, raising
the paracellular potassium concentration has long been known to
inhibit salt and fluid reabsorption along the proximal tubule [72]
and the thick ascending limb [78]. It has been suggested recently
that such proximal effects contribute substantially to the natriuret-
ic effects of high potassium intake [79].

Recently, however, a “kidney potassium switch” within the
distal nephron has been identified as playing a dominant role in
modulating sodium and potassium balance [38, 70•, 71, 80, 81].
This switch turns NCC off and apical epithelial sodium channel
(ENaC) on in response to high potassium intake. An acute rise in
plasma [K+] in the physiological range after a meal dephosphor-
ylates NCC within minutes [82]. Terker et al. demonstrated an
inverse linear relationship between phosphorylated NCC
(pNCC, abundance of pNCC is a proxy for NCC activity) and
plasma [K+] across a range of plasma [K+] manipulated by var-
ious factors [83]. During the past several years, it has become
clear that the NCC in theDCT plays a unique role in determining
kidney potassium excretion because of its specific site of expres-
sion and its unique mechanisms of regulation. Alterations in
NaCl reabsorption in the DCT change the rate of Na+ delivery
to the aldosterone-sensitive distal nephron (ASDN) which, when
coupled with changes in aldosterone secretion, modulate electro-
genic sodium reabsorption and potassium secretion. High potas-
sium intake inhibits NCC and increases salt delivery to the
ASDN. This may reduce water reabsorption via aquaporin-2
along the CNT. This leads to increased flow, which activates
the apical epithelial sodium channel (ENaC) and increases the
lumen negativity, facilitating potassium secretion. Additionally,
high plasma [K+] stimulates aldosterone secretion, which in-
creases ENaC activity in the ASDN [84]. The NCC inhibition–
induced sodium wasting cannot be fully counteracted by the
increase of downstream sodium reabsorption; thereby, high
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potassium intake reduces blood pressure by natriuresis-related
fluid volume decrease (Fig. 1).

Given that NCC does not transport potassium and little potas-
sium is secreted via early DCT, it seems unexpected that NCC
activity is sensitive to plasma [K+]. In the past two decades,
several molecular regulators have been uncovered with critical
roles in the regulation of NCC, including WNK kinases, their
downstream targets (SPAK, the STE20/SPS1-related, proline/
alanine-rich kinase; and OSR1, the oxidative stress-responsive
kinase 1), and cullin 3 and kelch-like 3 which participate in
WNK degradation [85]. WNKs activate NCC by phosphorylat-
ing and activating SPAK/OSR1, which directly phosphorylates
NCC along its amino terminal domain. Phosphorylation of NCC
activates and stabilizes the transport protein, leading to increased
solute transport [86, 87]. Yet, there is little evidence that WNKs
or SPAK/OSR1 is sensitive to potassium.

Piala et al. reported that chloride binds and regulates WNK
activity [88], supporting the hypothesis that chloride and WNKs
serve as the secondary messengers to regulate apical membrane
NaCl transport. At a higher intracellular concentration, chloride
binds to the WNK catalytic domain and prevents kinase auto-
phosphorylation and activation [88–92]. The intracellular chlo-
ride concentration ([Cl−]i) is dependent on the rate of chloride
entry into and exit out of cells. In theDCT, chloride is transported
transcellularly by the apical NCC and basolateral chloride chan-
nel (ClC-Kb) and potassium chloride cotransporter (KCC). The
main driving force for chloride to exit the cell through the ClC-
Kb is the negative membrane voltage. It has been shown previ-
ously that deletion of the basolateral potassium channel (Kir4.1/

5.1) locks the DCT cells at a depolarized state and reduces the
basolateral chloride channel conductance through an allosteric
mechanism, which in turn eliminates the NCC response to plas-
ma potassium alterations [70•, 71]. Modulating the basolateral
potassium conductance affects chloride efflux, thereby should
modulate [Cl−]i. Sun et al. showed that increases in extracellular
[K+] raised [Cl−]i and inhibited WNK activity in Drosophila
Malpighian tubules [91•]. Terker et al. showed that low extracel-
lular [K+] decreases [Cl−]i and increases NCC phosphorylation
and activation in transfected HEK cells, an effect that was
blunted by mutating the WNK1 chloride binding site [38].
Chloride-insensitive WNK4 knock-in mice have increased
NCC expression and activity, which is not responsive to low
dietary potassium intake [93•]. These studies indicate that the
chloride-dependent WNK activity is critical in the kidney potas-
sium switch.

Conclusions

Our ancestors in the Paleolithic era consumed a high-potassium
and low-sodium diet (about 11,000 mg/day potassium and
700 mg/day sodium) with a ratio of 16:1 [94]. Consequently,
the human body developed kidney mechanisms to excrete sig-
nificant loads of potassium rapidly and to preserve sodium. The
processed food we eat today contain more sodium and less po-
tassium than natural food. In light of the recognition of its ben-
eficial effects, dietary potassium recommendations were in-
creased in 2004 when the recommended intake was established

Fig. 1 Pathways mediating beneficial effects of high potassium intake on
various systems. High potassium intake increases insulin and aldosterone
secretion and reduces vascular tone, sympathetic nervous system (SNS)
outflow, and body fluid volume. In the kidney, high plasma potassium

leads to inhibition of sodium-chloride cotransporter (NCC) in distal
convoluted tubule (DCT) and increase of potassium secretion in
aldosterone-sensitive distal nephron (ASDN), contributing to the
natriuresis effects (see text for details)
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at 4700 mg/day [95]. The average potassium intake of
Americans is just over half of this amount, 2591 mg/day.
Regarding the potassium supplementation form, KHCO3 results
in a greater cellular potassium uptake, a lower steady-state plas-
ma potassium, and a lesser decrease in intracellular sodium con-
centration compared with KCl [96]. Although high potassium
intake is protective from hypertension and a wide array of other
cardiovascular problems, it is important to note that these bene-
ficial effects have primarily been linked to eating high-potassium
diets, rather than taking potassium supplements [97]. Fruits and
vegetables are good sources of natural potassium andmay have a
greater blood pressure–lowering effect. We will benefit from
switching away from processed food and embracing a
Paleolithic diet rich in fruits and vegetables.
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