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ABSTRACT Investigators have studied the treatment effects on human health or disease,
the treatment effects on human microbiome, and the roles of the microbiome on human
health or disease. Especially, in a clinical trial, investigators commonly trace disease status
over a lengthy period to survey the sequential disease progression for different treatment
groups (e.g., treatment versus placebo, new treatment versus old treatment). Hence, disease
responses are often available in the form of survival (i.e., time-to-event) responses stratified
by treatment groups. While the recent web cloud platforms have enabled user-friendly
microbiome data processing and analytics, there is currently no web cloud platform to ana-
lyze microbiome data with survival responses. Therefore, we introduce here an integrative
web cloud platform, called MiSurv, for comprehensive microbiome data analysis with sur-
vival responses.

IMPORTANCE MiSurv consists of a data processing module and its following four data
analytic modules: (i) Module 1: Comparative survival analysis between treatment groups,
(ii) Module 2: Comparative analysis in microbial composition between treatment groups,
(iii) Module 3: Association testing between microbial composition and survival responses,
(iv) Module 4: Prediction modeling using microbial taxa on survival responses. We dem-
onstrate its use through an example trial on the effects of antibiotic use on the survival
rate against type 1 diabetes (T1D) onset and gut microbiome composition, respectively,
and the effects of the gut microbiome on the survival rate against T1D onset. MiSurv is
freely available on our web server (http://misurv.micloud.kr) or can alternatively run on
the user’s local computer (https://github.com/wg99526/MiSurvGit).

KEYWORDS microbiome data analysis, web cloud platform, survival analysis,
association analysis, prediction modeling

The human microbiome is the entirety of the microorganisms that reside in and on
the human body. The advances in high-throughput sequencing have greatly low-

ered the cost for microbiome profiling and improved the accuracy of the microbiome
data. Then, investigators have found that the dysbiosis of the human microbiome is
linked to numerous human diseases, for example, through studies on the effects of a
medical treatment on human microbiome (1–6), the roles of the microbiome on
human health or disease (1, 2, 4, 7–14), and so forth.

There have also been many analytic pipelines and tools that are developed for
microbiome data processing and downstream data analysis. Some example micro-
biome profiling pipelines are QIIME (15), QIIME2 (16), MG-RAST (17), Mothur (18), and
Nephele (19) for 16S rRNA sequencing, and MEGAN (20) and MetaPhlAn (21) for shot-
gun metagenomics. Some example downstream microbiome data analytic tools are
aMiAD (22) for alpha-diversity analysis, PERMANOVA (23–25) and MiRKAT (26–28) for
beta-diversity analysis, and metagenomeSeq (29) and ANCOM (30) for taxonomic
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differential abundance analysis. Among those, we especially pay attention to the web
cloud platforms, such as Nephele (19), Qiita (31), PUMAA (32), MicrobiomeAnalyst (33),
METAGENassist (34), EzBioCloud (35), and MiCloud (36). These web cloud platforms
have had the advantages of (i) user-friendly operation, (ii) streamlined analytic pipeline,
and (iii) cloud computing service over the past software packages based on command-
line interfaces. Thereby, investigators can easily deal with highly complex microbiome
data, with no professional programming skills, not spending too much time and effort
for a long sequence of data processing and analytic tasks, and with no fancy computer
to process a huge amount of information.

However, for downstream microbiome data analysis, there is currently no web cloud
platform available to analyze microbiome data with survival (i.e., time-to-event) responses.
Investigators have been conducting numerous clinical trials, for example, to probe for the
treatment effects on human microbiome (2–6), the treatment effects on human health or
disease (2, 4), and the roles of the microbiome on human health or disease (1, 2, 4, 7–14). It
is also common in a clinical trial to trace disease status over a lengthy period to survey the
sequential progress of disease or recovery for different treatment groups (e.g., treatment
versus placebo, new treatment versus old treatment), not restricted to the disease status at
a single specific time point (1, 2, 9, 12). Hence, disease responses are often available in the
form of survival (i.e., time-to-event) responses that are stratified by different treatment
groups.

We therefore introduce here an integrative web cloud platform, called MiSurv, for
microbiome data analysis with survival responses. MiSurv is a user-friendly step-by-
step analytic pipeline like our previous web cloud platform, MiCloud (36). However,
MiSurv is designed to deal with survival responses while MiCloud (36) is for continuous
or binary responses. MiSurv performs microbiome data processing, analytic and graphi-
cal procedures comprehensively. MiSurv consists of a data processing module and its
following four data analytic modules. Module 1: Comparative survival analysis between
treatment groups. Module 2: Comparative analysis in microbial composition between
treatment groups. Module 3: Association testing between microbial composition and
survival responses. Module 4: Prediction modeling using microbial taxa on survival
responses (Fig. 1). MiSurv is freely available on the web server (http://misurv.micloud
.kr) or can alternatively run on the user’s local computer (https://github.com/wg99526/
MiSurvGit).

In the following Results section, we delineate all the details for each module, while
demonstrating them step-by-step through an example trial on the effects of antibiotic use
on the survival rate against type 1 diabetes (T1D) onset (i.e., time-to-T1D onset) and gut
microbiome composition, respectively, as well as the roles of the gut microbiome on the
survival rate against T1D onset (4) (see Real data application). In the Discussion section, we
summarize the results and finish with concluding remarks. Finally, in Materials and
Methods, we describe the underlying machinery and web architecture of MiSurv.

RESULTS
Data processing: data input. As in MiCloud (36), users need to upload four necessary

data components: a feature table (i.e., count table for operational taxonomic units [OTUs]
or amplicon sequence variants [ASVs]), a taxonomic table (i.e., taxonomic assignments at
seven taxonomic levels, kingdom, phylum, class, order, family, genus, species), metadata
(i.e., survival time, censored/event, demographics, etc. for the study subjects) and a phylo-
genetic tree (i.e., a rooted phylogenetic tree relating features [OTUs or ASVs]) (Fig. 1). Users
can upload them as separate files or in a single unified format, called phyloseq (37) (Fig. 1).

(i) Real data application. We used the gut microbiome data for the study of antibi-
otic-induced acceleration of T1D (4). T1D is an autoimmune disease which is increasing
in incidence globally with decreasing age of onset. To survey if the antibiotic use (i.e., a
pulsed macrolide antibiotic [known as tylosin] treatment) accelerates T1D onset
through gut microbiome perturbation, Zhang et al. conducted a randomized clinical
trial using non-obese diabetic mice. Here, we use these data to demonstrate the use of
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FIG 1 Overall workflow. MiSurv consists of a data processing module and its following four data analytic modules.
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MiSurv step-by-step. We described the raw sequence data repository and processing
procedures in Materials and Methods. The final processed data (4) are also stored as
example data in the phyloseq (37) format and also as four individual data files on these
data processing module.

At this module, we uploaded these data clicking the “Upload” button.
Data processing: quality control. MiSurv performs quality controls for the survival

data in follow-up period (Fig. 1). For this, users first need to select a variable for survival
time (i.e., follow-up time) and a variable for censored or event (i.e., a binary indicator
for censored [0] or event [1]). Then, users can adjust the follow-up period (start time
and end time) of interest using a slide bar (or leave it as it is to survey the entire fol-
low-up period just as given in the data), where the censored/event indicator is also
automatically adjusted to be suited to the selected follow-up period. The rationale
behind this quality control user option is that investigators often (but not always) set
up a very long period of follow-up at a design stage because they do not exactly know
how long they need to follow up in advance. A very long period of follow-up also
tends to result in no disparity in survival rate between treatment groups because treat-
ment effects tend to disappear (and/or converge to the same level) at a very late time
in the end.

As in MiCloud (36), MiSurv also performs quality controls for the microbiome data
in four criteria: kingdom (i.e., a kingdom of interest, default: Bacteria); library size (i.e., a
minimum total read count for the study subjects to have, default: 3,000); mean propor-
tion (i.e., a minimum mean proportion for the features [OTUs or ASVs] to have, default:
0.002%); taxonomic names (i.e., erroneous taxonomic names to be removed in the tax-
onomic table) (Fig. 1). MiSurv visualizes the microbiome data before and after quality
controls using summary boxes, histograms and box plots. The microbiome data before
and after quality controls can also be downloaded.

(i) Real data application. We selected “T1Dweek” as the variable for the follow-up
time, and “T1D” as the binary indicator for censored (0) or event (1), where the cen-
sored (0) represents T1D free and the event (1) represents T1D onset. We did not
change the follow-up period as we wanted to survey the entire follow-up period just
as given in the data. For the microbiome data, we applied the default quality control
settings; as such, 294 features, 7 phyla, 14 classes, 18 orders, 21 families, 30 genera and
13 species for 172 subjects were finally retained (Fig. 2A).

Data processing: data transformation. As in MiCloud (36), for the ecological
analysis, MiSurv calculates (1) nine alpha-diversity indices: Observed, Shannon (38),
Simpson (39), Inverse Simpson (39), Fisher (40), Chao1 (41), abundance-based cover-
age estimator (ACE) (42), incidence-based coverage estimator (ICE) (43), and phylo-
genetic diversity (PD) (44); and (2) five beta-diversity indices: Jaccard dissimilarity
(45), Bray-Curtis dissimilarity (46), Unweighted UniFrac distance (47), Generalized
UniFrac distance (48), and Weighted UniFrac distance (49) (Fig. 1). For the taxonomi-
cal analysis, MiSurv transforms the original count data into four data forms: (i) count
(rarefied) (50), (ii) proportion, (iii) centered log ratio (CLR) (51), and (iv) arcsine-root
for each taxonomic rank (phylum, class, order, family, genus, species). While there is
no consensus on which data format works best, the most popular microbiome data
transformation method is the CLR transformation to deal with the compositionality
of the data (51). Hence, we set CLR as the default for all following taxonomical analy-
sis modules. All the calculated alpha-and beta-diversity indices as well as all the orig-
inal and transformed taxonomic abundance data can also be downloaded.

(i) Real data application. We simply clicked the “Run” button to calculate the
alpha- and beta-diversity indices, and transform the original count data into the four
different data forms.

Module 1: comparative survival analysis between treatment groups (not
involving microbiome data). Module 1 is for some basic exploratory data analysis, in
which the microbiome data are not involved, to compare the survival rates between
two treatment groups (e.g., treatment versus placebo, or new treatment versus old
treatment), coded as 0 for the reference group and 1 for the comparison group (Fig. 1).
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For univariate analysis, the Kaplan-Meier analysis (default) (52) with the log-rank test
(default) (53) or the Wilcoxon test (54), or the Cox model (55) can be employed. For
covariate-adjusted analysis, only the Cox model (55) can be employed. The Kaplan-
Meier analysis (52) and the Cox model (55) are the two most commonly used survival
analysis methods. MiSurv visualizes the results using the Kaplan-Meier or covariate-
adjusted survival curves. MiSurv also visualizes the sample sizes for different treatment
groups and the sample sizes for the censored and events using summary boxes.

(i) Real data application. We selected “Antibiotics” as the treatment variable,
where “Control” represents the group of normal controls and “Tylosin” represents the
group of the subjects treated by a macrolide antibiotic, called tylosin (4). We selected
“Sex” as a covariate, and then employed the Cox model (55) to perform covariate-
adjusted analysis. We found a significant difference in survival rate between the control
and tylosin groups (P-value: 0.005), while estimating that the hazard rate is greater for
the tylosin group than the control group (hazard ratio [HR]: 1.692 . 1) (Fig. 2B). This

FIG 2 The screenshot after the quality controls using Data Processing (A) and the screenshot after performing comparative survival analysis between the
control and tylosin groups adjusting for sex using Module 1 (B). *HR represents the estimated hazard ratio (i.e., the hazard rate for the tylosin group
divided by the hazard rate for the control group).
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indicates that the subjects treated by tylosin progresses to T1D onset more rapidly
than the normal controls. The sample sizes for the control and tylosin groups were 88
and 84, respectively, while the sample sizes for the censored and events were 56 and
116, respectively (Fig. 2B).

Module 2: comparative analysis in microbial composition between treatment
groups (not involving survival data).Module 2 is for other basic exploratory data analy-
sis, in which the survival data are not involved, to compare the microbial composition
between two treatment groups (e.g., treatment versus placebo, or new treatment versus
old treatment), coded as 0 for the reference group and 1 for the comparison group (Fig. 1).
MiSurv performs such comparative analysis with respect to alpha-diversity, beta-diversity
and taxonomic abundance as in MiCloud (36). For the alpha-diversity analysis, the Welch t
test or the Wilcoxon rank-sum test (default) (56) with box plots can be employed for univari-
ate analysis, while the linear regression model with forest plots can be employed for covari-
ate-adjusted analysis. For the beta-diversity analysis, MiRKAT (26, 27) can be employed for
both univariate and covariate-adjusted analyses, yet only the principal coordinate analysis
(PCoA) plots (57) are available to visualize the disparity between treatment groups in a uni-
variate trend not reflecting covariate adjustments. For the taxonomic differential abundance
analysis, four different data forms of the CLR (default) (51), count, proportion and arcsine-
root are available. For the CLR (default) and arcsine-root, the Welch t test or the Wilcoxon
rank-sum test (default) (56) with box plots can be employed for univariate analysis, while
the linear regression model with forest plots can be employed for covariate-adjusted analy-
sis. For the count, the Welch t test or the Wilcoxon rank-sum test (default) (56) using rarefied
counts (50) with box plots can be employed for univariate analysis, while the negative bino-
mial regression model using original counts, including the library size as an off-set variable
with forest plots can be employed for covariate-adjusted analysis. For the proportion, the
Welch t test or the Wilcoxon rank-sum test (default) (56) with box plots can be employed
for univariate analysis, while the beta regression model with forest plots can be employed
for covariate-adjusted analysis. Users can survey from phylum to genus (default) (e.g., for
16S rRNA sequencing) or from phylum to species (e.g., for shotgun metagenomics). For any
taxonomic differential abundance analysis, MiSurv applies the Benjamini-Hochberg (BH) pro-
cedures (58) to each taxonomic rank to control for the false discovery rate (FDR) at 5%.
MiSurv also visualizes the hierarchical taxonomic discovery status using a dendrogram.

(i) Real data application. We selected “Antibiotics” as the treatment variable,
where “Control” represents the group of normal controls and “Tylosin” represents the
group of the subjects treated by a macrolide antibiotic, called tylosin (4). We selected
“Sex” as a covariate, and then performed covariate-adjusted analyses using the linear
regression model for the alpha-diversity analysis (Fig. 3A), using MiRKAT (26, 27) for the
beta-diversity analysis (Fig. 3B), and using the linear regression model with the CLR
(default) (51) transformed data for the taxonomic differential abundance analysis
(Fig. 4 and 5). Then, we found a significant difference in alpha-diversity between the
control and tylosin groups for all the nine alpha-diversity indices (Fig. 3A), estimating
that the alpha-diversity is smaller for the tylosin group than the control group for all
nine alpha-diversity indices (Fig. 3A). We also found a significant difference in beta-di-
versity between the control and tylosin groups for all five beta-diversity indices
(Fig. 3B). Finally, we discovered 66 taxa (from phylum to genus) that have significant
disparity in relative abundance between the control and tylosin groups (Fig. 4 and 5).

Module 3: association testing between microbial composition and survival
responses.Module 3 involves both microbiome data and survival data and performs asso-
ciation testing between microbial composition and survival responses with respect to
alpha-diversity, beta-diversity and taxonomic abundance. Each submodule for the alpha-di-
versity, beta-diversity or taxonomic abundance begins with subsetting the data for sub-
group analysis. That is, users can select a subgroup of interest using a category of a nomi-
nal variable (usually the treatment variable) to perform subgroup analysis. If they select a
subgroup, only the subjects in that subgroup are retained in the following analysis.
Otherwise, all the subjects just as given in the data are retained. The rationale behind this
subgroup analysis user option is that the effects of microbiome on survival responses are
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usually different between treatment groups, indicating an interaction between microbiome
and treatment.

For the alpha-diversity analysis, the Coxmodel (55) with forest plots can be employed for
both univariate and covariate-adjusted analyses. For the beta-diversity analysis, MiRKAT-S

FIG 3 The results from alpha-diversity (A) and beta-diversity (B) analyses to compare the microbial compositions between the control and tylosin groups
adjusting for sex using Module 2, and the results from alpha-diversity (C) and beta-diversity (D) analyses to test the association with survival responses for
the control group adjusting for sex using Module 3.
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FIG 4 The forest plot for taxonomic differential abundance analyses adjusting for sex using Module 2.
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(27, 59, 60) with PCoA plots (57) can be employed for both univariate and covariate-adjusted
analyses. Here, again, the PCoA (57) plots do not reflect covariate adjustments and display
the disparity in microbiome composition between the censored and events only at the end
of the follow-up. For the taxonomic association analysis, four different data forms of the CLR
(default) (51), count (rarefied) (50), proportion and arcsine-root are available. Then, the Cox
model (55) with forest plots can be employed for both univariate and covariate-adjusted
analyses. As in Module 2, users can survey fromphylum to genus (default) (e.g., for 16S rRNA
sequencing) or from phylum to species (e.g., for shotgun metagenomics). MiSurv applies
the BH procedures (58) to each taxonomic rank to control for the FDR at 5%. MiSurv also vis-
ualizes the hierarchical taxonomic discovery status using a dendrogram.

FIG 5 The dendrogram for taxonomic differential abundance analyses adjusting for sex using Module 2. The numbers in circles are the taxon IDs in the
forest plot (Fig. 4). Red: positive association. Blue: negative association. Gray: non-significance. White: no association testing for non-taxonomic annotation.
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(i) Real data application.We performed subgroup analysis while selecting the control
group in the treatment variable as the subgroup of interest; as such, only the normal con-
trols (excluding tylosin subjects) were retained in the following analyses. We selected “Sex”
as a covariate to perform covariate-adjusted analyses. For the alpha-diversity analysis, we
did not find any significant association between alpha-diversity and survival responses for
any alpha-diversity index (Fig. 3C). For the beta-diversity analysis, we found a significant
association between beta-diversity and survival responses for the Jaccard dissimilarity (P
value: 0.046) (Fig. 3D). Finally, we discovered 5 phyla (Verrucomicrobia, Proteobacteria,
Actinobacteria, Firmicutes, Tenericutes) that have significant association with the survival
responses (Fig. 6). We estimated that the hazard rate is greater with increasing CLR trans-
formed relative abundance for Verrucomicrobia (HR: 1.253 . 1), Proteobacteria (HR:
1.236 . 1) and Firmicutes (HR: 1.262 . 1), indicating the subjects that have more
Verrucomicrobia, Proteobacteria and Firmicutes in their gut progresses to T1D onset
more rapidly. On the contrary, we estimated that the hazard rate is smaller with
increasing CLR transformed relative abundance for Actinobacteria (HR: 0.759 , 1)
and Tenericutes (HR: 0.796 , 1), indicating the subjects that have less Actinobacteria
and Tenericutes in their gut progress to T1D onset more slowly (Fig. 6).

Module 4: prediction modeling using microbial taxa on survival responses.
Module 4 involves both microbiome data and survival data, and performs prediction
modeling using microbial taxa at the taxonomic ranks of phylum, class, order, family,
genus and species, respectively, on survival responses. As in Module 3, users can select
a subgroup of interest using a category of a nominal variable (usually the treatment
variable) to perform subgroup analysis. As in Module 3, users first need to select a data
form among CLR (default) (51), count (rarefied) (50), proportion and arcsine-root. Then,
they can survey from phylum to genus (default) (e.g., for 16S rRNA sequencing) or
from phylum to species (e.g., for shotgun metagenomics). For prediction modeling, the
random survival forests (61, 62) can be employed. The random survival forests (61, 62) is
an ensemble learning method that averages the predictions on survival rates resulting
from a multitude of decision trees constructed by randomly selected inputs. Hence, the
random survival forests can robustly suit various linear or non-linear patterns while decor-
relating taxa and adapting to various sparsity levels. Users can select the number of trees
(5,000 [default] or 10,000) to be ensembled. Users can also select the number of taxa at
each taxonomic rank to be displayed on the variable importance plot (61, 62) that ranks
taxa in the amount of increase in the residual sum of squares. MiSurv also visualizes the
out-of-bag error rates by the number of trees to be ensembled.

(i) Real data application.We performed subgroup analysis while selecting the con-
trol group in the treatment variable as the subgroup of interest; as such, only the nor-
mal controls (excluding tylosin subjects) were retained in the following analysis. We
selected 10,000 as the number of trees to be ensembled and 10 as the number of taxa
at each taxonomic rank to be displayed on the variable importance plot. We listed top
10 genera that have the most influential predictions on the survival rates in (Fig. 7A).
We also observed that the out-of-bag error rates well converge by 10,000 of trees
ensembled in (Fig. 7B).

DISCUSSION

In this paper, we introduced an integrative web cloud platform, MiSurv, for user-friendly
step-by-step microbiome data analysis with survival responses. MiSurv performs extended
data processing, analytic and graphical procedures to efficiently deal with microbiome
data with survival responses. We described in detail a data processing module and its fol-
lowing four data analytic modules of MiSurv along with the example gut microbiome trial
that involves a treatment (antibiotics) variable and survival responses on T1D onset.

In the Data Processing module, we added the quality control to adjust the follow-
up period because investigators often set up a very long period of follow-up at the
stage of experimental design just to survey the disease progression sufficiently.
Though, it is usually not the one intended in a later data analysis. Module 1 and
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Module 2 perform some basic exploratory data analysis, not involving microbiome and
survival data, respectively, for comparative survival analysis between treatment groups
and comparative analysis in microbial composition between treatment groups, respec-
tively. On the contrary, Module 3 and 4 link the microbial composition to survival
responses with respect to association testing and prediction modeling, respectively. At
the beginning of Module 3 and 4, we added the subgroup analysis user option
because it is often assumed that the effects of microbiome on survival responses are

FIG 6 The forest plot (A) and dendrogram (B) for taxonomic association analyses between each taxon and survival responses adjusting
for sex using Module 3. The numbers in circles (Fig. 6B) are the taxon IDs in the forest plot (Fig. 6A). Red: positive association. Blue:
negative association. Gray: non-significance. White: no association testing for non-taxonomic annotation. *HR represents the estimated
hazard ratio (i.e., the relative increase in hazard rate with one unit increase in the CLR transformed relative abundance).
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different between treatment groups, which indicates an interaction between micro-
biome and treatment, which in turn indicates the need for subgroup analysis. We
believe that not all the facilities in MiSurv are just ours. Indeed, they are mostly based
on other researchers’ methodologies; hence, we devoted to adding all related referen-
ces to each of the data processing and analytic steps on our web platform.

In summary, MiSurv is easy to use and provides comprehensive facilities for micro-
biome data processing and downstream data analysis with survival responses. MiSurv
can serve as a useful tool in the rapidly growing field of human microbiome for numer-
ous trials to study the treatment effects on survival responses, the treatment effects on
human microbiome, and the roles of the microbiome on survival responses.

MATERIALS ANDMETHODS
Overall architecture. We made all the user interfaces and server functions using R Shiny (https://

shiny.rstudio.com). The computer server currently has Intel Core i7-12700T processor (12 cores,1.40 to
4.70 GHz) and 36 GB DDR4 memory and runs on the Ubuntu 20.04 server. We will improve the specifica-
tion if it gets more popular and busier. A web server, in theory, is any software that can interact with
another entity over a network. The overall architecture of our web server follows a typical client-server
model, deploying it through two layers, (1) ShinyProxy (https://www.shinyproxy.io) to maintain our serv-
ice stable by means of the docker and container, and (2) Apache2 (https://httpd.apache.org) to provide
easier access to our service by means of the domain name. Our web server currently supports up to 10
simultaneous connections. We also host our platform through GitHub (https://github.com) repository
for the users who wish to run it on their local computer.

Underlying machinery. We wrote all the data processing, analytic and graphical procedures in R
language [Key Resource Table]. MiSurv calculates the alpha-diversity indices (38–44) using “estimate_r-
ichness” in the “phyloseq” package and “pd” function in the “picante” package. MiSurv calculates the
beta-diversity indices (45–49) using the “dist” function in the “proxy” package, the “bcdist” function in
the “ecodist” package, and the “GUniFrac” in the “GUniFrac” package. MiSurv conducts the CLR (51)
transformation using the “clr” function in the “compositions” package and the rarefaction (50) using the
“rarefy_even_depth” in the “phyloseq” package. MiSurv performs the Kaplan-Meier analysis (52) with the
log-rank test (53) and Wilcoxon test (54) using the “Surv” and “survdiff” functions in the “survival”

FIG 7 The importance plot (A) and error rates (B) for prediction modeling using genera on survival responses using Module 4.
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package. MiSurv fits the Cox model (55) using the “coxph” function in the “survival” package. MiSurv per-
forms MiRKAT (26, 27) and MiRKAT-S (27, 59, 60) with PCoA plots (57) using the “D2K,” “MiRKAT,” and
“MiRKATS” functions in the “MiRKAT” package and the “pcoa” function in the “ape” package. MiSurv per-
forms the Welch t test using the “t.test” function in the “stats” package and the Wilcoxon rank-sum test
(56) using the “wilcox.test” function in the “stats” packages. MiSurv fits the linear regression model using
the “lm” and “glm” function in the “stats” package, the negative binomial regression model using the
“glm.nb” function in the “MASS” package, and the beta regression model using the “betareg” function in
the “betareg” package. MiSurv fits the random survival forests (61, 62) using the “rfsrc” function in the
“randomForestSRC” package.

Raw sequence data processing procedures. Zhang et al. collected fecal samples from non-obese
diabetic mice from Jackson Laboratory (4). Then, they extracted intestinal microbiota DNA using the
PowerLyzer PowerSoil DNA isolation kit (MoBio, Carlsbad, CA) and the PowerSoil-htp 96-Well Soil DNA
isolation kit (MoBio). Then, they acquired the amplicon library of V4 regions of the 16S rRNA genes
through triplicate PCR with barcoded fusion primers, quantification with the Qubbit 2.0 Fluorometer
(Life Technologies, Carlsbad, CA). and combination of each DNA sample at equal concentrations as in
(2). Then, they sequenced the library using Illumina MiSeq 2 � 150 bp paired end platform (Illumina, San
Diego, CA).

We used QIIME 2.0 [16] to obtain the feature table, taxonomic annotations, and phylogenetic tree.
We retained only the reads with .75% of the original length while removing the reads with more than
three consecutive low-quality bases (Phred score , 20). We constructed (1) the feature table using the
97% sequence similarity through open reference piking based on the Greengenes database (63), (2) the
taxonomic annotations using the RDP classifier while removing chimeras using ChimeraSlayer (64), and
(3) the phylogenetic tree using FastTree (65).

Data and code availability. We used public microbiome data for our real data applications (4). The
raw sequence data are deposited in QIITA (https://qiita.ucsd.edu) with the ID number 10508 (https://
qiita.ucsd.edu/study/description/10508). All the final processed data are also stored in the Data
Processing: Data Input module on the web server (http://misurv.micloud.kr) and also in the Data folder
on the GitHub page (https://github.com/wg99526/MiSurvGit) with the for the “phyloseq” (37) object
(see the file named “biom.Rdata”) and also with four individual files (see the files named “otu.tab.txt,”
“sam.dat.txt,” “tax.tab.txt,” and “tree.tre”).

MiSurv can be run through our web server (http://misurv.micloud.kr) or on the user’s local computer
through the GitHub repository (https://github.com/wg99526/MiSurvGit). Either of these platforms comes
with a detailed software manual on implementation, example data (4), required or optional inputs or
settings, numeric or graphical outputs, related references, and so forth.
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