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Abstract: Mortality and morbidity from influenza and other respiratory viruses are significant causes of
concern worldwide. Infections in the respiratory tract are often underappreciated because they tend to
be mild and incapacitated. On the other hand, these infections are regarded as a common concern in
clinical practice. Antibiotics are used to treat bacterial infections, albeit this is becoming more challenging
since many of the more prevalent infection causes have acquired a wide range of antimicrobial resistance.
Resistance to frontline treatment medications is constantly rising, necessitating the development of
new antiviral agents. Probiotics are one of several medications explored to treat respiratory viral
infection (RVI). As a result, certain probiotics effectively prevent gastrointestinal dysbiosis and decrease
the likelihood of secondary infections. Various probiotic bacterias and their metabolites have shown
immunomodulating and antiviral properties. Unfortunately, the mechanisms by which probiotics are
effective in the fight against viral infections are sometimes unclear. This comprehensive review has
addressed probiotic strains, dosage regimens, production procedures, delivery systems, and pre-clinical
and clinical research. In particular, novel probiotics’ fight against RVIs is the impetus for this study.
Finally, this review may explore the potential of probiotic bacterias and their metabolites to treat RVIs. It
is expected that probiotic-based antiviral research would be benefitted from this review’s findings.

Keywords: probiotics; viral infections; respiratory viral infections; immunomodulatory effects;
SARS-CoV-2; probiotics delivery

1. Introduction

Mortality and morbidity from influenza and other respiratory viruses are significant
causes of concern worldwide [1,2]. A healthy immune system protects against viral infec-
tions and reduces susceptibility to subsequent bacterial infections [3,4]. Various variants
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of respiratory viruses are the cause of concern globally. As a result, new methods of regu-
lating immune responses are required to defend against emerging respiratory viruses [5].
Probiotics are living microorganisms that, when provided in sufficient proportions, offer
health advantages to their hosts, according to the World Health Organization (WHO) and
the Food and Agriculture Organization (FAO) of the United Nations [6]. Lactobacillus
and Bifidobacterium are prominent families of bacteria in the gut microbiota [7]. Probiotic
formulations are microecological products that improve the intestinal flora’s architecture,
diminish the growth of harmful microbes, and improve the immune response [8,9]. They
modulate innate and adaptive immune responses, facilitating the immune system’s de-
velopment and maturation. Probiotics regulate host-pathogen interactions by initiating
the innate immune responses that comprise of Toll-like receptors (TLR), nuclear factor
kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and c-Jun NH2-terminal ki-
nase (JNK) pathways. Probiotics such as Lactobacillus and Bifidobacterium can restore host
health by eliminating pathogens and regulating immune responses in intestinal epithelial
cells [6,10,11]. Probiotic strains are becoming popular due to their ability to modulate
immunological responses, especially in the lower and upper respiratory tracts. Various
studies have shown that probiotics regulate allergic reactions and protect the body against
viral and bacterial infections [6,12–17].

In the present crisis of COVID-19, the immunomodulatory activities of probiotics
may enhance the response to vaccines; therefore, probiotics could be a low-cost method of
strengthening vaccination effectiveness and extending the protection period [18,19]. The
gut–lung axis has been shown to have a role in improving gut health and homeostasis
through the antiviral effects of oral probiotics. While various commercial probiotics have
been shown to be beneficial against coronavirus, their efficacy in treating people infected
with COVID-19 is still contested [20]. Probiotics have been shown to dramatically boost
plasma cytokine levels, influenza vaccination effectiveness, and overall quality of life
while decreasing virus titers and the frequency and duration of respiratory illnesses [21].
Probiotics and epithelial cells may directly influence cytokine responses and regulatory T
cells [22]. Therefore, probiotics are promising candidates that should be studied for viral
infections and immune function modulation.

The gut immune system and treatment duration are linked to immunological dis-
orders. Because probiotics’ benefits rely on the strains, clinical research findings have
not been conclusive. Identifying specific target populations with greater susceptibilities
to the possible impacts of probiotics may be necessary to test the effectiveness of these
probiotics. The efficacy of active probiotic strains against RVIs is studied in this review.
Moreover, probiotics as a treatment for respiratory infections, their mechanisms of action,
clinical studies, probiotic delivery, and implications are also discussed. Conclusively, this
study tries to investigate the therapeutic prospects of probiotic microorganisms and their
metabolites as a treatment for RVIs. The results of this review are likely to help researchers
in the field.

2. Materials and Methods

The current comprehensive review compiled the information using diverse computer-
ized databases such as Saudi Digital Library, ScienceDirect, Scopus, Google Scholar, and
PubMed. Keywords such as Bifidobacterium, Lactobacillus, Bifidobacterium longum, Bifidobac-
terium infantis, Bifidobacterium bifidum, Lactobacillus species, lactic acid bacteria, Lactobacillus
del-brueckii, Lactobacillus fermentum, Lactobacillus reuteri, Lactobacillus johnsonii, Lactobacillus
rhamnosus, Lactobacillus bulgaricus, Lactobacillus plantarum, Lactobacillus salivarius, Lacto-
bacillus helveticus, Lactobacillus lactis, Lactobacillus casei, Lactobacillus acidophilus, antiviral,
health advantages, inflammatory bowel disease, allergies, inflammation, cytokines, allergic
diseases, immunomodulatory, anti-inflammatory, anti-viral, innate or adaptive, innate
immunity, anti-inflammatory cytokines, immunomodulatory effects, respiratory tract infec-
tions, respiratory viral infection, antiviral remedies, influenza, respiratory viruses, viral
pneumonia, antiviral mechanism of action, SARS-CoV-2 infection, vaccine development,
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and clinical trials were used to search literature with respect to probiotics. Phrases such
as “probiotic efficacy against viral infection”, “factors affecting the delivery of probiotics”,
“dosage forms contained probiotic microorganism”, “effect of probiotics in the treatment
of respiratory viral infections”, “antiviral effects of probiotics”, and “immunomodula-
tory effect of probiotics” were used to search the literature related to respiratory-related
viral infection.

Further information was retrieved from various medicinal books. For the compre-
hensive aspect, studies published in the last twenty-five years (from 1997 to 2022) were
considered; however, there was no time limitation for the comprehensive review. Inclu-
sion criteria were in vitro studies, in vivo studies, clinical studies, cross-sectional studies,
cohort-type studies, and studies that addressed the treatment of respiratory viral infection
with probiotics. Considering comorbidities, data related to respiratory viral infections and
lung disease were included. Only studies available in English were included in this study;
however, the selected studies should present reliable methodologies. Exclusion criteria
were researched with dubious methods, master’s dissertations, unfinished research, and
doctoral thesis.

3. Probiotic Bacteria Strains

Probiotics are helpful living bacteria found in people and animals, whereas prebiotics
is chemical substances that improve the growth of probiotics. Para probiotics and postbi-
otics refer to dead or inactivated living cells of probiotics and healthful metabolic products
that are produced by the living cells of probiotics, respectively. However, probiotics and
prebiotics have been scientifically shown to provide several physiological, functional, nu-
tritional, and immunological advantages [23]. The most often utilized probiotic strains
belong to Bifidobacterium, Lactobacillus, and Streptococcus genera. The Bifidobacterium strains
include Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium bifidum. Lacto-
bacillus species include Lactobacillus del-brueckii, Lactobacillus fermentum, Lactobacillus reuteri,
Lactobacillus johnsonii, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus plantarum,
Lactobacillus salivarius, Lactobacillus helveticus, Lactobacillus lactis, Lactobacillus casei, and Lacto-
bacillus acidophilus. Other strains are Enterococcus faecalis, Enterococcus faecium, Saccharomyces
boulardii, and Streptococcus thermophilus [24–28]. Commonly utilized probiotic strains are
shown in Figure 1.
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4. Probiotic Isolates and Their Health Advantages

Probiotics are fascinating more and more as alternatives to current and traditional
medicines. Numerous anticipated mechanisms explore how probiotics work; they depend on
probiotic strain, dosage, and intake route [29–31]. The adhesiveness ability of probiotics with
the intestine mucosal layer is the most significant for immune system modulation and exhibits
antagonistic results, and it has an antagonist effect contrary to pathogens [32–34]. Such precise
adhesiveness belongs owing to the interaction between mucin and surface proteins; in that
way, probiotics prevent pathogenic bacteria development and multiplication [35].

Furthermore, probiotics produce organic acids and bacteriocins that include lactic and
acetic acids, leading to decreased pH intracellularly and raising the ionized organic acids,
finally acting as killers of pathogens [36–39]. Probiotic bacteria produce biological activity
by conquering pathogen-binding spots [40]. Bacteria interact with each other in their envi-
ronment through chemical signaling molecules called autoinducers called quorum sensing.
Signaling regulates the behavior of enteric microbes responsible for infections and coloniza-
tion inside the host. Lactobacillus releases a molecule that constrains signaling of quorum
sensing, directly interacts with signaling, or directly interacts with the E. coli O157 gene of
bacterial transcription responsible for colonization [38,41–44]. Moreover, probiotic bacte-
ria express their immunomodulatory action by interrelating with epithelial, dendritic cells,
monocytes/macrophages, and lymphocytes [45]. These diverse mechanisms of action of
probiotics make them the potential agent in preventing and treating numerous diseases such
as cancer, diabetes, diarrhea, obesity, cardiac disorders, human immunodeficiency virus (HIV),
inflammatory bowel disease (IBS), kidney diseases, allergies, etc. [30,46,47]. These potential
health claims fascinate the researchers towards the novel development of probiotics. However,
current modern medicine has several minor to significant side effects. The need of the hour is
to search for an alternative with fewer side effects that is more therapeutic.

Allergies are some specific conditions produced via hypersensitivity of the immune
system [48]. Probiotics treat allergies by curing the impaired digestive system by reduc-
ing inflammation, strengthening the gut lining, and stabilizing the immune system. In
addition, probiotics alter the antigen’s structure and decrease their immunogenicity, pro-
inflammatory cytokines generation, and intestinal permeability. Overall, probiotic actions
play a significant role in preventing and treating allergic diseases [49–51]. For example,
Lactobacillus GG and L. rhamnosus GG improve the signs of food allergies and substantially
decrease the risk of allergic diseases [52]. Furthermore, probiotics are used in irritable bowel
syndrome (IBS) through potent mechanisms that reduce epithelial binding and suppress the
growth of pathogenic bacteria, antimicrobial constituents’ production, immunoregulation,
and improved epithelial barrier function and immunoregulation. Thus, these are used to
treat Crohn’s disease, ulcerative colitis, and pouchitis [53–55].

Cancer is a significant cause of ailment and death across the world. The natural
adjuvant is the best key to treating this chronic disease [56–58]. Probiotic bacteria exhibit
anticancer effects through a specific group of microbes, including Bifidobacterium and Lacto-
bacillus species. They reduce the carcinogenic enzyme levels of the colonic through various
defensive mechanisms, including antimutagenic organic acids production, improving the
host immune system, intestinal permeability regulation, and microflora balance [59–61].
Moreover, evidence recommends that foodstuffs containing probiotic bacteria possibly
contribute to cardiac disorder by reducing serum cholesterol levels and controlling blood
pressure. Suggested mechanisms involved are cholesterol assimilation, interfering with
cholesterol absorption in the gut. In addition, the fermentation process distresses the blood
lipids and facilitates an antihypertensive result [62–65]. At the same time, probiotic bacteria
have significant effects as anti-inflammatory and immunomodulatory behavior via boost-
ing the dendritic cell’s pattern of maturation through discharging tumor necrosis factor-α
(TNF-α) interleukin-12 (IL-12) and raising the IL-10 levels besides restraining the generation
of pro-inflammatory cells. Bifidobacteria persist in the intestines and play a substantial role
in health promotion. Bifidobacteria induces upregulation of IL-10 secretion by reducing
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CD40 and CD80 expression. Subsequently, immunomodulatory and anti-inflammatory
activities were observed by enhancing the production of IL-10 [66,67].

Numerous studies discovered about hypoglycemic and anti-diabetic effects of
Lactobacillus spp. [68]. Probiotics improve antioxidant enzyme actions such as superoxide
dismutase, glutathione peroxidase, and catalase. Many strains of lactic acid bacteria (LAB)
have revealed antioxidant activities through several mechanisms, including the chelation
of metal ions, scavenging of reactive oxygen species (ROS), and enzyme inhibition [69,70].
In this way, probiotics exhibit defensive action through the antioxidant-linked potential
measures to counter different diseases. However, probiotics’ properties are still a matter of
consideration. Additional clinical studies are required to understand the exact mechanism
of action of probiotics in different diseases. Different described probiotics available on the
market are shown in Table 1.

Table 1. Different described probiotics available on the market.

Brand Product Benefits Formulation Strains

Boldfit
Immune support,

digestive balance, weight
loss, gut health

Each capsule has
30 billion CFU L. acidophilus and B. lactis

Carbamide Forte
Probiotics Supplement Metabolism management Each capsule has

30 billion CFU

L. casei, L. plantarum, L. reuteri,
L. salivarius, L. paracasei, B. bifidum,

B. berve, B. lactis, S. boulardii,
S. thermophilus, and many more

HealthKart
Boost immunity by

stimulating the activity of
immune cells

Each capsule has
30 billion CFU

14 critical strains such as L. plantarum,
L. fermentum, L. reuteri, B. lactis,
B. bifidum, B. boulardii, L. casei,

L. acidophilus, S. thermophilus, B. berve,
L. rhamnosus, B. lactis, L. paracasei,

and L.salivarius

Inlife Digestive support and
energy management

Each capsule has
2.75 billion CFU

Lactobacillus acidophilus,
Lactobacillus rhamnosus,
Bifidobacterium bifidum,
Bifidobacterium longum,

and Saccharomyces boulardii

Jarrow
Improve digestion,

metabolism, absorption of
nutrients, and immunity

Each capsule contains only
about 5 billion CFU

L. rhamnosus, L. helveticus,
L. plantarum, L. lactis B. berve,

Pediococcus acidilactici, and B. longum

Mountainor Enhances immunity and
digestive health

Each capsule contains a total
of 50 billion CFU with

16 carefully selected probiotic
strains, which are most
beneficial for gut health

It contains most strains from the
L, B, and S category

Neuherbs Daily Probiotics Stomach health support Each capsule contains
20 billion CFUs

Lactobacillus acidophilus,
Lactobacillus fermentum,
Lactobacillus rhamnosus,
Bifidobacterium bifidum,
Bifidobacterium longum,

and Saccharomyces boulardii

Now Foods Digestive health support Each capsule contains
25 billion CFU

The probiotic supplement contains all
the necessary and imperative

L, S, and B category acid strains
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Table 1. Cont.

Brand Product Benefits Formulation Strains

Swisse

Boosts immunity, healthy
digestion, intestinal balance,

growth of good bacteria,
bloating, and flatulence

Each tablet contains
35 billion CFU B. lactis and L. acidophilus

TrueBasics Immune support Each capsule contains
30 billion CFU Lactic acids and L. plantarum

Wow Immune support Each capsule contains
20 billion CFU

L. plantarum, L. casei, L. gasseri,
B. bereve, B. infantis, L. fermentum,

L. paracesi, L. acidophilus, B. bifidum,
L. rhamnosus, L. salivarius,

S. thermophilus, L. reuteri, and B. lactis

5. Probiotics Effect on Viral Replication

Novel infectious illnesses and unexpected pathogenic potential may result from viral
transmissions between animals and humans. These illnesses influence human health,
the economy, and other aspects of a global society. Fever, dry cough, myalgia, dyspnea,
and weariness are some of the symptoms that are associated with these disorders. Other
symptoms include sore throat, rhinorrhea, headache, and gastrointestinal disorders. The
most prevalent and severe sign of the illness seems to be pneumonia [71]. Unfortunately,
there is no specific drug for the treatment of various new emerging viruses. In addition,
the drug design and validation process, which is necessary for developing novel antiviral
therapies, takes substantial time.

Consequently, repurposing natural compounds may provide alternatives and enhance
antiviral treatment options. In addition, the particular function that probiotics play in
regulating the microbes in the gut, maintaining gut homeostasis, and generating interferon
as an antiviral mechanism is shown. The rapid mutation rates of viruses, particularly
RNA viruses, make it challenging to develop effective treatments or vaccinations for viral
illnesses. In this section, we evaluated the research on the antiviral effects of probiotics for
preventing and treating viral infections based upon the different virus types.

5.1. Human Immunodeficiency Virus (HIV)

An in vitro investigation was conducted to assess the efficacy of LAB isolated from
healthy women’s breastfeeding to prevent HIV-1 infection. There were 38 different types of
breastmilk bacteria tested in this research investigation. Bacteria that have been heated to
death and cell-free liquids from bacteria cultures were tested for their ability to stop HIV-1
infection. Viral isolates with tropism for CXCR4, CCR5, or dual tropism were used in the
tests. These findings establish for the first time that commensal LAB isolated from human
breastmilk suppresses HIV-1 infection in vitro and indicate that these bacteria may play a
role in mucosal protection against HIV-1 in the nursing newborn [72].

5.2. Herpes Simplex Virus (HSV)

HSV-1 and HSV-2 were suppressed dose-dependently by Enterococcus mundtii ST4V,
isolated from soya beans [73]. Enterocins ST4V and CRL35 inhibited viral particle repli-
cation [73,74]. Several vaginal Lactobacillus strains were tested in vitro for their ability to
protect against the herpes simplex virus type 2 (HSV-2) infection. Bacterial cells that are
still alive affect several stages of viral replication. Anti-HSV-2 activity lacked virucidal
properties. It was exerted via the action of soluble bacterial factors, which could inhibit the
generation of infective virions in the presence of the bacteria. Infected cells fed cell-free
lactobacilli supernatants had considerably lower HSV-2 production. Lactic acid effectively
inhibited viral intracellular antigen production, and both virucidal efficacy and replication
inhibition were associated [75]. HSV-2 replication was inhibited in other investigations by a
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non-protein cell wall component of the bacteria Lactobacillus brevis [76]. Probiotic strains of
Lactobacillus paracasei subsp. rhamnosus, Lactobacillus paracasei, L. Plantarum, and Lactobacillus
reuteri entrapped vesicular stomatitis viruses by adhering to the particles [77].

5.3. Swine Influenza Virus

An investigation was conducted to determine the probiotic Enterococcus faecium
(E. faecium) NCIMB 10415’s inhibitory impact on replicating two swine influenza virus
strains (H1N1 and H3N2) in a continuous porcine macrophage cell line (3D4/21) and
MDBK cells. The examinations showed direct adsorptive trapping of SwIV through
E. faecium. A probiotic microorganism fights influenza viruses in at least two ways: directly
interacting with them and boosting the body’s natural defenses at the cell level [78]. There
are many ways that LAB probiotics can be antiviral: They can interact with viruses di-
rectly, make antiviral inhibitory metabolites, and make the immune system work more [79].
A high degree of specificity and selectivity was shown by LAB species for the inhibitory
action [80]. IL-10 is an anti-inflammatory cytokine in the human immune response [80,81].
IL-10 was initially identified as a T-helper type 2 (Th2) cell product that suppressed cy-
tokine generation in Th1 cells [82,83]. Additionally, probiotics may inhibit the production
of pro-inflammatory cytokines by interfering with the mitogen-activated protein kinase
(MAPK) and nuclear factor-kappa B (NF-κB) pathways [84,85].

Observations of virus replication inhibition have been the basis of most bacteria
in antiviral activity reports. In addition, the particular function that probiotics play in
regulating the microbes in the gut, maintaining gut homeostasis, and generating interferon
as an antiviral mechanism is shown. Probiotics activate the macrophages and NK cells,
modulate immunoreactions, and enhance the immune reaction to inhibit viruses [86,87].
A study has exhibited that either live LAB or cell-free supernatants (CFS) might restrict the
porcine epidemic diarrhea virus (PEDV). The specific mechanism of probiotics is unclear
and might be a powerful treatment against a pandemic strain of PEDV [88]. Another
study has shown through the mice model that genetically engineered Lactobacillus casei oral
vaccine effectively stimulates the mucosal SIgA and systemic IgG antibody responses [89].
Many types of research have been conducted to search for desired genes and antigens
to fight the PEDV of probiotics [89–92]. In their examination, Liu et al. showed that
modified Lactobacillus plantarum acted strongly as an antiviral agent in intestinal porcine
epithelial cell lines [90]. The rapid mutation rates of viruses, particularly RNA viruses,
make it challenging to develop effective treatments or vaccinations for viral illnesses. This is
especially the case with RNA viruses. There is still much mystery surrounding the complex
mechanism by which probiotics affect the host biology and immune system. Further studies
are currently required to determine the precise mechanism of antiviral action.

6. Immunomodulatory Effects of Probiotic

Probiotics protect the host by regulating, stimulating, and modulating immune re-
sponses. To better understand probiotics’ immunomodulatory effects, researchers have
focused on comprehending their potential better to prevent or relieve some illnesses for
which effective medical therapy is currently lacking. It has been proven scientifically that
immune cells (T cells and B cells) play a role in adaptive immunity. They protect the
body from infections by building memories of the diseases they fight [93]. This section
summarizes current research on probiotics’ immunomodulatory characteristics.

Probiotics have three functions such as protective, metabolic, and trophic [94]. It
is worth mentioning that trophic function has gained attention in immunomodulation
investigations. Generally, vertebrates’ immune systems may be classified as innate or
adaptive. Innate immunity is a type of defense that is not specific. For example, when
pathogens are found in the body, it reacts quickly or almost immediately. It also has a
pathogen-specific long-term protective memory that helps the adaptive immune system
fight and kills pathogens when they return [95]. Adaptive immune responses are triggered
when lymphocytes, particularly B and T cells, recognize antigens with their unique recep-
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tors. There have been a lot of studies and reports about probiotics in the last few years.
They have been found to help the immune system in many ways, including boosting the
immune barrier [96,97]. Probiotic homogenates from Lactobacillus acidophilus, Lactobacillus
rhamnosus GG, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophiles, and
Bifidobacterium lactis have been shown to inhibit mononuclear cell growth [98]. Bifidobac-
terium breve exhibits an elevated humoral immune response following stimulation with IgA,
but Bifidobacterium bifidum dramatically improves antibody responses to ovalbumin [99].

Additionally, enterocytes and M cells may transport macromolecules, antigens, and
microbes through the epithelium via a transepithelial vesicular transport mechanism.
Antigenic chemicals boost the body’s innate and adaptive immune systems after getting
through the intestinal barrier [100]. Strains of probiotic bacteria significantly impact the
gut barrier by activating B cells to produce IgA, which helps maintain a healthy gut barrier.
Probiotics have been shown to influence the generation of cytokines by APCs, which
begins adaptive responses, an in vitro study using enterocyte cells (caco-2, HT-29, and
dendritic cells derived from PBMC). Cytokines also help the body fight off bacteria, fungi,
viruses, and other harmful things that try to get in. Based on research undertaken in animal
models, it has been shown that specific nuclear-regulated cytokine genes benefit from
cytokine-mediated binding and cascade activation by activating or inhibiting particular
cell-surface receptors [101–103]. IL-1, IL-8, and TNF- were all increased by Lactobacillus sakei
in an in vitro investigation involving Caco-2 cells; however, TGF- β (anti-inflammatory)
production was affected by Lactobacillus johnsonii. This study found that interleukin-6
promotes the clonal proliferation of IgA B lymphocytes while stimulating the synthesis
of antibodies such as immunoglobulin M and immunoglobulin G and decreasing IgE
secretion [104]. Anti-inflammatory cytokines, such as IL-4, IL-5, IL-6, IL-10, and IL-13, are
produced by Th2 cells. In addition, B cells, monocytes, DCs, and Tregs induce an adaptive
immune response in the body [105,106]. A study was conducted to investigate the effect
of Lactobacillus bulgaricus, Lactobacillus casei, and Lactobacillus crispatus on Escherichia coli
to investigate bacterial modulating effects on cytokine responses. Probiotics interact with
immune-competent cells and change the production of proinflammatory cytokines. This
is because there was a significant drop in TNF-α output in inflamed mucosa grown with
L. casei and L. bulgaricus. Interleukin-10 mouse models through the Bifidobacterium infantis
and Lactobacillus salivarius were employed to assess their influence on host immune systems
in the mucosa and systemic cytokine profiles [107].

Probiotic-treated animals had significantly lower interferon (IFN) and TNF (TNF-α) levels
in their Peyer’s patch lymphocytes and spleen cells, respectively [108]. In the p38 MAPK path-
way, Lactobacillus rhamnosus GG plays a critical function in activating anti-apoptotic Akt/protein
kinase B and inhibiting pro-apoptotic factors [109]. Bifidobacterium and Lactobacillus species were
given to rats to evaluate the immunomodulatory effects of probiotics, with overexpression of
IL-10 (anti-inflammatory cytokines) and downregulation of TNF-α and IL-6 showing modu-
lation or regulation of immune responses (proinflammatory cytokines). The studies showed
that the probiotics significantly increase IgG and IgA concentrations in rats, although this is
dose-dependent. Probiotics also can be immunomodulators to interact with epithelium and
DCs, macrophages/monocytes, and lymphocytes [110]. Another study discovered that the
proinflammatory cytokine TNF-α was significantly lowered by the Lactobacillus bulgaricus and
Lactobacillus casei when interacting with immunocompetent cells. Numerous Bifidobacterium and
Lactobacillus strains have been shown to induce TGF-β, IL-6, and IL-10 expression in epithelial
cells and promote immunoglobulin synthesis further (IgA). These probiotic bacteria strains make
the immunoglobulin receptors on the cells of the intestinal epithelium cells [111]. Studies show
that probiotics can only affect cytokines from a single strain. Therefore, combining different
probiotic strains to treat inflammation-related tissue damage and gastrointestinal inflammation
in humans is beyond the scope of further research.
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7. Role of Probiotics in Respiratory Tract Infections

Many non-antiviral and antiviral remedies are presently searched to conquer morbidity
and mortality correlated with influenza and other respiratory virus infection [112,113];
still, no one is entirely effective in winning the fight against them. Modern medicine
and nutraceutical have a broad spectrum of uses in various ailments, including antiviral,
immunomodulators, antioxidant, hepatoprotective, anticancer, and cardioprotective [114].
Studies comparing the makeup of the lung microbiome in healthy and diseased states have
shown substantial variations [115,116]. Lung disease has reduced bacterial diversity, with
a single taxon or small group dominating [117,118]. It has been shown that age-related
changes in composition and diversity in the gut microbiota were seen in cross-sectional
research involving individuals from various age groups [119]. Bifidobacteriaceae, Bacteroidaceae,
Ruminococcaceae, and Lachnospiraceae become less common with aging [119–122].

Unique microbial communities reside on the surfaces of mucosal linked with gastroin-
testinal tract (GT) and respiratory tract (RT), according to studies of the last 15 years, and
these communities impact host defense against viral infections. The competent immune
system lessens viral infections and the susceptivity to secondary bacterial infection. An-
tiviral immune responses induced by RVIs related to the change of microbial formation
and activity (“dysbiosis”) in the GT and RT might change succeeding immune activity
toward secondary bacterial infection or change the dynamics of inter-microbial commu-
nication; therefore, potential pathogenic bacterial species proliferation is increased. Thus,
examining how respiratory viruses modify the gastrointestinal microbiome is worthwhile.
It has been proposed, for example, that there is a link between viral-mediated inhibition of
antibacterial immune responses [3]. The density of DNA and RNA viruses in the intestinal
virome equals that of bacterial cells. It may result in a 20:1 enhancement in bacterial cells
on gut mucosal surfaces and inside mucus layers [123]. Gut microbiome and respiratory
infection interactions are bidirectional. Studies have shown that the respiratory virus may
change the gut microbiome; it forms adaptive immune responses to fight the respiratory
viruses. Antibiotic cocktail pretreatment in mice has raised morbidity from influenza
infection [124,125]. Inhibiting severe illness and limiting viral load, the gut microbiota and
immune system interact and perform a protective function. Immunity in elderly individu-
als and infants is weakened. As a result, these two categories have a high mortality rate
and are easily infected by viruses.

The usage of probiotics has extensively grown because of their effect on immune re-
sponses, especially for those affected by lower and upper respiratory tract infections. Cytokine
storm is an inflammatory reaction of superinduction that has been associated directly with
severe complications and viral pneumonia of respiratory diseases. Probiotics as potential
immunomodulatory agents and enhance the host’s response to RVIs. Therefore, probiotics’
antiviral properties and immune responses are vital to understanding [108,109,126]. Further-
more, interactions between probiotics and macrophages and dendritic cells were seen in the
lamina propria, resulting in NK cell activation, which triggers IFN-γ production to defend
against viruses. PAMPs of probiotics interact with different TLRs, and NF-κB-mediated
antiviral gene expression is incited. Efficient immune cells go to infection sites via circulatory
and lymphatic systems to protect against respiratory viruses [5]. The probable antiviral action
of probiotics is shown in Figure 2.
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8. Role of Probiotics in SARS-CoV-2 Infection

In December 2019, the severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2)
was discovered in China’s Hubei province, and it causes COVID-19. SARS-CoV are enveloped,
positive sense single-strand RNA viruses that belong to the broad family Coronaviridae and
subfamily Caronavirinae [127]. COVID-19 has forced us to execute public health measures
worldwide as no specific medications are in hand to treat this viral infection [128,129]. The
risk of COVID-19 infection is higher than the seasonal flu [130]. COVID-19 is a viral infection
that causes respiratory distress but can also induce signs and symptoms related to the gas-
trointestinal tract. The human gut microbiota regulates immune system homeostasis, which
is vital for protecting responses to diverse infections. In addition, lung microbiota and gut
have reciprocal interactions called the gut–lung axis (GLA). As a result, metabolites and gut
microbiota may trigger any alterations undermining the immune system’s antiviral function
against the respiratory virus, including SARA-CoV-2 [131]. Healthy lungs and gut microbiota
protect against respiratory tract infection (RTI) related to COVID-19 and the influenza A
virus. Thus, any changes in the gut microbiota can impair other organs’ activities [132,133].
Additionally, 33% of patients suffer from irritable syndrome (IBS), and 50% of patients with
inflammatory bowel disease (IBD) are sensitive to respiratory ailments without chronic or
acute respiratory complications [134,135].
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The current pandemic needs alternative treatment to control the high morbidity and mor-
tality rate. We can use previously approved remedies with safety profiles to treat this disease.
Probiotics may be available as an alternative treatment with safety profiles. Some studies have
been conducted against different strains of SARS-CoV-2, and results show that probiotics can
manipulate cytokine storms and modulate immune responses [136,137]. It was found that
various commercial probiotics are used and effective against SARS-CoV-2, but the subject of
their efficacies is debatable in treating COVID-19 patients now. Nineteen clinical trials were
found on ClinicalTrials.gov in the context of probiotics such as mixtures of Lactobacillus,
Bifidobacteria, and Lactobacillus to treat COVID-19 patients [89]. The gut microbiota com-
position can change the prognosis and severity of COVID-19 during hospitalization and
alter the immune responses [138]. A microbiome-oriented risk assessment might be used
for severe patients’ risk profiles [139]. A few components of probiotics could effectively
bind the ACE2 receptor proteins and spike proteins (S) to avert the virus from penetrating
the host body [140]. It was also found that administering more than twenty probiotics
has improved antiviral antibody production and anti-inflammatory interleukin levels and
reduced the viral load [5,141–143].

Bifidobacterium spp. and Lactobacillus spp. are vital traditional probiotics that can
regulate a varied gut ecology in flight against SARS-CoV-2. The results of clinical trials
and circumstantial evidence provide the foundation for the argument for using probi-
otics to treat SARS-CoV-2. In the gut microbiota, Lactobacillus may cause eubiosis via its
antiviral properties, which can have an anti-inflammatory impact and help avoid superin-
fections. Probiotics have exhibited prospects for lessening the severity of symptoms and
viral pathogenicity of COVID-19 and significant nourishing help for patients, but clinical
approaches ought to be developed. Therefore, shortly can be enlightened on probiotics’
preventative or medicinal role. The possible role of probiotics in SARS-CoV-2 infection is
shown in Figure 3.
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9. Clinical Trial on Probiotics’ Role in Respiratory Viral Infections

Immunity and airway physiology could be modulated by intestinal microbiota through
the gut–lung axis. The microbiome analysis of COVID-19 patients showed a specific
intestinal dysbiosis in COVID-19 disease pathophysiology. COVID-19 might be controlled
by managing the intestinal microbiome; therefore, the probiotic’s role is crucial in the
present epidemic, but probiotics’ grounds for treating COVID-19 are indefinite. Researchers
used an in vitro cytokine response test to analyze the immune system of probiotic lactic acid
bacteria used to control COVID19 in a single-arm, double-blinded, prospective experiment.
The emphasis of the study was to evaluate the effectiveness of Bifidobacterium longum,
Lactobacillus plantarum (L. plantarum), and Lactococcus lactis ssp. lactis, against infection
with respiratory RNA viruses. Twenty qualified volunteers were enrolled, and 18 of them
finished the intervention. In vitro cytokine response assay showed a high innate cytokine
index for all subjects by L. plantarum. From sixteen to eighteen subjects showed a rising level
of cytokine index with significant differences in the fold change. At last, it was concluded
in this trial that L. plantarum exhibited immunomodulatory effects and mimicked the
blood cytokine responses developed by the initial immune response to viral infection. The
trial outcomes confirmed that L. plantarum might be the potential alternative to manage
COVID-19 [144].

In clinical trials on diabetes type 2 patients, it was found that fermented milk contain-
ing L. acidophilus (L. acidophilus) LA5 and Bifidobacterium lactis Bb12 control anti-inflammatory
cytokines and help to improve blood sugar levels [145]. It also reported that probiotics
reduce blood sugar levels and insulin resistance by improving inflammation. Yogurt with
L. acidophilus strain La-5 and Bifidobacterium animalis (B. animalis) remarkably decreases
HbA1c levels [68]. A clinical study showed that a lessening level of probiotics such as
Bifidobacterium and Lactobacillus is the cause of the imbalance of intestine microbiota among
some patients with COVID-19, which leads to secondary infection due to bacterial translo-
cation [146]. Another study was conducted on 42 participants of two nursing homes with
ages ≥ 65 years and administered jelly of 10 billion heat-killed L. paracasei or placebo for
six weeks. Administration of the influenza vaccine is performed after three weeks of jelly
intake. The outcomes have shown no significant variation between the groups in immune
parameters with antibody responses against the vaccinations [147]. Studies have proven
that intake of probiotics is good for lessening the RI symptoms and modulating the immune
response. Therefore, RDBPC parallel-group trial was conducted to examine this activity.
L. casei 431 and L. paracasei were received by 1104 healthy adults. After 21 days, participants
were vaccinated with the seasonal influenza vaccine. The trial’s findings revealed that
L. casei 431 had no meaningful influence on immunological responses to influenza vaccina-
tion but did alleviate UR symptoms [148].

According to the research, age-related immunological dysregulation increases infec-
tion rates and lowers vaccine efficiency. In a clinical trial, L. casei Shirota reduced respiratory
symptoms in senior nursing home residents and boosted their immune response to in-
fluenza vaccination [149]. A clinical examination was conducted to examine whether a daily
probiotic dairy drink may improve the immunological response to influenza vaccination
in healthy senior volunteers over 70. Anti-influenza antibodies were more significant in
the probiotic product group than in the control group. Individuals over 70 may benefit
from frequent use of a specific probiotic product demonstrated to enhance particular an-
tibody responses to influenza vaccination in this age range [150]. The studies enlisting
the probiotic efficacy against viral infection are summarized in Table 2. According to our
research evaluation, probiotics seem to be a cost-effective method of enhancing vaccination
effectiveness and extending protection. Therefore, studies in the future should concentrate
on finding the most promising strains, dosages, and timing of vaccination.
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Table 2. The studies enlisting the probiotic efficacy against viral infection.

Participants Interventions Comparison Outcomes Study Design Reference

18

L. plantarum,
Bifidobacterium

longum, and
Lactococcus lactis ssp.

L. plantarum,
Bifidobacterium longum,

and Lactococcus lactis ssp.

As an anti-COVID-19
probiotic, L. plantarum

should be
consumed daily

A single-arm,
double-blind,

prospective trial
[144]

20 infants
Bifidobacteria

(B. longum/B. infantis
and B. breve)

Bifidobacteria
and placebo

Antipoliovirus reaction
could be improved by
intestinal Bifidobacteria

RPC trial [151]

Infants
(6 months of age) Probiotic strains Probiotics and placebo

Probiotics may boost
the immune system’s

response to
Hib vaccination

RDPC,
allergy-

prevention
trial

[152]

60
Lactobacillus

plantarum CECT
7315/7316

Lactobacillus plantarum
CECT 7315/7316

and placebo

It possesses
immunostimulant
properties and can
improve influenza

vaccine effectiveness
in the elderly

RDPC,
human trial [153]

211

Bifidobacterium
animalis ssp.

lactis (BB-12®) &
Lactobacillus paracasei

ssp. paracasei
(L. casei 431®)

BB-12® (capsule) or
L. casei 431® and placebo

Immune function may
be improved by using
BB-12® or L. casei 431®

RDPC,
parallel-group

study
[154]

42 Lactobacillus paracasei Lactobacillus paracasei
or placebo

Immune markers
showed no

significant changes
RDPC [147]

1104 healthy
adults

L. paracasei and
L. casei 431

L. paracasei and L. casei
431 or placebo

L. casei 431 has
no significant effect on
influenza vaccination

but lessens the
period of URSs

RDPC,
parallel-group

study
[148]

15 adults Lactobacillus in Jelly Lactobacillus and placebo

Lactobacillus in Jelly
improves the influenza
vaccine effectiveness

in the elderly

RPC trial [155]

737 healthy
people aged ≥ 65 L. casei Shirota L. casei Shirota

and placebo

It reduces respiratory
symptoms and boosts

the immune response to
the influenza vaccine

RDBPC trial [149]

308 elderly L. casei DN-114 001 L. casei and placebo
Boost specific

antibody responses to
influenza vaccination

Two RDMC
studies [150]

Abbreviations: RDBPC—randomized, double-blind, placebo-controlled; RPC—randomized, placebo-controlled;
UR—upper respiratory; IR—immune responses; URSs—upper respiratory symptoms; RMDC—randomized
multicenter, double-blind, controlled; GI—gastrointestinal.

10. Scope of Prebiotics or Probiotics and Vaccine Development to Prevent
Viral Infections

Prebiotics are a form of dietary fiber demonstrated to boost antibody levels
after immunization. Epidemiologic studies have observed that the estimation of intake of
prebiotics is complex, but quantifying dietary fiber is a routine process [156]. This section
investigates the immunogenicity of prebiotics and probiotics. Prebiotics and probiotics are
related in terms of their advantages. Many vegetables and fruits are a source of prebiotics,
specifically those containing complex carbohydrates, such as resistant starch and fiber [157].
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These complex carbohydrates are not digestible; therefore, they pass on by the digestive
system as food for various microbes and bacteria. Prebiotics are similar to fertilizers in that
they encourage the growth of beneficial bacteria in the digestive tract. Prebiotics has many
beneficial effects that support a healthy gut for a better digestive system, lessen adverse an-
tibiotic effects, and promote other benefits. However, it is found that less research has been
conducted on prebiotics than on probiotics. Microbiome therapy describes the consumption
of a mixture of prebiotics and probiotics. Prebiotic fibers assist feed and potentiate probiotic
bacteria. The combination of these two enhance probiotics’ effectiveness.

Infectious illness prevention relies heavily on vaccines, which are unlikely to change
soon [158]. Prebiotics alter the immune responses to the allergy and cause a lower incidence
of dermatitis. Many studies have exhibited that prebiotic carbohydrate affects vaccine-
specific antibody response to develop the immune system in healthy infants. A prebiotic
mixture of long-chain fructo-oligosaccharides and short-chain galacto-oligosaccharides
(scGOS) might work especially by stimulating or down-regulating Th1 and Th2 actions,
respectively [159]. Current studies have indicated particular activities on normal T cells
with upregulation and downregulation of Th1 and Th2, respectively [160–162]. Probiotics
enrich adaptive and innate immunity [131,163].

Antibody responses to vaccines may be affected by probiotics due to their immunomod-
ulatory activity. Therefore, the administration of probiotics in allergy-prone infants has
increased. A systematic review was conducted to examine the effect of probiotics on
RTI from January 2010 to January 2020. The results of this review concluded that probiotics
could significantly raise cytokine levels in the plasma, improve the quality of life, and
enhance the effect of the influenza vaccine by lessening the titer of viruses and duration
and occurrence of RI. These immune-modulating and antiviral effects and their capability
to provoke interferon production suggest using probiotics as an auxiliary cure to control
COVID-19. Probiotics could be an appropriate therapy for RTI and a feasible option to
help faster recovery with increased vaccine effect [21]. The immunomodulatory impacts of
probiotics could affect the response to vaccines. Another systematic review analyzed the
randomized placebo-controlled human research to examine probiotics’ consequences on
humoral vaccine reactions. In this, 3812 enrolled people were examined through 26 studies
to explore the outcome of 40 distinct probiotic strains on the reaction to 17 diverse vaccines.
Probiotics have been demonstrated to have a beneficial effect in half of the investigations.
The beneficial effect of vaccine response was most robust for parenteral influenza and oral
vaccinations. There was a considerable variation between the selection of probiotics, dose,
strain, purity, viability, and timing and duration of administration. The findings of this
analysis indicated that probiotics are a very affordable intervention that may be used to
increase vaccination efficacy and duration of protection [18].

Probiotics enriched the response to the influenza vaccine. Therefore, future researchers
must search for the most favorable strains, timing, and administration doses concerning
vaccination. B. lactis and L. paracasei (109 CFU) were administered for six weeks, and it
increased the Influenza specific IgG, IgG1, and IgG3 levels (p ≤ 0.01). Higher seroconversion
rates for influenza-specific IgG, IgG1, and IgG3 (p < 0.010) and higher influenza-specific
IgA levels in saliva were noted 4 weeks following trivalent inactivated influenza vaccination
(TIV) (B. casei p = 0.017, B. lactis p = 0.035) [154]. The live-attenuated influenza vaccine
(LAIV) protects against influenza by activating the immune system’s mucosal mucosa. It is
proven by the studies conducted on animals and adults that probiotics enhance the immune
response when the vaccines are delivered mucosally [164]. From individual to individual,
the immune response to vaccines differs. Therefore, the duration of the protection and
efficacy against the various strains must examine. The above-discussed studies claimed
that probiotics might enhance the vaccine efficacy and prolong the protection in the present
scenario. Future research should confirm the optimal strains, timing, and administration
doses of vaccination. The possible scope of probiotics in vaccine development against viral
infections is shown in Figure 4.
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11. Factors Affecting the Delivery of Probiotics

Probiotics efficiency depends on these microorganisms’ physiology, activity, and vi-
ability. In addition, not all bacteria are similar in terms of their advantages and ways of
action. Therefore, not all probiotics are equivalent. Probiotic strains may have a wide
range of beneficial benefits on the host, and most probiotic products have been developed
using Lactobacillus and Bifidobacterium species to withstand the challenges of preparation,
storage, and delivery [165]. Probiotic must be resilient enough to withstand the rigors of
the manufacturing process without losing much of its vitality. The survival of microorgan-
isms is affected by various physical and chemical conditions such as desiccation, oxygen
exposure, humidity, osmotic pressure, and high temperature. In addition, various microbial
species are affected by the severe GI conditions defined by low stomach pH and bile salts
in the small intestine [166]. On the other hand, numerous Lactobacillus and Bifidobacterium
species are microaerophilic and aero-tolerant and relatively tolerant of various environ-
mental changes encountered during preparation, storage, and GI transportation, which,
when combined with well-defined cultivation methods, makes them preferable probiotics
products [167]. These microbes are hard to work with because they are prone to oxygen and
often in gastric environments after indigestion [168,169]. Difficulties hinder next-generation
probiotics in preserving these susceptible microorganisms’ viability via typical preparation,
storage, and administration procedures. The capacity of a probiotic strain to outcompete
another strain within a certain niche is thus required for the establishment of a probiotic in
the gut to be long-lasting [170,171].

Oxygen-sensitive bacteria respond best to freeze-drying processing. It is necessary
to desiccate oxygen-sensitive microorganisms to store them for an extended period [165].
Probiotic concentrations of 106 CFU/mL in the small intestine and 108 CFU/mL in the
colon have been shown to have therapeutic benefits [172]. Several requirements must be
satisfied to convey probiotic advantages to the consumer properly. From raw materials
to the finished product must be monitored and documented for quality assurance, and
this must be performed on time. The development of consumer products requires con-
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siderable expertise and experience. In the past, probiotic Lactobacillus and Bifidobacteria
have been added to fermented dairy products, which have a short shelf-life and need
refrigeration. Dietary supplements and “dry” food matrices may now include probiotics,
which are projected to remain stable at room temperature and humidity for up to 24 months.
High-quality probiotics may be effectively included in various delivery methods if the
manufacturing process, product formulation, and strains are chosen correctly [173].

To produce the next generation of probiotics, new or improved methods of the mi-
crobial production cycle are required. Oral administration is the most effective when the
intended site is in the GT. Other options include rectal and vaginal [24,59,170,172]. As a
result of their high sensitivity to oxygen and the potential for gastrointestinal disorders
after ingestion, working with these bacteria is complex. The difficulties in preserving
the survival of these sensitive bacteria via typical preparation, storage, and distribution
procedures pose a barrier to the commercialization of this sort of next-generation probiotics.
A suppository base, such as silicon dioxide, microcrystalline cellulose, rice maltodextrin,
magnesium stearate, methylcellulose, and hydroxypropyl, is added to improve the per-
formance of the probiotic diluent, coating agent, lubricant, blinder, and sweetening agent.
An oral probiotic composition should help prevent or cure respiratory infections. Under-
standing the function of the oral microbiota in infectious disease is critical for developing
therapeutics for preventing and treating respiratory illnesses. However, further research is
needed to determine the clinical effectiveness of delivery-related characteristics.

12. Conclusions

One of the most prevalent viral or bacterial infections is RVI. Because of an unbalanced
microbial population in the digestive and respiratory systems, people are susceptible to
RVIs. As far as the lungs are concerned, the gut microbiota plays a vital role in triggering
immunological responses. Probiotic strains exhibit antiviral activity against common
respiratory viruses. Lactobacillus and Bifidobacteria have been demonstrated to help in RVIs.
Probiotic therapy may be advantageous in reducing disease-induced inflammation while
also strengthening mucosal immunity and limiting the transmission of viral infections.
Several research findings on probiotics suggest that their administration may also be
beneficial in lowering the severity of RVIs and the significant difficulties associated with
COVID-19. Probiotics can be used as a complementary therapy to reduce the mortality rate
of COVID-19. The supplementation of probiotics may be beneficial in viral illnesses by
enhancing immunity. An oral probiotic composition should help prevent or cure respiratory
infections. Understanding the function of the oral microbiota in infectious disease is critical
for developing therapeutics for preventing and treating respiratory illnesses. According to
this review’s findings, probiotics’ immunomodulatory properties may help treat respiratory
viral infections. Current microbial product processing procedures are not well adapted to
produce next-generation probiotics; thus, improvements or new processing methodologies
are required. Oral administration of next-generation live probiotics has received little
research. However, further research is needed to determine the clinical effectiveness of
delivery-related characteristics and the optimal dosage for each strain in various therapeutic
settings. In our analysis of trials, probiotics seem to be a cost-effective method of enhancing
vaccination effectiveness and extending protection. Future research should determine
the most effective strains, dosages, and administration schedules concerning vaccinations.
Finally, probiotic-based antiviral research is expected to benefit from this review’s findings.
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