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complexes as a cause of multiple drug
resistance via regulation of epithelial-to-
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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) patients suffer poor outcomes, including a five-year
survival of below 10%. Poor outcomes result in part from therapeutic resistance that limits the impact of cytotoxic
first-line therapy. Novel therapeutic approaches are needed, but currently no targeted therapies exist to treat PDAC.

Methods: To assess cellular resistance mechanisms common to four cytotoxic chemotherapies (gemcitabine, 5-
fluorouracil, irinotecan, and oxaliplatin) used to treat PDAC patients, we performed four genome-wide CRISPR
activation (CRISPRact) and CRISPR knock-out (CRISPRko) screens in two common PDAC cell lines (Panc-1 and BxPC3).
We used pathway analysis to identify gene sets enriched among our hits and conducted RNA-sequencing and
chromatin immunoprecipitation-sequencing (ChIP-seq) to characterize top hits from our screen. We used scratch
assays to assess changes in cellular migration with HDAC1 overexpression.

Results: Our data revealed activation of ABCG2, a well-described efflux pump, as the most consistent mediator of
resistance in each of our screens. CRISPR-mediated activation of genes involved in transcriptional co-repressor
complexes also conferred resistance to multiple drugs. Expression of many of these genes, including HDAC1, is
associated with reduced survival in PDAC patients. Up-regulation of HDAC1 in vitro increased promoter occupancy
and expression of several genes involved in the epithelial-to-mesenchymal transition (EMT). These cells also
displayed phenotypic changes in cellular migration consistent with activation of the EMT pathway. The expression
changes resulting from HDAC1 activation were also observed with activation of several other co-repressor complex
members. Finally, we developed a publicly available analysis tool, PancDS, which integrates gene expression profiles
with our screen results to predict drug sensitivity in resected PDAC tumors and cell lines.
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Conclusion: Our results provide a comprehensive resource for identifying cellular mechanisms of drug resistance in
PDAC, mechanistically implicate HDAC1, and co-repressor complex members broadly, in multi-drug resistance, and
provide an analytical tool for predicting treatment response in PDAC tumors and cell lines.
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Background
Despite decades of clinical trials evaluating dozens of po-
tential therapeutics, pancreatic ductal adenocarcinoma
(PDAC) has remained largely refractory to improvement
of five-year survival rates, which are still less than 10%
[1, 2]. With largely non-specific symptoms and invasive
procedures required for diagnosis, only 20% of PDAC
patients are eligible for surgical resection, leaving a ma-
jority of patients with chemotherapy and radiation as
their sole course of treatment [1]. Even patients eligible
for surgical resection tend to have recurrent disease
within 2 years at which time the cancer typically is re-
fractory to adjuvant chemotherapy [3]. Multi-drug com-
binations, such as FOLFIRINOX (fluorouracil, folinic
acid, irinotecan and oxaliplatin), achieve, at best, modest
improvements in patient outcomes over single-agent
treatment [4]. Unfortunately, many people with pancre-
atic cancer develop complete resistance to potent multi-
drug cocktails [2].
The limited effectiveness of cytotoxic chemotherapy

has led to a long effort to identify alternative treatment
strategies. Large cohort sequencing efforts have estab-
lished a relatively short list of commonly mutated genes,
including KRAS, TP53, SMAD4, and CDKN2A, however
these have thus far proven to be poor drug targets [5–7].
Moreover, few genetic perturbations have been reprodu-
cibly associated with patient prognosis [7, 8]. An alterna-
tive strategy is to develop therapies that reverse
resistance or increase sensitivity to existing treatments.
Cellular mechanisms of resistance have been explored

by previous insertional mutagenesis- and RNA
interference-based screens and have successfully identified
genes whose inactivation leads to gemcitabine sensitivity
in PDAC cells [9–11]. Genome-wide CRISPR-Cas9
screening has been shown to provide complementary in-
formation to these previously developed genetic screening
methods [12, 13] and, pertinent to PDAC, has identified
essential genes, including FZD5, in cell lines with RNF43-
mutations (a recurrently mutated gene in PDAC) [14].
These prior studies suggest genome-wide screens have the
potential to identify novel mechanisms of chemoresis-
tance, but comprehensive screening for mechanisms of re-
sistance to multi-drug cocktails commonly used to treat
PDAC patients is currently lacking [15].
The growing field of precision oncology aims to pre-

dict an optimal treatment for a patient based on gen-
omic profiling. One group has begun to look for gene

expression signatures associated with drug response in
patient-derived PDAC organoids [16]. However, in the
context of highly heterogeneous tumors, detection of
genetic signatures associated with treatment response is
difficult [17]. One tractable approach to this problem is
to define the landscape of cellular mechanisms of PDAC
drug resistance experimentally, then deeply screen tu-
mors in a targeted manner for the presence of
previously-identified resistance drivers. To achieve this
goal, we performed CRISPR-Cas9 knock-out (CRISPRko)
[18] and endogenous activation (CRISPRact) [19] screen-
ing of 23,728 genes using 138,188 sgRNAs in two PDAC
cell lines (BxPC3 and Panc-1) to identify genes whose
loss or gain of expression were able to modulate sensi-
tivity to four common cytotoxic chemotherapies used in
the treatment of PDAC (gemcitabine, oxaliplatin, irino-
tecan, and 5-fluorouracil, Fig. 1A, S1A-B). We identified
both known and novel resistance genes and further in-
vestigated how HDAC1 overexpression regulates
epithelial-to-mesenchymal transition (EMT) leading to a
stem-like phenotype and drug resistance.

Methods
Reagents
Cell culture
Panc-1 (CRL-1469), BxPC3 (CRL-1687), and MiaPaca-2
(CRL-1420) cell lines were obtained from ATCC. All cell
lines were maintained in DMEM (ThermoFisher
#11965) supplemented with 10% FBS (VWR #16777),
0.5% Penicillin-Streptomycin (ThermoFisher
#15140122), and 0.5% GlutaMAX (ThermoFisher
#A12860). All cell lines were maintained at 37 °C and 5%
CO2. HEK 293FT cells (ThermoFisher #70007) were cul-
tured in DMEM (ThermoFisher #11965) supplemented
with 10% FBS (VWR #16777), 0.5% Penicillin-
Streptomycin (ThermoFisher #15140122), 0.5% Non-
essential amino acids (ThermoFisher #11140), and 0.5%
sodium pyruvate (ThermoFisher #11360070).

Plasmids
LentiCas9-Blast (Addgene #52962) or Lenti-dCAS9-
VP46-Blast (Addgene #61425) and lenti-MS2-p65-HSF1-
Hygro (Addgene #61426) were used to generate stable
cell lines for gene knockout and activation, respectively.
We used the GeCKO A pooled sgRNA library (Addgene
#1000000049) and the SAM pooled sgRNA library
(Addgene #1000000057) for gene knockout and activation
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screening. We used lentiSAMv2 (Addgene #75112) for single
gene activation validation. Guides were cloned as described
previously [20]. pMD2.G (Addgene #12259) and psPAX2
(Addgene # 12260) were used to facilitate viral packaging of
sgRNA pools and single vector plasmids.

Library amplification
The GeCKO A and SAM library were amplified as de-
scribed previously (20). Briefly, for each pooled library 8
electroporations were performed using 1uL of library
and 25uL of Lucigen Endura Electrocompetent cells
(Lucigen #60242). Pooled transformation were plated on
825cm2 bioassay plates with LB agar containing ampicil-
lin and grown for 14 h at 35 °C. Transformation effi-
ciency was greater than 1 × 108 for both libraries.
Bacterial colonies were collected, pelleted and stored at
-20 °C for less than 1 week. Plasmid DNA was extracted
from greater than 3 g of pellet using the Qiagen Endo-
Free Plasmid Maxi Kit (Qiagen #12362).

Primer sequences used for amplification are available
in Supplemental Table S1.

Viral packaging
HEK293T cells were grown to 60% confluency in
225cm2 flasks. To proceed with viral packaging, DMEM
was removed and replaced with 13 mL of pre-warmed
OptiMEM (ThermoFisher #31985). The pMD2.G,
psPAX2, and pooled library plasmids were combined
with Lipofectamine PLUS reagent (ThermoFisher
#15338) and OptiMEM. The combined solution was
added and incubated for 6 h, when OptiMEM was re-
placed with media supplemented with 1% bovine serum
albumin (ThermoFisher #A9647). After 60 h, media was
harvested, centrifuged at 3000 rpm for 10min at 4 °C, fil-
tered through a 0.45um filter (VWR #28145), and stored
at 4 °C overnight in Lenti-X concentrator (Clontech
#631231) at a 3:1 virus to Lenti-X concentrator volume
ratio. The following day the virus was centrifuged at
1500×g for 45 min at 4 °C and the supernatant was

Fig. 1 CRISPR screen reveals drug resistance genes. A Schematic describing our screening protocol. B A scatterplot shows the mean L2FC sum
for all four drugs assayed in each of two cell lines compared to the log10 p-value for the association of the same gene’s expression with with
patient survival. ABCG2 stands out as the most highest L2FC over all four drugs. C Boxplots indicate the sgRNA fold change in counts per million
comparing treated cells to control cells for each replicate and each cell line for the top ABCG2 sgRNA. Circles represent data from Panc-1 cells.
Squares represent BXPC-3
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poured off. The viral pellet was resuspended in DMEM
culture media at one-tenth the original volume and
stored at -80 °C. Packaging of all vectors was performed
identically to the pooled library, with reagents scaled
down proportionally according to the surface area of the
flask.
Viral packaging of single sgRNAs used for validation

was performed in 6-well tissue culture treated plates.
The protocol was performed as above except cells were
90% confluent, the incubation after transfection was re-
duced to 48 h and virus was either frozen as before, or
in some cases used fresh.

Drug resistance screening
Panc-1 and BxPC3 cell lines were transduced with
LentiCas9-Blast or co-transduced with Lenti-dCAS9-
VP46-Blast and lenti-MS2-p65-HSF1-Hygro for knock
out and activation screening, respectively. 500,000 cells
were seeded into each well of a six-well flask with 0.8μg/
mL polybrene (Sigma #TR-1003-G). Previously packaged
plasmid was added at volumes that ranged from 0 to
500uL of virus. Cells were then centrifuged at 2000 rpm
for 2 h at 37 °C. The following day, Panc-1 cells were
treated 10μg/mL Blasticidin and 1500μg/mL Hygromy-
cin and BxPC3 cells were treated with 2.5μg/mL Blastici-
din and 1250μg/mL Hygromycin for 1 week until
control cells (no virus added) were dead. The lowest
viral titer that had a sufficient number of cells to carry
forward were grown up such that pooled libraries could
be transduced at 500x representation at a multiplicity of
infection (MOI) of 0.4.
Pooled library transduction was performed in at least

30 wells of a 12 well flask at 3 × 106 cells per well with
0.8μg/mL polybrene and sufficient volume of concen-
trated virus to reach an MOI of 0.4 (approximately 30%
of cells surviving after antibiotic selection). Cells were
transduced as described above. The following day cells
were split into larger 225cm2 flasks and either puro-
mycin (Panc-1 10μg/mL, BxPC3 2.5μg/uL) or zeocin
(Panc-1 2mg/mL, BxPC3 3mg/mL) was added to select
for presence of knock out and activation plasmids, re-
spectively. Library-transduced cells were under selection
for 1 week post-transduction and expanded to 7 × 107

cells per treatment replicate or 1000x representation for
each of the 4 drugs (gemcitabine, oxaliplatin, irinotecan
and 5-fluorouracil) and control conditions per replicate.
Drug concentrations were as follows for Panc-1 cells:
Gemcitabine (25 nM) Oxaliplatin (2.5uM), Irinotecan
(500 nM), 5-FU (7.5uM) and for BxPC3: Gemcitabine
(25 nM), Oxaliplatin (2.5uM), irinotecan (250 nM), 5-FU
(5uM). A minimum 500x representation was maintained
at all times in control cells. Drug treatment doses were
optimized to yield ~ 80% cell death relative to untreated
control cells after 14 days of culture. After 14 days of

drug treatment, cells were pelleted and stored at -80 °C.
DNA extraction and library preparation was performed
as previously described [20].
To identify top genes from our genome-wide screen,

we prioritized genes by the “L2FC sum” in each cell line,
which is the sum of the replicate minimum log2 fold
changes of the top two sgRNAs targeting each gene.
Multi-drug hits were prioritized by computing the mean
“L2FC sum” of the four drug treatments.

Single gene validation
The top sgRNAs for genes of interest were cloned into
either LentiCrispr-v2 or LentiSAMv2 for knock-out or
activation screen validation as described previously [19].
(Sequences are available in Supplemental Table S2). To
generate stable cell lines expressing each sgRNA, single
sgRNA plasmids underwent viral packaging and were
transduced. For transduction, 106 cells were seeded per
well of a 6-well plate for a total volume of 2 mL of cells
and media. To that we added, 1.6ul of polybrene (Milli-
pore Sigma #TR-1003-G), and 1mL of packaged virus.
Then, we used spinfection for 30 min at 2000RPM at
37C. All lines were established using antibiotic selection
as described above.
Non-targeting and targeting sgRNAs were plated in

96-well plates at 750 cells/well and treated with a range
of gemcitabine, oxaliplatin, or irinotecan concentrations.
Plated cells were grown for 6 and 8 days, for the knock-
out and activation screen, respectively, with the media
changed and drug applied every 2 days. The number of
viable cells surviving drug treatment was assayed with
CellTiter-Glo (Promega #G7571). ABCG2 inhibition was
done under these conditions as well, with the only
change being the addition of 3uM sorafenib or 3uM
KO143 where indicated.

Sequencing and data processing for drug resistance screen
Three sets of replicates (control and 4 drug treated sam-
ples) for each cell line were sequenced on one lane of
Illumina NextSeq resulting in an average of 40 million
reads per sample. 5′ and 3′ adapters were observed in >
99% of reads and were trimmed using cutadapt [21].
Adapter trimmed fastq files were then aligned to the
sgRNA libraries and raw count tables generated using
MAGeCK [22]. We had a perfect alignment rate of 72–
74% of raw reads for each sample. Sequencing the con-
trol samples revealed sufficient representation of guides
with an average of 99.8 and 99.3% of sgRNAs detected
and 98.4 and 94.2% of sgRNAs detected at greater than
1 read per million in our knock out and activation con-
trol samples, respectively. A log2 fold change was com-
puted for each sgRNA in each drug treated sample
relative to the untreated control sample for each repli-
cate. sgRNAs with fewer than 10 counts in the untreated
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control samples and fewer than 50 counts in a treated
control sample were excluded from further analysis (<
1% of sgRNAs). At this step we recognized the first rep-
licate of our knock-out screen correlated relatively
poorly with the second two replicates and was excluded
from downstream analysis. We ranked each of the
sgRNAs targeting each gene by the minimum log2 fold
change across each replicate. Top genes were subse-
quently prioritized for follow up by their “L2FC sum” in
each cell line, which is the sum of the replicate mini-
mum log2 fold changes of the top two sgRNAs targeting
each gene (Supplemental Table S3A-B). Multi-drug hits
were prioritized by computing the mean “L2FC sum”
across each of the four drug treatments.

Pathway analysis
Pathways enriched for genes conferring drug resistance
were identified by comparing the distribution of log2
fold changes for the top, second, and third sgRNA tar-
geting each gene within a Reactome pathway to that of
all other genes by Wilcox ranked sum test. Reactome
[23] pathways with fewer than 10 genes targeted in our
libraries were excluded. A consolidated knock out and
activation score was computed for each pathway by
summing the –log10 P-values for the top, second, and
third sgRNAs of each pathway (Supplemental Table S4).

Predicting drug response using genome-wide screening
results
Sensitivity to each of the four drugs was computed using
a cell line’s treatment naïve gene expression levels and
the minimum L2FC Sum for each gene across both cell
lines. Raw expression data for each cell line, obtained
from sources described below, was processed to obtain
raw count tables [24]. Variance stabilizing transform-
ation was used to normalized expression and a z-score
was calculated [25]. Next, a scalar was computed to
weight each gene’s expression level using the L2FC Sum.
We computed the weighted expression values for each
gene. Finally, the cumulative sum was calculated to gen-
erate a single value representing a cell line’s expected
level of resistance to the given drug. Irinotecan sensitiv-
ity and gene expression data were obtained for 18 PDAC
cell lines with permission from the Cancer Cell Line
Encyclopedia [26]. (https://portals.broadinstitute.org/
ccle). Gemcitabine sensitivity (cell lines were classified as
sensitive, intermediate, or resistant) and gene expression
data for 14 PDAC cell lines was obtained from previ-
ously published work [27]. A panel of five PDAC cell
lines was screened for oxaliplatin sensitivity by treating
with serial dilutions of the drug as described previously
[27]. Cell counts at each dose were compared to a ve-
hicle control to construct a six-point dose response
curve. The area under the dose-response curve was used

to compare sensitivity. Patient expression data and treat-
ment info was obtained from a previous study using the
GEO accession GSE79670.

Survival analysis
To create an integrated analysis of our screen results
(knockout and activation) and patient overall survival,
we downloaded survival statistics for 185 PDAC patients
who participated in the TCGA study (https://gdac.
broadinstitute.org/). We calculated a cox proportional
hazard ratio and associated p-value DESeq2 VST nor-
malized transcripts using the R ‘Survival’ package ‘coxph’
function.

Genomic analysis of HDAC1 and repressor gene over-
expressing lines
Cell lines over-expressing chromatin remodelers, includ-
ing HDAC1 were characterized using RNA-sequencing
(RNA-seq) and ChIP-sequencing (ChIP-seq). Data were
generated and analyzed using established, published
methods [28, 29]. Briefly, RNA-sequencing libraries for
MiaPaca-2 and Panc-1 cells were made using the Lexo-
gen 3′ RNA-sequencing kit. They were pooled and se-
quenced on an Illumina NextSeq instrument with 75 bp
single-end reads. Analysis used previously published
methods including: Trimgalore for adapter trimming,
fastqc for quality score assessment, STAR for alignment
to hg38, HTSeq-gene to map reads to features, and
DESeq2 for differential expression analysis. For ChIP-
seq, HDAC1 over-expressing MiaPaca-2 cells were
cross-linked, harvested, and DNA was precipitated using
a commercial HDAC1 antibody (Invitrogen, PA1860).
Libraries were constructed, pooled and sequenced using
Illumina NovaSeq single end 75 bp reads. These data
were generated and analyzed using published ENCODE
protocols (https://www.encodeproject.org/documents/).

Scratch assays
MiaPaca-2 cells over-expressing ABCG2 or expressing a
non-targeting guide were used for scratch assays. Scratch
assays were completed using standard growth conditions
after plating 1 × 105 cells. Cell migration was assessed
using images captured every 8 h for 64 h on a Lionheart
FX (Biomek). Based on merged images collected over 64
h, we calculated the time (hr) to close the gap by half
the width as previously described [30]. Images were
compiled in R (version 3.5.0) and analyzed with GIMP
(v. 2.10) and Image J (version 1.5.2q).

Data availability
Raw sequencing data from our screen are available at
SRA by referencing the BioProject number
PRJNA542321.
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RNA-sequencing and ChIP-sequencing data are avail-
able using the GEO accessions GSE131596 (ABCG2
only) and GSE158541 (all other data).

Results
We performed a genome-wide knock out and activation
screen to identify genes that conferred resistance to each
of four chemotherapy drugs used in the treatment of
PDAC: gemcitabine, irinotecan, 5-fluorouracil, and oxali-
platin. We calculated enrichment for individual sgRNAs
in either the activation or knock out screen to identify
genes associated with drug resistance. We found the
sgRNAs most strongly associated with drug resistance
were highly drug-specific (Figure S1B). Replicate samples
were significantly more correlated than samples treated
with a different drug (Figure S1C-F). However, there was
a much higher correlation between samples treated with
different drugs than expected by chance, suggesting that
mechanisms of resistance were sometimes shared be-
tween drugs in our study (Figure S1C-F). To prioritize
resistance genes, we computed the sum of the replicate-
minimum, log2 count fold change (L2FC) of the two
most enriched sgRNAs targeting each gene in each cell
line. We identified multi-drug resistance genes by com-
puting the mean L2FC sum across all four drugs in each
cell line (All data: Supplemental Table 3A-B, Top Hits
by cell line and drug: Supplemental Table 4A-B). This
approach was particularly powerful because it leveraged
information from 48 perturbations (4 drug screens × 3
replicates × 2 cell lines × 2 sgRNAs).
In the CRISPRko screen, we observe minimal overlap

between cell lines and drugs. We calculated a combined
L2FC Sum representing the combined results of all cell
lines and drugs aimed at identifying multi-drug resist-
ance genes. None of these signals reached statistical sig-
nificance. We also identified overlapping genes from the
5-FU and gemcitabine screens. Since these drugs are
both nucleoside analogs, we anticipated we might see
similar hits. Again, the overlap was minimal but among
the top hits in both screens was the gene VPS25, which
is a tumor suppressor known to inhibit the Notch path-
way [31]. Inhibition of VPS25 in model systems induces
proliferation and reduced expression is associated with
modestly reduced survival in the TCGA cohort (p =
0.17). Based on these results, we focused our analysis on
the activation screen, which revealed more genome-wide
significant hits and an integrated analysis of the two
screens described below.
Analysis of the activation screen data revealed a com-

mon resistance gene. CRISPRact of the ATP-binding cas-
sette (ABC) transporter, ABCG2, was the only
perturbation that persistently induced resistance across
each of the drug treatments in both of our cell lines
(Fig. 1B-C). We created a stable Panc-1 cell line over-

expressing ABCG2 using our top ABCG2 sgRNA. RNA-
sequencing showed a highly specific, 30-fold overexpres-
sion of ABCG2 (Fig. 2A). These cells also showed a
strong resistance phenotype (Fig. 2B). Similar resistance
was observed in other pancreatic cancer lines, BxPC-3
and MiaPaca-2, with ABCG2 overexpression (Supple-
mental Figure S2A-B). We treated MiaPaca-2 cells over-
expressing ABCG2 with known inhibitors of the ABCG2
protein, KO149 and Sorafanib, to show that this resist-
ance was reversible (Fig. 2C). While ABCG2 over-
expressing cells show resistance to irinotecan as mea-
sured by the ratio of the number of ABCG2 over-
expressing cells to control treated cells, treatment with
either inhibitor eliminates the growth advantage pro-
vided by ABCG2. ABCG2 functions as an efflux pump
with a broad range of substrates and has been associated
with multi-drug resistance in several previous studies
[32–34]; these results provide a strong validation of the
efficacy of our multi-drug screening approach. Despite
being the strongest signal associated with multi-drug re-
sistance in our screen, ABCG2 expression does not ap-
pear to have clinical relevance in PDAC patient tumors,
as it is expressed at relatively low levels in all prognosis
groups (Fig. 2D).
To assess the clinical relevance of our screening data,

we developed an analytical approach that uses our re-
sults to predict the sensitivity of treatment-naïve PDAC
tumors and cell lines to our assayed drugs. We reasoned
that if drug resistance genes identified in vitro are rele-
vant in patients, we might be able to use expression of
these genes to predict patient outcomes. We computed
predicted drug sensitivity scores based on a weighted ex-
pression level of resistance genes included in our screen
using the algorithm we developed and have made freely
available, PancDS (https://github.com/rramaker/
PancDS). This script computes predicted drug sensitivity
scores from gene expression data. We computed gemci-
tabine sensitivity scores and successfully stratified
gemcitabine-treated PDAC patients into groups with dis-
tinct overall survival (Fig. 3A). We also applied this algo-
rithm to predict response to gemcitabine and irinotecan
treatment in a panel of PDAC cell lines (Fig. 3B-C).
In addition to the utility of these data for predicting

treatment response, they also can be used to uncover in-
dividual mechanisms of multi-drug resistance with clin-
ical relevance. We investigated gene pathways that were
over-represented among the genes that exhibited drug
resistance or sensitivity based on our CRISPRact and
CRISPRko screens (Supplemental Table S5). We tested
whether expression of genes in those pathway were asso-
ciated with patient survival. We identified several path-
ways that met this criteria including chromatin
remodeling, hemidesmosome assembly, and ERK/MAPK
signaling (Fig. 4A). These pathways, which when
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activated induce drug resistance and when knocked out
confer drug sensitivity, represent potentially useful
therapeutic targets.
While several of these pathways are of interest, we fo-

cused on activation of chromatin remodeling genes as
one of the consistent mechanisms of drug resistance.
The role of chromatin remodeling in pancreatic cancer
has been heavily investigated as several genes involved in
histone methylation (MLL2 and MLL3) and members of
the tumor suppressing SWI/SNF complex (SMARCA1
and ARID1A) are recurrently mutated in PDAC tumors
[35]. Moreover, global changes in repressive histone
marks has been associated with metastatic PDAC tu-
mors [36]. We found that activation of several genes in-
volved in the repression of chromatin via histone
deacetylation resulted multi-drug resistance (Supple-
mental Figure S3). Particularly prominent were members
of the Nucleosome Remodeling Deacetylase (NuRD)
complex (MTA2/3, CHD3/4, HDAC1/2, and GATA
D2A), members of the Nuclear receptor CoRepressor
(NCoR) complex (NCOR2, TBL1XR1, and TBL1X), and
the repressive transcription factor REST and its interact-
ing partner RCOR1, each of which have been

demonstrated to regulate gene expression programs im-
portant for chemoresistance [37–39]. Widespread chro-
matin repression has also been previously associated
with poor prognosis in PDAC patients [36]. Notably, his-
tone deacetylases are key members of each of these three
complexes and were also among the highly ranked genes
in our activation screen. Based on these data, we per-
formed targeted CRISPRact experiments in Panc-1 and
MiaPaca-2 cells with HDAC1, which cooperates with
trans-acting repressors as a member of several transcrip-
tional repressor complexes. Our top HDAC1 sgRNA in-
duced greater than 10-fold overexpression of HDAC1.
Overexpression of this transcriptional regulator also pro-
duced several weaker transcriptional changes that we
hypothesize to be downstream of HDAC1-mediated
transcriptional regulation (Fig. 4B). We sought to under-
stand how these myriad gene expression changes might
be linked to multi-drug resistance. Previous studies have
implicated DNA repair, autophagy, apoptosis, drug efflux
and the epithelial-to-mesenchymal transition (EMT) in
drug resistance [40, 41]. An analysis of genes in each of
these pathways shows that gene expression changes
resulting from HDAC1 overexpression were particularly

Fig. 2 A Scatterplot shows ABCG2 stands out as the single gene showing a highly significant change in expression with use of the ABCG2_A and
ABCG2_B sgRNAs to activate ABCG2 expression. These data are generated from RNA-sequencing of MiaPaca-2 and Panc-1 cells over-expressing
ABCG2. B Cell survival curves display the fraction of cells surviving after a series of irinotecan doses for Panc-1 cells stably expressing an ABCG2-
targeting sgRNA (blue) or non-targeting control sgRNAs (red and black). C Each bar represents a ratio of ABCG2 over-expressing cells compared
to a non-targeting control with the indicated drug treatments (+ indicates a treatment was added). Treatment of MiaPaca2 cells over-expressing
ABCG2 using the ABCG2 guide shows no significant cell death with inhibitor only, where as ABCG2 alone confers drug resistance. The
combination of 3uM sorafenib (green) or KO143 (maroon) with ABCG2 overexpression restores normal sensitivity to Irinotecan. D Boxplots
showing the normalized expression levels of ABCG2 in Kirby et al. for patients surviving < 300 days or > 900 days. P-value is not significant
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enriched for genes implicated in the epithelial-to-
mesenchymal transition (EMT), a pathway known to
mediate multi-drug resistance (Fig. 4B-C) [35]. Given
HDAC1’s function as a member of canonical repressor
complexes, we were surprised to find that its activation
also resulted in several up-regulated genes, including
IMP2, TIMP1, ANXA1, and WNK1, which are involved
in promoting a mesenchymal or stem cell state [42–45].
IMP2 was the most up-regulated gene we observed upon
HDAC1 overexpression. It drives a less differentiated
state via activation of Notch signaling, a known mechan-
ism of drug resistance in pancreatic cancer [46, 47].
While expression of many EMT associated genes is al-
tered with HDAC1 expression, we did not observe al-
tered expression of canonical EMT transcriptional
regulators Snail (SNAI1), Slug (SNAI2) or Twist (TWIS
T1).
Our pathway analysis of the screen data indicated that

many transcriptional repressors were associated with resist-
ance. In addition to analysis of HDAC1 overexpression, we
used CRISPRact to stably over-express 11 other transcrip-
tional repressors (ARID4A, SMARCA4, SIN3A, SIN3B,
SAP30, SAP18, RBBP7, MTA2, GATA2, CHD4, and
BRMS1) and assay gene expression in these cell lines using
RNA-seq. These lines showed concordant up-regulation of
at least one, but often several, of the same top genes over-
expressed upon HDAC1-activation (Fig. 4D).
We wanted to better understand how HDAC1 overex-

pression might lead to drug resistance via induction of
EMT. We used ChIP-sequencing (ChIP-seq) to identify
HDAC1 binding sites in cells with activated HDAC1
compared to the wild-type parent MiaPaca-2 cell line to
further understand the impacts of HDAC1 overexpres-
sion. We observed a 3-fold increase in the number of
sites occupied with HDAC1 after overexpression relative
to control cells and identified 17,501 occupied sites spe-
cific to HDAC1 activation (Fig. 5A). These new HDAC1
ChIP-seq peaks represent additional binding sites for
HDAC1 with overexpression and were highly enriched

Fig. 3 A Using weighted averages derived from the screen data we
predicted likely sensitivity to gemcitabine based on expression of
resistance-associated genes (PKG). There is a significant difference in
survival between patients with predicted high versus low
gemcitabine sensitivity (p = 0.01, Chi-squared test). B Predicted
Gemcitabine Sensitivity was calculated using a weighted average of
gene expression for resistance-associated genes based on expression
profiles for 18 pancreatic cancer cell lines. These data were plotted
compared to experimentally measured IC50 groups (Low: IC50 <
20uM, Moderate: 100uM < IC50 < 300; High: IC50 > 300uM. The
Wilcoxon P-value between the most resistant group of cell lines and
the most sensitive is 0.097. C Scatterplot showing observed
irinotecan IC50 values compared to predicted sensitivity for 18 PDAC
cells assayed by the Cancer Cell Line Encyclopedia.
(Rho = 0.44, p = 0.06)
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near the transcription start sites of genes differentially
expressed upon HDAC1 activation (Fig. 5B), suggesting
a role for direct binding of HDAC1 in modulating their
expression. Specifically we observed that HDAC1 binds
the promoters of key EMT genes including WNK1,
TIMP1, and IMP2/IGF2BP2. WNK1 and IMP2 both
show increased occupancy at the HDAC1 overexpres-
sion lines compared to the controls (Supplemental Fig-
ure S4). Finally, we tested the functional impact of
HDAC1 activation on cells. Using a scratch assay, we
found that HDAC1-activated cells exhibited significantly
increased cell migration relative to control cells as mea-
sured by the time required to close the width of the gap
by half (Fig. 5C-D).

Discussion
Large-scale screening efforts that both inhibit and en-
dogenously activate expression of genes have revolution-
ized forward genetic screen and are empowering

discoveries that were previously not possible [48]. Here,
we have presented a large screen to reveal known and
novel mechanisms of chemoresistance in PDAC, the first
screen to perform both knock out and activation in
PDAC cells. The large size of the screen allowed us to
recognize some general features of drug resistance
screens using CRISPRko and CRISPRact. We observed a
relatively weak correlation between replicate reproduci-
bility and gene significance levels across cell lines. While
this observation may be partially explained by methodo-
logical covariates like selection strength, it is also likely
that strong genetic and phenotypic differences observed
between these cell lines permit different mechanisms of
chemoresistance [49]. A gene capable of modulating
chemosensitivity across every PDAC cell line would be
an ideal target, however, our data suggests that this is
not a realistic expectation. Many previous screens for
chemoresistance in PDAC cell lines have been limited in
that they only use one cell line [9, 50] and our study

Fig. 4 A Scatter plot showing pathways enriched for multi-drug resistance in our CRISPRact and CRISPRko screens and their association with
patient survival in the TCGA cohort. Patient survival is represented by the size and color of the circle. B A volcano plot shows that activation of
HDAC1 expression using a dCas9-activation approach results in strong overexpression of HDAC1 based on RNA-sequencing. C Pathway
enrichment analysis shows that HDAC1 overexpression especially affects epithelial-to-mesenchymal transition (EMT), cell efflux, apoptosis,
autophagy, and DNA repair. P-values reported are derived from Fisher’s exact test comparing observed versus expected number of genes in each
pathway. A full list is available in Supplemental Table S5. D Overexpression of each of the target genes listed on top right quadrant leads to a
similar pattern of overexpression of genes shown on the lower right
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likely under samples the natural variation in PDAC with
only two cell lines. As sequencing and screening costs
decrease, future studies examining orders of magnitude
greater numbers of cell lines will likely add to the know-
ledge catalogued by our study.
While large-scale screening efforts like this one repre-

sent an important step in the fight to reverse resistance
and improve treatment options for PDAC, our study is
also limited in that it identifies only cellular mechanisms
of resistance. These data should be considered only part
of the picture since the tumor microenvironment also
plays a critical role in chemoresistance [51].
The data we generated demonstrate the value of

pooled CRISPR screening as a method for discovering
cellular mechanisms of drug resistance. CRISPRact of
ABCG2 was the highest-confidence perturbation capable
of inducing multi-drug resistance. We confirmed
ABCG2 overexpression in three pancreatic cancer lines
resulted in resistance to chemotherapy and we showed
that chemical inhibition of ABCG2 can reverse resist-
ance in vitro, but its clinical relevance is unclear given a

lack of strong correlation with patient outcomes. Some
reports indicate that ABCG2 is expressed uniquely in
cancer stem cells, a minority of the total cell population;
thus, ABCG2’s role may be obscured in bulk tumor se-
quencing [34].
While ABCG2 expression is not strongly linked to pa-

tient outcomes, we showed that overall, hits from our
screen are relevant to patient outcomes. Moreover, we
leveraged our screen data to predict drug sensitivity in
cell lines and to predict outcomes in patients based on
their respective gene expression profiles demonstrating
the potential application of these data, en masse, to dir-
ect personalized therapeutic approaches.
Our pathway-based analysis linked CRISPRact of sev-

eral transcriptional repressor complex members to che-
moresistance. Another recent screen also implicated
HDAC Class I signaling in resistance to dasatinib, a tyro-
sine kinase inhibitor is being tested in PDAC cell line
[52]. We observed that overexpression of several chro-
matin remodeling genes, including HDAC1, induced a
program of gene expression associated with epithelial-

Fig. 5 A ChIP-seq analysis reveals ChIP-seq peaks in the control (CTL) MiaPaCa-2 cells overlap significantly with MiaPaCa-2 cells over-expressing
HDAC1 (red). An additional 17,501 peaks are identified with overexpression of HDAC1. B Cumulative distribution plot showing that HDAC1
binding sites identified upon overexpression of HDAC1 (blue) are nearby transcription start sites (TSS) of differentially expressed genes. C Scratch
assay shows that overexpression of HDAC1 leads to increased migration compared to control cells. D Quantification of the scratch assays shows a
significant difference with HDAC1 overexpression (Student’s T-test)
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to-mesenchymal transition (EMT). EMT has been asso-
ciated with drug resistance for several decades but the
mechanisms by which EMT is induced vary between
cancers and cell lines [41, 53–55]. The EMT pathway
has been previously associated with chemoresistance in
mouse models of PDAC where key EMT transcription
factors were ablated [55]. Acquisition of EMT phenotype
has previously been associated with gemcitabine resist-
ance in pancreatic cancer cell lines [46]. These authors
showed that activation of Notch signaling was required.
Our data suggests that activation of Notch signaling can
also be achieved through chromatin remodeling, and
perhaps driven by overexpression of IMP2. Chromatin
remodeling genes have also been linked to clinically rele-
vant phenotypes in PDAC [56] including induction of
EMT and increasing stem cell populations [57, 58]. We
noted that while dozens of genes associated with EMT
were differentially regulated upon overexpression of
HDAC1, some key regulators known to drive EMT like
Snail, Slug, Twist, and Zeb1 were not significantly differ-
entially expressed [59, 60]. Our HDAC1 ChIP-seq data
integrated with RNA-sequencing from HDAC1 overex-
pressing lines demonstrates that HDAC1 overexpression
significantly increases occupation of HDAC1 at the pro-
moter regions of genes important for the regulation of
EMT and those changes likely drive chemoresistance. It
is worth noting however that we observe a broad repro-
gramming that includes altered expression of genes in-
volved in cell proliferation, migration and adhesion (all
components of EMT) as well as the regulation of
apoptosis.
An interesting observation from our integration of

HDAC1 binding and gene expression was that despite
its canonical role as a repressor, HDAC1 was capable of
binding and impacting transcription of its targets both
as a repressor and as an activator. Recent studies have
observed that HDAC complexes can play a variety of
roles in gene regulation [61]. In fact, some of the key
genes involved in EMT (e.g. TIMP1, WNK1, and IMP2)
were up-regulated following the overexpression of
HDAC1.
Given the link we observed between HDAC1 over-

expression and chemoresistance, it follows logically
that HDAC inhibition might be a relevant therapeutic
strategy. In fact, HDAC inhibitors have exhibited in-
consistent results in clinical trials to date, an observa-
tion that has been partially attributed to a poor
understanding of which HDAC classes are the best
targets and which biomarkers indicate sensitivity to
HDAC inhibition [62]. For that reason, a deeper un-
derstanding of the downstream effectors of resistance
following HDAC1 overexpression is critical to identi-
fying alternative and hopefully more suitable thera-
peutic targets.

Conclusions
Our screens represent a significant resource in the un-
derstanding of chemoresistance in pancreatic cancer.
The ability to predict patient outcomes based on the re-
sults of this screen speaks to the value of the data for
both mechanistic understanding and for clinical applica-
tion. We have explored one significant pathway resulting
from this work to further our understanding of HDAC1
specifically and chromatin remodeling more generally
with our data pointing to the relevance of chromatin re-
modeling for the regulation of the EMT program, which
contributes drug resistance. The results of our large-
scale screen provide additional avenues for exploration
in the important quest to improve treatment options for
pancreatic cancer patients.
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