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Abstract

DNA methylation analysis by sequencing is becoming increasingly popular, yielding methylomes at single-base pair and single-
molecule resolution. It has tremendous potential for cell-type heterogeneity analysis using intrinsic read-level information. Although
diverse deconvolution methods were developed to infer cell-type composition based on bulk sequencing-based methylomes,
systematic evaluation has not been performed yet. Here, we thoroughly benchmark six previously published methods: Bayesian
epiallele detection, DXM, PRISM, csmFinder+coMethy, ClubCpG and MethylPurify, together with two array-based methods, MeDeCom
and Houseman, as a comparison group. Sequencing-based deconvolution methods consist of two main steps, informative region
selection and cell-type composition estimation, thus each was individually assessed. With this elaborate evaluation, we aimed to
establish which method achieves the highest performance in different scenarios of synthetic bulk samples. We found that cell-type
deconvolution performance is influenced by different factors depending on the number of cell types within the mixture. Finally,
we propose a best-practice deconvolution strategy for sequencing data and point out limitations that need to be handled. Array-
based methods—both reference-based and reference-free—generally outperformed sequencing-based methods, despite the absence
of read-level information. This implies that the current sequencing-based methods still struggle with correctly identifying cell-type-
specific signals and eliminating confounding methylation patterns, which needs to be handled in future studies.
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Introduction
Although single-cell analyses have been spearheading
the progress in biomedicine lately, profiling of bulk sam-
ples is still in high demand for analyses that cannot be
readily accomplished using single-cell methods due to
technical or cost-related reasons. For instance, single-cell
methods are still too laborious and costly [1] for profiling
of long-time biobanked samples or large tumor patient
cohorts [2–4]. The bulk analysis of epigenetic modifi-
cations can demonstrate epigenetic variations in large
cohorts and relate those with genomic and phenotypic
characteristics [5, 6].

DNA methylation, particularly occurring at cytosines
in CpG context in mammals, carries highly distinguish-
able cell-type-specific signals [6, 7]. The inheritability
over cell divisions and the chemical stability make it
significantly more accessible for profiling. These features
of DNA methylation motivated research associating
diseases with cell-type-specific DNA methylation signals.

Such disease-associated methylation differences are
identified as differentially methylated regions (DMRs).
To this end, it was shown that tumor subtypes can be
successfully classified based on bulk DNA methylation
patterns of patient biopsies [8–10]. Nevertheless, cell-
type-specific DNA methylation signals can suffer from
confounding factors, because DNA methylation is also
associated with gender, age, various environmental
influences, etc. [11, 12]. These confounding factors make
cell subpopulation analysis difficult by increasing the
methylation pattern complexity and obscuring cell-type-
specific signals.

Even though there are in vitro techniques to purify indi-
vidual cell types from bulk samples, such as cell sorting
or cell enrichment, other spurious source of variation can
be introduced into the samples during the experimental
process and eventually further confound cell-type-
specific methylation signals. As an alternative, cell-type
deconvolution, a computational approach to infer the
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cell-type composition of bulk samples, is applicable for
cell subpopulation analysis post-experimentally. Cell-
type deconvolution has been extensively utilized to
dissect array-based DNA methylation bulk data, e.g.
Infinium 450K/EPIC microarrays [13, 14], which generates
matrices of average methylation levels at specific loci
in multiple samples (we refer to them as ’array-shaped
data’). ’Reference-based’ deconvolution methods infer
cell-type proportions based on reference methylomes of
purified cell populations. Various statistical methods and
algorithms were employed to establish and fit reference-
based deconvolution models including different forms
of regression [15–17], Expectation–Maximization (EM)
algorithm and deep neural networks [18, 19]. In contrast,
’reference-free’ deconvolution methods do not require
reference data to infer the proportions of underlying
cell types from methylomes. Numerous reference-free
methods have been proposed by us and others [20–24],
also broadly reviewed [25] and compared elsewhere [26].
Overall, reference-based and reference-free methods for
deconvolution of bulk DNA methylomes are well estab-
lished and have been used routinely, in particular for
the analysis of cellular composition in complex tumors
[16, 27–30].

More recently, DNA methylation sequencing approach-
es, such as reduced representation bisulfite sequenc-
ing (RRBS) [31] or whole genome bisulfite sequencing
(WGBS) [32], have become increasingly popular owing
to dropping sequencing costs, providing much broader
genome coverage [33–35] and single-molecule resolution
in the form of read-level methylation calls. Furthermore,
single-cell bisulfite sequencing (scBS-seq) is being used
ever more frequently [36, 37], particularly in conjunction
with multi-omics analyses [38, 39]. However, few issues
still have to be carefully managed in sequencing data.
Since it has high genome coverage, the multiple methy-
lation states from reads covering respective sites has to
be refined and well summarized. In addition, sequenc-
ing data consist of read-level methylomes so that each
CpG site includes multiple methylation state values from
all reads covering the site. This abundance of informa-
tion makes sequencing data analysis more intricate by
concealing some cell-type-specific signals. Consequently,
dealing with sequencing data highly depends on which
genomic regions are analyzed and how to interpret read-
level information altogether.

Read-level DNA methylomes from sequencing data,
in theory, should be more suitable and information-
rich for cell composition inference in bulk samples, as
compared with array-shaped data [28]. Diverse methods
have been developed for cell-type deconvolution of
sequencing-based methylome data, making use of the
aforementioned advantages, foremost read-level reso-
lution [40–44]. However, the methods published so far
were evaluated based on different data sets and variable
standards. Additionally, each method requires specific
preprocessing procedures and generates different forms
of output that might confuse less experienced users.
Moreover, previous studies mainly assessed array-based

cell-type deconvolution methods [26, 45]. Considering the
distinctive advantages and the rapidly growing demand
of sequencing data analysis, a comprehensive, standard-
ized and unbiased assessment of deconvolution methods
targeting sequencing data has become necessary.

In order to bridge this gap, we thoroughly compare
and evaluate six previously published sequencing-based
deconvolution algorithms: Bayesian epiallele detection
(BED) [40], DXM [46], PRISM [42], MethylPurify [43],
csmFinder + coMethy [41] and ClubCpG [44]. We evaluate
their performance with respect to informative feature
selection results and deconvolution accuracy under
various experimental scenarios, using in silico mixtures of
single-nucleus methylomes as well as realistic mixtures
of tumor and normal WGBS data. Based on our analysis
results, we finally propose efficient and trustworthy
pipelines to deconvolve complex cell-mixture samples in
different scenarios. To our knowledge, this benchmarking
study is the first attempt to systematize and compre-
hensively evaluate the methodological developments in
sequencing-based methylome deconvolution.

Materials and methods
Benchmarking datasets
In order to evaluate the sequencing-based deconvolution
methods, we generated synthetic cell-mixture samples
that we refer to as pseudo-bulk. For the pseudo-bulk gen-
eration, we have chosen two different datasets, mouse
brain single-cell methylC-seq data [47] and B-cell tumor
WGBS data [48].

Single-cell methylome data processing

In total, 3377 single-nucleus methylomes derived from
8-week-old mouse cortex tissue were downloaded from
the Gene Expressiong Omnibus (GEO) with the accession
number GSE97179. This dataset was created through
high-throughput single-nucleus methylome sequencing
(snmC-seq). We firstly trimmed reads twice to remove
sequencing adaptors, random primer index sequence
and C/T tail attached, using Adaptase with Cutadapt 2.6
[49]. Trimmed reads were aligned to the mm10 reference
genome using Bismark 0.22.3 [50]. After the alignment,
we sorted the resulting BAM files using samtools 1.9 [51]
and removed duplicated reads using picard MarkDupli-
cates 1.141. Finally, the reads whose mapping quality
is lower than 30 were filtered out with samtools 1.9
again. Parameters used in each step and details about the
preprocessing are clarified in Supplementary Table 1.

Tumor WGBS data processing

To generate realistic tumor–normal cell mixtures, we
downloaded diffuse large B-cell lymphoma and normal
non-cancer B-cell WGBS data from one subject each
(GEO accession number GSE137880) [52]. Trimming was
conducted using Trim Galore 0.6.6, then reads were
aligned by Bismark 0.22.3 [50] in paired-end mode. Only
reads not aligned in paired-end mode were realigned in
single-end mode, and all reads were merged and sorted
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through samtools 1.9 [51]. At the end, duplicated reads
were removed by picard Mark Duplicates 1.141. Detailed
pipeline is clarified in Supplementary Table 1.

Pseudo-bulk generation

We created pseudo-bulks by merging reads randomly
sampled from the aligned mouse brain single-nucleus
methylome data and B-cell WGBS data. The cell-type
proportion for bulks were decided based on Dirichlet
distribution which can mimic diverse biological scenarios.
For mouse neuron pseudo-bulk, five cell types including
both excitatory (mDL-2, mL2-3, mL5-1 and mL6-2) and
inhibitory (mPv) neuron classes were chosen. These cell
types are distinctly clustered in the two-dimensional
t-SNE visualization calculated by Luo et al. [47] and
secure sufficient single-cell samples. For tumor pseudo-
bulk, diffuse large B-cell lymphoma and normal B-
cell cell types were mixed. We used generateExample
function from R package MeDeCom (https://rdrr.io/
github/lutsik/MeDeCom/src/R/utilities.R) to generate
the cell-type proportions for pseudo-bulk samples. We
followed the default parameter setup with the exception
of 10 for proportion.var.factor and 1 million for number
of genomic features. The numerical proportions of cell
types in each pseudo-bulk sample is shown in Supple-
mentary Table 2. This pipelines is available at https://
github.com/CompEpigen/SeqDeconv_Pipeline.git.

Differentially methylated regions (DMRs)
As gold-standard to be compared with informative region
selection results showing cell-type-specific features, we
extracted DMRs. DMRs refer to genomic regions whose
methylation states are consistently different between
given groups of samples. They are also known to be
associated with cell development and cell differentiation
stages [53].

For mouse neuronal cell types, we compared each
of 11 pure cell-type bulks (mL4, mL6-1, mL6-2, mDL-2,
mL5-1, mL5-2, mL2-3, mSst-1, mNdnf-2, mPv and mVip)
against all other bulks and identified respective cell type
DMRs (ctDMRs). For tumor analysis, we called ctDMRs
between normal B-cell non-cancer and diffuse large B-
cell lymphoma. All DMRs were called using DSS package
2.34.0 [54] with the following parameters: 0.2 for delta,
0.05 for threshold of P-values, 4 for minimum number of
CpG sites and default values for minimum length and the
distance to merge, which are 50 bps each.

CpG selection scheme for array-based
deconvolution methods
Array-shaped methylome data comes in the matrix form,
where each row represents a CpG site and each column
a sample. To apply array-based deconvolution methods,
Houseman and MeDeCom, as a comparison group, we
transformed our sequencing data to array shape using
methrix [55]. When converting the sequencing data, we
specified a set of CpG sites to comprise the array shape.
During data conversion for MeDeCom, we chose top 20
000 CpGs with the highest beta-value variance. CpGs

overlapping ctDMRs were taken to generate array-shaped
data for Houseman’s method to adhere to the reference-
based scenario.

Parameter values and procedures for each
deconvolution method
We describe the detailed algorithm and parameter
setting of each deconvolution method in this section.
The pipelines are also available at https://github.com/
CompEpigen/SeqDeconv_Pipeline.git.

ClubCpG

ClubCpG [44] clusters reads fully covering regions
satisfying given informative region selection conditions,
using density-based spatial clustering of applications
with noise (DBSCAN). For our experiments, we applied
informative region selection conditions as given in
Table 1 that suited our dataset better than the default
values suggested by authors. Even though ClubCpG
package itself does not have cell-type composition esti-
mation function, we followed the cell-type deconvolution
strategy proposed by the authors [44]. Firstly, we created
ClubCpG clustering results from another 100 pseudo-
bulk samples as training data and extracted 20 principal
components (PCs) using Principal Component Analysis
algorithm from the result. Then, a multivariate linear
regression model for cell-type proportion was fitted on
the extracted 20 PCs. Finally, the cell-type composition
was estimated using the trained multivariate linear
regression model.

PRISM

PRISM [42] infers the composition of epigenetically
distinct subpopulations in tumor bulk samples based on
methylation patterns. It mainly improves the accuracy
by correcting erroneous methylation patterns using
Hidden Markov Model (HMM). After the correction, the
method retains only loci comprised of fully methylated
and unmethylated patterns, then cell-type proportions
are estimated locus-specifically using EM algorithm. We
applied PRISM with default setup as given in Table 1 and
yielded cell-type proportions in respective samples by
calculating the ratio of inferred subclones.

MethylPurify

MethylPurify [43] adopts EM algorithm to estimate tumor
purity in bisulfite sequencing data. The EM algorithm in
MethylPurify not only estimates methylation levels of
subpopulations, but also decides which subpopulation
each read would be assigned to over iterations. We used
the same parameter values in both mouse neuronal and
tumor pseudo-bulks; 10 for read coverage and 50 for
sampling time. However, bin size parameter was set to
300 bp for mouse neuronal pseudo-bulks and to 200 bp
for tumor pseudo-bulks. Although the original code is
designed to estimate cell-type compositions only within
CpG islands, we altered it to conduct the estimation over
all informative regions including non-CpG islands. This

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
https://rdrr.io/github/lutsik/MeDeCom/src/R/utilities.R
https://rdrr.io/github/lutsik/MeDeCom/src/R/utilities.R
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
https://github.com/CompEpigen/SeqDeconv_Pipeline.git
https://github.com/CompEpigen/SeqDeconv_Pipeline.git
https://github.com/CompEpigen/SeqDeconv_Pipeline.git
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Table 1. Comparison of benchmarked deconvolution methods. Sequencing-based methods have three common criteria in the
informative region selection: number of CpG, region size and read coverage. Some criteria were altered to be more suitable for the
dataset we used in our analyses. For array-based methods, we specifically designated CpG sites based on methylation variance or
ctDMRs. Furthermore, we described differences in cell-type composition estimation step based on three criteria again:
reference-requirements, number of detectable subpopulations and estimation scope

Method Main data type Informative region selection Cell-type composition estimation

# CpG Region size (bp) Coverage Class # Components Estimation
Scope

BED RRBS >4 NA∗∗∗ >20 ref-based 2 local
ClubCpG WGBS >4∗ 100 >20∗ ref-based 2 or more global
csmFinder +
coMethy

WGBS >4 NA∗∗∗ >10 ref-free 2 or more global

DXM Any kinds of
BS-seq

Promoter and CpG island regions >4 ref-free 2 or more global

MethylPurify WGBS >10 300/200∗∗ >10 ref-free 2 local
Prism RRBS >4 NA∗∗∗ >20 ref-free 2 or more local
Houseman Methylation

microarrays
CpGs overlapping with ctDMRs ref-based 2 or more global

MeDeCom Methylation
microarrays

CpGs showing high methylation variance across
pseudo-bulks

ref-free 2 or more global

∗The original setup in [44] is 2 for minimum number of CpG and 10 for minimum read coverage.∗∗ The original setup in [43] is 300 bp for region size. In
tumor-normal pseudo-bulk analysis, we changed region size parameter value to 200 bp.∗∗∗ BED, csmFinder and Prism do not require specific region size.

is because the method initially failed in selecting a high-
enough number of informative regions for statistically
significant cell-type composition estimation. After
removing the CpG island filtering, we could obtain a
high-enough number of selected informative regions for
cell-type deconvolution.

csmFinder + coMethy

Yin et al. [41] developed two distinct computational tools
called csmFinder and coMethy. csmFinder determines
genomic regions showing cell-type-specific signals
denoted as putative cell-type-specific methylated (pCSM)
loci. coMethy can decompose methylation-level matrix
of pCSM loci by samples, using non-negative matrix
factorization (NMF) approach similar to MeDeCom.
For the specific input file format of csmFinder, we
extracted methylation call results from our pseudo-
bulk samples via bismark_methylation_extractor with
comprehensive, gzip and cytosine_report options. CpG site
coordinates of hg19 and mm10 reference genomes were
used for corresponding samples. Running csmFinder, we
followed the default parameters, minimum methylation
difference of hypo- and hyper-methylation patterns 0.3
and P-value of the difference 0.05. Since coMethy works
on a matrix that consists of methylation patterns at the
same CpG sites across multiple samples, we collected
pCSM loci detected from all samples in each experiment
and filtered out only loci involving missing methylation
values in any other sample than the sample that the
locus was detected.

Bayesian epiallele detection

BED algorithm [40] is based on a Bayesian model and
recognizes the distribution of epialleles that indicates all
possible methylation patterns at CpG sites in a specific
genomic range. For the preprocessing step to deal with
contiguous and missing methylation patterns, we used
pipelines elucidated in bed-beta Github page (https://

github.com/james-e-barrett/bed-beta). This pipeline
includes all epiallele estimation processes. Barret et
al. demonstrated that the proportion of reads that are
not attributed to normal tissue at each loci i can be
calculated as follows:

ζi = 1
2

∑

q

abs(φq − nq) (1)

This equation is calculated with respect to all epialle-
les q. φ and n mean the distribution of epialleles at the
locus and normal tissue samples each. We considered
the maximum observed value in ζi distribution to be the
estimated tumor purity as this is where the local epiallele
distributions and normal tissue epiallele distributions
showed the biggest discrepancy.

DXM

DXM [46] is a computational method to infer not only
the number of subpopulations within bulk methylomes
but also the methylation profile of estimated subpopula-
tions based on L1-norm minimization and HMM. It first
investigates the distribution of methylation beta value
over the given regions and calculates L1-norm between
the investigated distribution and 10 000 randomly gen-
erated distributions. The distribution with the lowest
L1-norm is considered as an estimated cell-type distri-
bution. Unlike other sequencing-based methods, DXM
requires users to directly provide pre-selected specific
genomic regions such as DMRs or CpG island regions.
Therefore, keeping the reference-free manner and fol-
lowing the guidance of the authors, we gave methylation
level within promoter and CpG Island regions as input
of DXM after filtering the regions with minimum read
coverage 4. CpG Island regions were downloaded from
UCSC genome annotation database for mm10 and hg19
genomes (https://hgdownload.cse.ucsc.edu/goldenpath/
mm10/database/ and https://hgdownload.cse.ucsc.edu/

https://github.com/james-e-barrett/bed-beta
https://github.com/james-e-barrett/bed-beta
https://hgdownload.cse.ucsc.edu/goldenpath/mm10/database/
https://hgdownload.cse.ucsc.edu/goldenpath/mm10/database/
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
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goldenpath/hg19/database/). For promoter regions, we
also used UCSC annotation database exposed as TxDb
objects [56, 57]. HMM is used mainly for the methylation
profile inference; thus, we do not include the details here.

MeDeCom

MeDeCom [20] estimates cell-type proportions in array-
shaped DNA methylation data using NMF. When convert-
ing our sequencing-based data to array shape, we used
methrix which is capable of loading bedGraph file format
including methylation call and creates a CpG sites by
samples matrix of methylation levels [55]. A bedGraph
file for each pseudo-bulk sample was created through
a computational tool called MethylDackel (https://github.
com/dpryan79/MethylDackel). mm10 and hg19 reference
genomes were used to read in the bedGraph files for
mouse neuronal and B-cell tumor pseudo-bulks, respec-
tively. As an input matrix of MeDeCom, we selected 20
000 CpG sites with the largest methylation level variance
across pseudo-bulks. We ran MeDeCom with a regular-
ization parameter λ from 10−5 to 10−2, 10 cross-validation
folds, maximum iteration number 500 and random ini-
tialization number 30.

Houseman’s method

Houseman’s method [15] (or Houseman for short)
was proposed to infer cell-type distribution from DNA
methylation array-shaped data based on regression
calibration. We used array-shaped data converted from
our sequencing pseudo-bulk samples processed in
the same way as for MeDeCom above. For selecting
informative CpG sites, we mimicked the marker-CpG
selection step of the original algorithm and chose CpG
sites overlapping with ctDMRs that can provide cell-type-
specific signals. We increased the number of CpG sites to
1000 in the original code considering the larger number
of total CpG sites in our pseudo-bulk dataset compared
with microarray data they used. For the rest, we followed
up the pipeline given in the supplementary material of
the original publication [15].

Performance measurement
Genomic correlation

We used genomic correlation to calculate overall
genomic base-wise proximity between informative
region selection results and ctDMRs. This statistic
was suggested by Favorov et al. for determining the
distribution of distances between two sets of genomic
regions [58].

’Relative distance’ of a selected informative region qi

with respect to given ctDMRs is defined as below:

δi = min(|qi − rk|, |rk+1 − qi|)
|rk+1 − rk| ; k = argmin

qi>rk

(qi − rk) (2)

rk and rk+1 are two nearest ctDMRs from given informa-
tive region qi. It is calculated by dividing the distance
between selected informative region qi and the closest
DMR by the distance between two nearest ctDMRs.

If a set of selected informative regions and ctDMRs are
independent, δi will have a uniform distribution. Hence,
genomic correlation is calculated by testing if the distri-
bution of calculated relative distances makes a uniform
distribution.

GenomicCorr =
∫ 1/2

0 |ECDF(δ) − ECDFideal(δ)|dδ
∫ 1/2

0 ECDFidea(δ)dδ
(3)

ECDF refers to empirical distribution cumulative func-
tion and ECDF(δ) creates the distribution of observed δi.
ECDFideal is the uniform distribution. Thus, Equation 3
yields the ratio of difference between area under ECDF(δ)

and under ECDFideal. When given selected informative
regions are independent of ctDMRs, ECDF(δ) will cre-
ate a uniform distribution and GenomicCorr will reach 0.
Conversely, if selected regions are identical to ctDMRs,
GenomicCorr is 1.

Absolute error between estimate and ground-truth

In cell-type composition estimation analysis, we assessed
the performance by calculating absolute error between
estimated proportion and ground-truth value of each
pseudo-bulk sample. For coMethy and MeDeCom, we had
to match cell types to estimated components by choosing
the one with the lowest mean absolute error out of all
possible combinations of estimate and ground-truth pair.

Mean absolute percentage error (MAPE)

MAPE is calculated by dividing the sum of individual
ratios between absolute error values and the ground
truth, by the number of data samples. Since this score
cancels out the scale of values, we used this for the
extremely low percentage of tumor cell type deconvolu-
tion evaluation.

Entropy of cell-type distribution

In information theory, entropy is a concept to describe
the level of uncertainty or information in a set. We
used this statistic to determine how equally cell types
are distributed in the cell mixture, because cell-type
composition estimation can be more intractable with
extremely low or high proportion of subpopulations.
Applying entropy to our cell mixtures, entropy of cell-
type proportion in the cell mixture C comprised of n cell
types, c1, c2, ..., cn is defined as:

H(C) = −�n
i=1P(ci)logP(ci) (4)

P(ci) refers to the cell-type proportion of cell type ci

here. Thus, the entropy value is higher when all cell-type
proportions are more uniformly distributed.

For example, let us assume we have two cell mix-
tures A and B comprised of bi-components with different
proportions. The dominant cell type constitutes 90% of
cell mixture A and 60% of cell mixture B. According to
Equation 4, the entropy of cell mixture A is smaller than
cell mixture B.

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
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Figure 1. Schematic overview of our cell-type deconvolution benchmarking. (A) Overall scheme of cell-type deconvolution benchmarking. We
synthesized in silico cell mixtures called pseudo-bulks by mixing up reads randomly sampled from mouse neuronal scBS-seq dataset and tumor WGBS
dataset, respectively. Sequencing-based cell-type deconvolution methods directly take sequencing data and select informative CpG sites (informative
regions) supposedly related to cell-type heterogeneity (upper row pipeline). Then, cell-type proportions are estimated from selected CpGs. For array-
based cell-type deconvolution methods, we converted sequencing data into array shape with pre-identified CpGs and the methods estimated cell-type
compositions from the array (bottom row pipeline). (B) Example of an informative region showing a cell-type-specific methylation pattern in mouse
neuronal data (chr1:75244319-75244379). Methylation pattern of reads (each row) overlapping with a specific region was extracted from three different
samples, two pure cell-type samples (mL6-2 and mPv) and a pseudo-bulk sample comprised of these cell types. Some missing methylation patterns in
the figure occurred owing to the CpG sites not covered by each read. In this region, the majority of reads from mL6-2 are fully methylated, whereas most
reads from mPv show a fully unmethylated pattern.

Results
Comparison of methodological designs
For our benchmarking study, we chose six published
sequencing-based cell-type deconvolution methods (BED,
DXM, PRISM, MethylPurify, csmFinder + coMethy and
ClubCpG). As a comparison group, we added two cell-
type deconvolution methods for array-shaped data
(reference-based constrained projection method House-
man and our own reference-free method MeDeCom).
To cope with the completely different input data
formats, sequencing-based and array-based cell-type
deconvolution procedures follow different pipelines in
our project (Fig. 1A).

All compared sequencing-based methods consist of
two common steps: informative region selection and cell-
type composition estimation. In the informative region
selection step, the sequencing-based cell-type deconvo-
lution methods filter out CpGs where the methylation
patterns do not clearly demonstrate cell-type hetero-
geneity. Since sequencing data has significantly broader

genome-wide coverage than array-shaped data, using all
available CpG sites for deconvolution is not the most
efficient strategy for cell-type composition estimation,
associated with escalating computational complexity. In
many genomic regions, methylation patterns are iden-
tical across all reads covering the CpG sites regardless
of the cell type and thus non-informative. On the other
hand, some of patterns are very complex because of
other confounding factors. Even, at such loci where read
coverage is low, local cell-type population (distribution of
reads in terms of cell type at a given locus) usually does
not correspond to global cell-type composition (cell-type
composition in the entire bulk) due to the lack of reads.
The informative region selection step alleviates these
problems by clearing out these confounding methylation
signals.

Initially, CpGs that are proximate to each other or over-
lap with a specific genomic region are grouped together.
Here, we call each such group a ’region’. After that,
only regions satisfying particular criteria are selected for
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the next step, here referred to as ’informative regions’.
There are three common criteria considered in all our
benchmarked methods: number of CpGs, region size and
read coverage. Each method retains only regions with an
abundant number of overlapping CpGs, sufficient region
length and high read coverage. The detailed informative
region selection parameter values of each method are
described in Table 1.

For the two array-based methods, however, informa-
tive region selection is not a required step, since array-
shaped data is already designed as a matrix of CpG
sites by samples. Therefore, we converted our sequencing
data to an array shape with predefined CpG sites. We
described CpG site selection procedure for each array-
based method in Materials and methods.

With the selected informative regions (sequencing-
based methods) or predefined CpG sites (array-based
methods), cell-type deconvolution methods predict
cell-type proportions within given input cell-mixture
samples. This step can be characterized by three
main specifications: reference requirement, number
of detectable cell types/subpopulations and estimation
scope (Table 1).

Requirement of reference methylomes. Among the meth-
ods we benchmarked, BED, ClubCpG and Houseman
are categorized as reference-based methods. BED and
Houseman require methylome profiles of pure cell types.
ClubCpG fits a regression model to training cell-mixture
bulk data that is provided together with known cell-type
composition.

Number of detectable components. We also categorized
the benchmarked methods with respect to whether
the method specifically targets tumor samples or not.
The difference between tumor targeting and broadly
applicable methods is their assumption about cell-type
composition within given samples. Methods designed
specifically for the analysis of tumor samples are
generally referred as ’tumor purity estimation methods’.
These assume that only two subpopulations comprise
given cell mixtures, tumor and healthy stroma, whereas
standard cell-type deconvolution methods do not limit
the number of inferred subpopulations (components).
Among the methods we considered, BED and MethylPu-
rify were developed particularly for the analysis of tumor
samples. So, we additionally tested our benchmarked
methods with realistically simulated tumor-normal bulk
samples, since those might be better suited to deal
with abnormal methylation patterns from tumor cell
types.

Estimation scope. Exploring all the methods, we have
found a prevalent computational approach that summa-
rizes methylation patterns across all of selected infor-
mative regions and compute the final estimates. BED,
MethylPurify and PRISM locally calculate statistics in
respective informative regions and predict compositions
from the peak of region-wise estimated cell-type compo-
sition distribution. On the other hand, ClubCpG, coMethy,
MeDeCom and Houseman globally calculate final

cell-type proportions directly over all selected informa-
tive regions.

Benchmarking study design
To estimate the influence of each step upon the final
result, we comprehensively assess all methods not only
with the final cell-type composition estimation results,
but also with the interim results of selected informative
regions for deconvolution.

Our benchmarking analysis was performed with three
different datasets to test the capability of methods in
various biological scenarios, two and five cell-type mouse
neuronal pseudo-bulks and tumor pseudo-bulk (Table 2).
Firstly, we used single-nucleus bisulfite sequencing data
of mouse neuron population from Luo et al. [47] to gener-
ate in silico pseudo-bulk read/cell mixtures for two and
five cell types. Secondly, to test methods in a realistic
scenario of tumor bulk deconvolution, we created in silico
mixtures of WGBS methylomes from normal non-cancer
B-cell and B-cell lymphoma samples from Do et al. [48].

In the analysis of five cell-type pseudo-bulk group, we
excluded BED and MethylPurify, because tumor purity
estimation methods are not capable of detecting more
than two cell types. Although Prism is not a tumor purity
estimation method, it failed in detecting five cell types
so we also excluded it from five cell-type pseudo-bulk
analysis.

Evaluation of the informative region selection
methods using cell-type DMRs
We hypothesized that ideal informative region selec-
tion results should overlap with ctDMRs, i.e. genomic
regions showing significant methylation pattern differ-
ences between cell types (Fig. 1B). Conversely, informa-
tive region selection results with low similarity to ctDMRs
are unlikely to supply enough cell-type-specific signals.
Hence, we assessed informative region selection results
primarily by comparing them with ctDMRs. The ctDMRs
were generated by comparing one pure cell-type bulk to
all others (details in Materials and methods).

For two cell-type neuronal pseudo-bulks, BED detected
a significant number of informative regions overlapping
with ctDMRs, but csmFinder detected the highest num-
ber of overlaps in tumor pseudo-bulks. (Fig. 2A and B)
In five cell-type mouse neuronal pseudo-bulk analysis,
ClubCpG showed the highest number of overlaps with
ctDMRs over all cell types (Supplementary Fig. 1).

Since the size of the selected informative region set
differs between methods, the number of overlaps may
not exactly correspond to how similar each selected
informative region set is to ctDMRs. We found that the
set size of selected informative regions and the number
of overlaps with ctDMRs have a strong correlation in
all datasets (Supplementary Fig. 4). Consequently, our
results clearly showed that selecting more informative
regions possibly increases the number of overlaps with
ctDMRs even though the selected region set may also
include many more non-overlapping regions. Thus, we

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
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Table 2. Details of pseudo-bulk datasets. We created three datasets of pseudo-bulk samples for evaluating our benchmarked methods.
Two datasets are comprised of two and five cell-types of mouse neuronal single-cell BS-seq data each, and one dataset was created
with tumor and normal cell types. We generated 20 pseudo-bulk samples in each dataset

Resource # Bulks Cell types Biological sample Sequencing protocol

2 cell-type mouse neuronal
pseudo-bulk

GSE97179 [47] 20 mL6-2, mPv Mouse neuron scBS-seq (Illumina
HiSeq 4000)

5 cell-type mouse neuronal
pseudo-bulk

GSE97179 [47] 20 mL6-2, mPv, mDL-2,
mL2-3, mL5-1

Mouse neuron scBS-seq (Illumina
HiSeq 4000)

Tumor-normal pseudo-bulk GSE137880 [48] 20 Normal B-cell, B-cell
lymphoma

B-cell WGBS (Illumina
NovaSeq 6000)

conducted another statistical analysis to compare the
similarity between selected informative regions and
ctDMRs.

Favorov et al. [58] designed a statistic called ’genomic
correlation’ that measures the distributions of distances
between two sets of genomic regions(details in the
Materials and methods). This statistic is [0,1] interval-
bound, with lower value indicating larger distance
between genomic regions from the two compared sets.
We evaluated the informative region selection results
based on the proximity to ctDMRs using genomic
correlation score (Fig. 2C-E).

Although informative regions of BED overlapped the
largest number of ctDMRs in two cell-type mouse neu-
ronal pseudo-bulk samples, their genomic correlation
with each ctDMR set was the lowest. This implies that
ctDMRs comprised a very small fraction of the informa-
tive regions selected by BED. In contrast, csmFinder, Prism
and MethylPurify showed high genomic correlation with
ctDMRs in both two cell-type mouse neuronal and tumor
pseudo-bulks, meaning that ctDMRs make up a large por-
tion of the selected regions in spite of the small absolute
total number. For five cell-type mouse neuronal pseudo-
bulks, csmFinder yielded the highest genomic correlation
with all ctDMRs compared with other sequencing-based
methods, ClubCpG and DXM.

We further explored genome annotations of the
selected informative regions (Supplementary Figs 7–9).
Compared with ctDMRs, the selected informative regions
included a noticeably larger amount of promoter regions
in all types of pseudo-bulk analyses with the exception of
BED in two cell-type mouse neuronal pseudo-bulk result.
Considering that promoter methylation can regulate
gene expression in a cell-type-specific manner, we expect
that the informative region selection step of the bench-
marked methods is well able to identify methylation
patterns which contribute to cell-type identity.

We also calculated the methylation level difference
between two cell types particularly with bi-component
(two cell-type mouse neuronal and tumor) pseudo-
bulks. Within each set of selected informative regions,
we extracted methylation beta-value at CpGs from
two pure cell-type methylomes and calculated the
difference. The distribution of differences was calculated
in each pseudo-bulk (Supplementary Figs 5 and 6). If
the selected regions covers CpGs with cell-type-specific

methylation patterns, the methylation level difference
value must be close to either 1 or -1 depending on
which of the cell types is hypomethylated at that CpG
site. Cell-type DMRs, as expected, mostly cover CpGs
with absolute methylation level difference of 1. Regions
designated for array-based methods also showed the
methylation difference distribution peaking close to -1
and 1, as ctDMRs and CpGs with the highest variance
of methylation value were given to Houseman’s method
and MeDeCom, respectively. However, CpGs selected by
sequencing-based methods mostly had a methylation
level difference 0, especially for two cell-type mouse neu-
ronal pseudo-bulks. From tumor pseudo-bulk samples,
csmFinder, MethylPurify and Prism were more successful
in detecting CpGs showing high methylation difference
between non-cancer and B-cell lymphoma cell types.

In conclusion, we found that sequencing-based meth-
ods can detect ctDMRs through their informative region
selection step. However, despite the large number of
overlaps with ctDMRs, the selected informative region
sets still include some uninformative genomic regions,
distant from ctDMRs or showing zero methylation level
difference across different cell types. Methylation pat-
terns from such regions may hinder accurate cell-type
deconvolution, if it is not handled during the cell-type
composition estimation step.

Mouse neuronal single-cell pseudo-bulk
cell-type deconvolution
As explained above, we evaluated all methods with two
groups of mouse neuronal single-cell pseudo-bulk sam-
ples. Absolute error value between the ground-truth and
estimated value was our main performance score for the
cell-type composition estimation step. Reference-based
and reference-free methods were evaluated separately
for a fair comparison in terms of additional prior infor-
mation.

Our results showed that reference-based methods,
with the exception of BED, perform better than reference-
free methods in both groups (Fig. 3A and B). Furthermore,
we analyzed predicted proportion of each cell type
within each pseudo-bulk sample (Fig. 3C and D). We
realized that ClubCpG can produce a cell-type proportion
estimate lower than 0 or higher than 1, when ground-
truth proportion is relatively low or high, respectively.
This is because ClubCpG does not restrict its prediction

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
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Figure 2. Plots for informative region selection. (A, B) Overlaps between ctDMRs for (A) two cell-type mouse neuronal pseudo-bulks and (B) tumor
pseudo-bulks. The colored box plots at the top of each graph show the number of overlaps between a pair of methods connected at the middle, across
all pseudo-bulks, and the gray box plots at the right side display the number of informative regions detected by each method or the number of regions
in ctDMRs. Overlap sizes were calculated with respect to the number of bases. In each plot, different ctDMRs are distinguished by different colors.
(C–E) Genomic correlation between ctDMRs and selected informative regions in (C) two cell-type mouse neuronal pseudo-bulks, (D) five cell-type mouse
neuronal pseudo-bulks and (E) tumor pseudo-bulks. Higher genomic correlation means higher similarity between ctDMRs and selected informative
regions with respect to the number of overlaps and the proximity.

value between 0 and 1. Yet, other methods successfully
made all predictions in the expected range.

In the two cell-type pseudo-bulk analysis, the best
accuracy was achieved by Houseman’s method requiring
pure cell-type methylome profiles. Among reference-free
methods, coMethy performed best with a median abso-
lute error value of 0.044, even though MethylPurify and
Prism inferred more accurate values for bulks with high
proportion of mPv.

Among reference-based methods, the pseudo-bulk
with five cell types showed the same results as with
two cell types: the lowest median absolute error was
achieved by Houseman. However, among reference-free
methods, DXM performed best with the median absolute
error value 0.058. In bulk-wise comparisons stratified
by cell types, mL2-3 was the the most difficult cell type
to estimate for coMethy, but ClubCpG and MeDeCom
showed the lowest accuracy in mDL-2. Even though all
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Figure 3. Cell-type composition estimation for mouse neuronal single-cell pseudo-bulk scenario. (A, B) Absolute error between ground-truth and
estimated cell-type proportion, calculated in each sample and each cell type, for (A) two cell-type and (B) five cell-type mouse neuronal pseudo-bulks.
Black line at the middle refers to the median and the both ends of bar are the first and third quantiles. Numbers above box plots indicate the median
value. (C, D) Estimated cell-type proportions and ground-truth values (black line) ordered with respect to the ground-truth proportion, in (C) two cell-
type and (D) five cell-type mouse neuronal pseudo-bulks. For two cell-type pseudo-bulks, only results of mPv cell type are shown to avoid redundancy
in two-component mixtures.

other methods showed better performance with two cell-
type pseudo-bulks, Houseman and DXM exhibited lower
median absolute error with five cell-type pseudo-bulks
than with two cell-type pseudo-bulks.

Tumor-normal cell mixture deconvolution
Tumor heterogeneity analysis is one of the most crucial
and widely studied research topics in cancer biology. DNA
methylation patterns can facilitate the deconvolution of
cell types in tumor microenvironment and malignant
clones. BED and MethylPurify were specifically designed
for tumor purity estimation of tumor-normal cell mix-
ture as described in Table 1. For this reason, we addition-
ally assessed the benchmarked methods using pseudo-
bulk samples comprised of B-cell lymphoma and normal
non-cancer B-cell (Fig. 4). In order to account for the high
variation that may exist within a tumor, we used WGBS
data derived from expectedly homogeneous cell lines
for generating pseudo-bulks rather than sparse scBS-seq
data.

In the reference-based setting, Houseman’s method
again showed the best performance in tumor cell-type
deconvolution. compared with mouse neuronal pseudo-
bulk deconvolution, Houseman’s method accomplished
the lowest median absolute error of 1.7 × 10−5 in tumor
cell-type deconvolution. Among reference-free methods,
MeDeCom estimated tumor pseudo-bulk cell-type com-
positions with the lowest median absolute error. Sample-
wise performance for one cell type also showed that

Houseman estimated the most accurate proportions for
all samples and ClubCpG exceeded the range of 0 and
1 for extreme proportions, similarly to mouse neuronal
pseudo-bulk analysis results.

As in some tumor tissues, rare cell types can play a
critical role [59], we performed an additional evaluation
for the scenario of rare B-cell lymphoma cell type within
a bulk (Supplementary Fig. 10). We further generated
10 more tumor pseudo-bulk increasing the ratio of B-
cell lymphoma cell type by 0.1% from 0.1% to 1%. The
cell-type composition estimation result was assessed
with MAPE score considering the extremely small range
of ground-truth value. Houseman’s method invariably
outperformed all other reference-based methods, but,
among reference-free methods, MethylPurify showed the
best performance. In general, the benchmarked methods
were not capable of inferring the cell-type ratio value
below 0.1 aside from Houseman’s method that was able
to generate estimates below 0.1. Unlike the preceding
benchmarking results, MeDeCom and coMethy showed
much lower performance.

Identifying factors that influence cell-type
deconvolution performance
Based on the results so far, we investigated whether infor-
mative region selection results have detectable influence
upon cell-type composition estimation. For this, we com-
pared the rank of mean absolute error together with the
rank of mean genomic correlation separately (Fig. 5A and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
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Figure 4. Cell-type composition estimation results of tumor pseudo-bulk scenario. (A) Absolute error between estimated and ground-truth cell-type
proportions. (B) Estimated proportions by each method and ground-truth values in order. All details of two plots are the same as in Figure 3. Again, we
present the results only for normal B-cell due to the symmetric cell-type proportions in two-component mixtures.

Supplementary Fig. 2). Both absolute error and genomic
correlation results from a method were averaged across
all samples, but separately in each cell type, where-
after we ranked the methods based on the averaged val-
ues. After ranking the methods, we excluded array-based
methods whose pipeline does not include informative
region selection. For tumor pseudo-bulks, non-cancer B-
cell and B-cell lymphoma cell types involve same ctDMRs
produced by comparing only those two cell types. Con-
sequently, in two cell-type mouse neuronal and tumor
pseudo-bulk samples, the accuracy of cell-type com-
position estimation (complemented of the mean abso-
lute error value) tends to be proportional to the perfor-
mance of genomic correlation between selected informa-
tive regions and ctDMRs. From this result, even though
all methods are designed with different algorithms, we
claim that in two-component mixtures detecting CpGs
overlapping with ctDMRs significantly contributes to the
cell-type deconvolution performance.

We additionally discovered that all methods except
DXM could infer more accurate cell-type proportions in
the mixtures with more balanced cell-type composition
in five cell-type pseudo-bulks (Fig. 5B). This was deter-
mined using the entropy value that measures the uni-
formity of given proportions or given distribution (details
in Materials and methods). The entropy of cell-type dis-
tribution was negatively correlated with the mean abso-
lute error showing the P-value lower than 0.05 in the
results of ClubCpG, coMethy, Houseman and MeDeCom.
We presume that, in cell-type mixtures with low entropy
values where cell population is distributed in extremely
biased way, minor cell types may not provide enough cell-
type-specific signals. Nevertheless, DXM differed from
the other methods in this regard. The lower the entropy

within a given pseudo-bulk, the better its performance.
We suppose that the design of DXM algorithm, search-
ing the best fit out of randomly generated distributions
rather than gradually fitting a model, becomes more
powerful when applied to an extreme distribution of cell
types, by disregarding regularization.

In both two cell-type deconvolution scenarios, not all
methods performed better with higher entropy of sam-
ples. For instance, Houseman in the two cell-type pseudo-
bulk analysis and coMethy and Prism in tumor pseudo-
bulk analysis rather showed positive correlation between
the two values (Supplementary Fig. 3). This might be
caused by some pseudo-bulks with high entropy, where
cell types are more uniformly distributed, resulting in
more complex methylation patterns.

Discussion
Here we extensively reviewed and assessed five
sequencing-based cell-type deconvolution methods with
standardized measurements for unbiased evaluation.
Two more array-based deconvolution methods, MeDe-
Com and Houseman, were also added to the analyses as
a comparison group, to evaluate the effectiveness of the
benchmarked methods to leverage the unique properties
of sequencing data.

In order to reflect various biological scenarios, our
analyses were done with two different datasets, mouse
neuronal scBS-seq dataset and B-cell tumor WGBS
dataset. We generated pseudo-bulk samples by merging
randomly sampled reads from pure cell-type samples
in each dataset. For mouse neuronal pseudo-bulk
samples, we generate mixtures of two and five cell types,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
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Figure 5. Influential factors in cell-type deconvolution performance. (A) Mean absolute error versus mean genomic correlation between selected
informative regions and ctDMRs. The points indicate results of each cell type from each deconvolution method. (B) Mean absolute error versus entropy
of cell-type proportions in each bulk sample. In both plots, we fitted dots in a linear function (the line with gray background).

respectively, to study scenario with different numbers of
subpopulations.

All sequencing-based methods we evaluated include
two essential steps. First, each method selects genomic
regions that are considered to show clear cell-type-
specific methylation patterns (informative region selec-
tion). In the second step, final cell-type composition is
inferred based on the selected regions (cell-type compo-
sition estimation). Thus, we evaluated the performance
separately in respective steps and finally examined the
influential factors in cell-type deconvolution perfor-
mance.

While evaluating informative region selection, we
regarded ctDMRs as the gold-standard cell-type-specific
loci and compared them with informative regions
selected by each method. Although, in mouse neuronal
pseudo-bulk analyses, ClubCpG detected the largest
number of overlaps with ctDMRs, csmFinder showed
the best genomic correlation. This is because that large
number of overlaps can be confounded by the large
number of total selected informative regions, rather
than the capacity to detect cell-type-specific regions
(Supplementary Fig. 1).

To assess cell-type composition estimation results, we
calculated the absolute error between the estimated and
ground-truth proportion of each cell type in each sam-
ple. Since introducing prior knowledge from reference
data naturally improves estimation performance, for the
evaluation we grouped methods according to whether
reference data is required. Among reference-based meth-
ods, Houseman’s method strongly outperformed other
methods. In the comparison of reference-free methods,
coMethy inferred the most accurate cell-type composi-
tions in both two and five cell-type pseudo-bulks.

Cancer-associated DNA methylation patterns are par-
ticularly aberrant and the cell subpopulations in cancer-
ous tissues containing both healthy normal and tumor
cell types are often of more complex composition [60].
Therefore, we separately evaluated cell-type deconvolu-
tion results in tumor pseudo-bulk samples generated as
described above. In informative region selection analysis,
csmFinder not only showed large number of overlaps
with the ctDMRs, but also reached the highest genomic
correlation. For cell-type composition estimation, House-
man and MeDeCom outperformed all other reference-
based and reference-free methods, respectively.

Lastly, we have confirmed the significance of selected
informative regions for the overall cell-type deconvolu-
tion performance. As shown in Figure 5A, mean absolute
error and genomic correlation of evaluated methods have
a negative rank correlation in bi-component pseudo-
bulks. This result highlights that the more similar infor-
mative regions to ctDMRs a method can detect, the bet-
ter performance the method would achieve in cell-type
composition estimation for cell mixtures comprised of
two distinct subpopulations. Yet, in five cell-type mouse
neuronal pseudo-bulks, entropy of cell-type distribution
showed a negative correlation with the absolute error
except in the case of DXM (Fig. 5B). This implies that the
distribution of subpopulations can be more influential in
cell-type deconvolution of complex bulk samples.

Although our benchmarked methods yielded reason-
able cell-type deconvolution results in most analyses,
there are still some limitations that have to be resolved in
sequencing-based cell-type deconvolution. Firstly, based
on our results, sequencing-based methods did not out-
perform array-based methods in cell-type composition
estimation. Not only did Houseman’s method perform

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
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best of all reference-based methods, but also MeDe-
Com achieved the lowest median absolute error among
reference-free methods in the tumor pseudo-bulk analy-
sis. One complication of the sequencing-based approach
is the high complexity of sequencing data itself. The com-
plexity arises because, unlike array data consisting of
summarized methylation beta-values, sequencing data
captures a methylation state from a limited number
of DNA molecules at each CpG site, yet with single-
molecule resolution. Thus, sequencing-based methods
should be capable of eliminating redundant methylation
patterns and better modeling subpopulation distribution
based on the remaining informative methylation pat-
terns.

With the leverage of single-cell profiling, it was con-
vincingly demonstrated that the variable composition of
numerous normal cell types and tumor cell subclones
underlies intratumor heterogeneity [61–63]. However,
tumor purity estimation methods in our analyses could
only consider tumor samples as binary mixtures of
tumor and normal cell subpopulations. These results
are not able to explain the actual complexity of tumor
microenvironment that has been widely investigated,
particularly in relation to success of various therapeutic
strategies, e.g. immunotherapy [64]. Therefore, to support
upcoming tumor studies with the analysis of cell-
type composition variation, more advanced tumor-
targeting cell-type deconvolution methods addressing
multi-component intra-tumor heterogeneity need to be
implemented.

Last but not least, the software availability, sustain-
ability and deployment should be considered important
when cell-type deconvolution tools are implemented and
released. To this end, we found that some of our bench-
marked methods have significant methodological and
technical limitations. For example, PRISM and BED do
not ensure its applicability to other types of data than
RRBS. Furthermore, most of benchmarked methods are
available only for samples processed with Bismark [50].
The limited availability, complexity of deployment and
lack of input standardization eventually hinder efficient
utilization of evaluated methods for real-life analyses.
In addition, software maintenance is another crucial
issue to develop a sustainable cell-type deconvolution
tool. Importantly, to be able to execute the tools, we
had to implement multiple bugfixes. Considering recent
innovations in bisulfite sequencing technology [33, 36],
sequencing-based cell-type deconvolution tools should
be well maintained and updated to remain useful as the
field evolves.

Taken together, our analysis results suggest a clear
paradigm of how to conduct cell-type deconvolution
for sequencing data. It will pave the way towards
more accurate cell-type composition inference and
more precise analysis of cell-type-specific methylation
patterns to allow further method development and
improvement. Because of the intrinsic benefit of read-
level information, which provides detailed methylation

states at each CpG, it should be possible to accomplish
better accuracy in the inference of cell-type composition
from sequencing-based DNA methylation data compared
with summarized (array-shaped) data, something which
currently available tools cannot achieve yet. Future work
should be aimed towards more thoroughly designed
methods for the extraction of cell-type-specific signals,
while adjusting for confounding factors that affect
sequencing data. Precise cell-type deconvolution of DNA
methylation sequencing data can broaden the range of
available cell population inference tools with diverse
clinical and biomedical applications.

Key Points

• Sequencing-based DNA methylomes contain highly
informative read-level cell-type-specific patterns
enabling cell-type deconvolution.

• The majority of previously proposed deconvolution
methods are comprised of two main steps: informative
region selection and cell-type composition estimation.

• The informative region selection step of benchmarked
methods chose different genomic regions that showed a
high impact upon the cell-type composition estimation
step.

• The benchmarked sequencing-based deconvolution
methods did not significantly outperform the array-
based methods with respect to cell-type composition
estimation.

• This evaluation study highlights the necessity for more
advanced cell-type deconvolution methods taking an
advantage of unique sequencing data properties.

Data availability
The single-cell mouse neuronal methylomes and tumour
WGBS data are publicly available in the NCBI GEO
data repository (mouse neuronal single-cell: www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE97179, B-cell
lymphoma and non-cancer WGBS: www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE137880). For the detailed
data preprocessing, please see Supplementary Table 1.

Code availability
All conducted analyses are reproducible following steps
described in markdown files in our github repository
(https://github.com/CompEpigen/SeqDeconv_Pipeline).
Detailed pipelines for each method are explained in
the file named METHOD_deconvolution_analysis.md. We
also uploaded the bug-fixed version of some methods
through git fork function. The details of fixed lines in the
code are clarified in commit comments in each Github
repository. The list of methods uploaded as a new bug-
fixed version is below:

• BED: https://github.com/CompEpigen/bed-beta

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97179
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97179
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137880
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137880
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac248#supplementary-data
https://github.com/CompEpigen/SeqDeconv_Pipeline
https://github.com/CompEpigen/bed-beta


14 | Jeong et al.

• DXM: https://github.com/CompEpigen/dxm
• MethylPurify: https://github.com/CompEpigen/

MethylPurify
• PRISM: https://github.com/CompEpigen/prism

For the methods which could be successfuly run in
published form their source code is available under the
following URLs:

• csmFinder: https://github.com/Gavin-Yinld/csm
Finder

• coMethy: https://github.com/Gavin-Yinld/coMethy
• ClubCpG: https://clubcpg.readthedocs.io/en/latest/
• MeDeCom: https://github.com/lutsik/MeDeCom
• Houseman: Supplementary file 2 on https://doi.org/

10.1186/1471-2105-13-86

The pipeline used for generating pseudo-bulk samples
is available in the same github repository (https://github.
com/CompEpigen/SeqDeconv_Pipeline/blob/main/
Pseudo_bulk_generation_pipeline.md).
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