Research article

Open Access

Identification of Major Degradation Products of Ketoconazole

Rajendra A. MHASKE * ¹, Shirish SAHASRABUDHE ²

¹ Sharon Bio Medicine, 312, C-Wing, BSEL Tech Park, Opp. Vashi Railway Station, Sector 30 (A), Vashi, Navi-Mumbai-400703, India.

doi:10.3797/scipharm.1107-18

July 14th 2011

² Shri Jagdishprasad Jhabarmal Tiberewala University, J. B. Nagar, Andheri (E), Mumbai–400059, India.

* Corresponding author. E-mail: ramhaske@rediffmail.com (R. A. Mhaske)

Sci Pharm. 2011; 79: 817–836

Published: October 13th 2011 Accepted: October 13th 2011

This article is available from: http://dx.doi.org/10.3797/scipharm.1107-18

© Mhaske and Sahasrabudhe; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria.

Received:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Analytical methods were developed for the identification of major degradation products of Ketoconazole, an antifungal agent. The stressed degradation of Ketoconazole drug substance was performed under acid, base, thermal, photo and oxidative stress conditions. The major degradation was observed under acid, base and oxidative stress conditions. The degradation study was performed on Inertsil ODS-3V, length 100 X diameter 4.6 mm, particle size 3 μ m column using gradient method. These degradants were identified by LC-MS technique.

Keywords

Ketoconazole • Stress degradation • Hydrolysis degradent • Oxidative degradent • LC-MS

Introduction

Ketoconazole is an antifungal drug approved by the US FDA in 1981. Only a few analytical methods for the determination of the drug in biological samples and in the presence of other drugs have been reported [1–12]. The photodegradation behavior of Ketoconazole has been reported by Staub et al [13]. The drug substance is official in Ph. Eur. but the specified impurities are not mentioned. The present study deals with understanding the degradation behavior of Ketoconazole by subjecting it to acid, base, aqueous, thermal, photo and oxidative stress conditions. Furthermore, the two major degradation impurities observed under stressed condition were identified by LC-MS techniques, elemental analysis, NMR, and their structures were justified through mechanistic explanation.

Experimental

Material and reagents

Ketoconazole drug substance was obtained from Sharon Biomedichem (Navi Mumbai, India). All the chemicals and reagents, hydrochloric acid, sodium hydroxide, hydrogen peroxide (30 %), tetrabutylammonium hydrogen sulphate, acetonitrile and methanol were used of analytical grade, while a millipore milli Q plus water purification system (Milford, USA) was used to prepare distilled water (>18 $\mu\Omega$).

Instruments

Integrated HPLC system, Ultimate 3000 manufactured by Dionex (Germany) was used for method development and method validation. This system consisted of a quaternary gradient pump, auto sampler, column oven and a photodiode array detector. PC installed Chromeleon software was used to record and to integrate the chromatograms. The analysis was carried out at ambient temperature. LCMS system, Agilent ion trap 6310 was used for mass fragmentation analysis. NMR experiments were recorded on Bruker 500 Mz spectrometer. Photostability studies were performed in a photostability chamber from Thermolab (India).

Chromatographic conditions

Analytical HPLC conditions

Inertsil ODS (Length: 100 mm, Diameter: 4.6 mm, Particle size: $3 \mu m$) analytical column was used as a stationary phase. The flow rate was 2.0 ml min⁻¹ and the detector was set at 220 nm. The volume of the sample solution injected was 10 µl. The gradient mobile phase consisted of Mobile phase A {(Acetonitrile: 3.4 g/l solution of tetrabutylammonium hydrogen sulphate (5:95 V/V)}: and Mobile phase B {(Acetonitrile: 3.4 g/l solution of tetrabutylammonium hydrogen sulphate (50:50 V/V)}. A membrane filter of 0.45 µm porosity was used to filter and degas the mobile phase. (Gradient program as mentioned in Tab. 1).

Time (min)	Mobile phase A (% V/V)	Mobile phase B (& V/V)
0	100	0
10	0	100
15	0	100
17	100	0
20	100	0

Tab. 1. Mobile Phase gradient for HPLC chromatographic method

Analytical LC–MS conditions

Inertsil ODS (Length: 100 mm, Diameter: 4.6 mm, Particle size: $3 \mu m$) analytical column was used as a stationary phase. The flow rate was 2.0 ml min⁻¹ and the detector was set at 220 nm. The volume of the sample solution injected was 10 µL. The gradient mobile phase consisted of Mobile phase A (Water) and Mobile phase B (Acetonitrile). A membrane filter of 0.45 µm porosity was used to filter and degas the mobile phase. The gradient program as mentioned in Table 2. The LC-Mass condition was set using Nebulizer 50 PSI, dry gas temperature 350 degree and source ESI positive.

819	
-----	--

Time (min)	Water (% V/V)	Acetonitrile (% V/V)
0	100	0
20	0	100
30	0	100

Tab. 2.Mobile Phase gradient for LC-MS method

Stress degradation of drug substance

Stress studies were carried out under acid, base, thermal, photo and oxidative stress conditions.

Acid Hydrolysis

250.0 mg of test sample + 2ml 1N HCl into 25 ml volumetric flask. Sample heated on boiling water bath at 100 deg, withdrawn at 2 min and 8 min, respectively, then neutralized with 1N NaOH solution and make up the volume to 25 ml with methanol. Pipette out 4 ml into 50 ml volumetric flask and dilute to volume with methanol.

One unknown degradation impurity was observed under acidic condition (Table 3 and figure 1c). In figure 1c, the main degradation product is unknown impurity at RRT 0.80.

Name of compounds	RRT	Sample "as such"	Initial	4 hours at 25°C	2 minutes heating at 100°C	8 minutes heating at 100°C
Unknown	~0.66	ND	ND	0.052	ND	0.085
Unknown	~0.72	ND	ND	0.105	0.042	0.080
Unknown	~0.76	ND	ND	ND	0.036	ND
Unknown	~0.80	0.005	0.018	0.878	5.778	22.122
Ketoconazole	~1.00	99.535	99.510	98.213	91.417	69.620
Unknown	~1.03	0.049	0.054	0.050	0.085	0.046
Unknown	~1.09	ND	ND	ND	0.045	ND
Unknown	~1.11	ND	ND	0.017	0.046	0.085
Unknown	~1.19	0.196	0.200	0.206	0.220	0.110
Unknown	~1.32	0.104	0.102	0.009	0.139	ND
Unknown	~1.38	0.114	0.110	0.106	0.126	ND

Tab. 3.Results of Acid degradation (1M HCl)

Base Hydrolysis

250.0 mg of test sample + 2ml 1N NaOH into 25 ml volumetric flask. Sample heated on boiling water bath for 10 min and 30 min, respectively, then neutralized with 1N HCl solution and make up the volume to 25 ml with methanol. Pipette out 4 ml into 50 ml volumetric flask and dilute to volume with methanol.

One unknown degradation impurity was observed under basic condition which is the same as observed under acidic condition (Table 4 and figure 1d). In figure 1d, the main degradation product is unknown impurity at 0.80.

Name of compounds	RRT	Sample "as such"	Initial	4 hours at 25°C	10 minutes heating at 100°C	30 minutes heating at 100°C
Unknown	~0.66	ND	0.083	0.124	0.088	ND
Unknown	~0.72	ND	0.091	0.137	0.090	0.023
Unknown	~0.80	0.005	0.010	0.439	5.328	10.702
Ketoconazole	~1.00	99.535	99.310	98.055	92.172	88.821
Unknown	~1.03	0.049	0.076	0.136	0.079	0.109
Unknown	~1.09	ND	ND	ND	ND	ND
Unknown	~1.11	ND	0.014	0.004	0.161	0.163
Unknown	~1.19	0.196	0.200	0.212	0.100	0.037
Unknown	~1.32	0.104	0.099	0.114	0.094	0.130
Unknown	~1.38	0.114	0.111	0.120	ND	ND

Tab. 4. Results of Base degradation (1M NaOH)

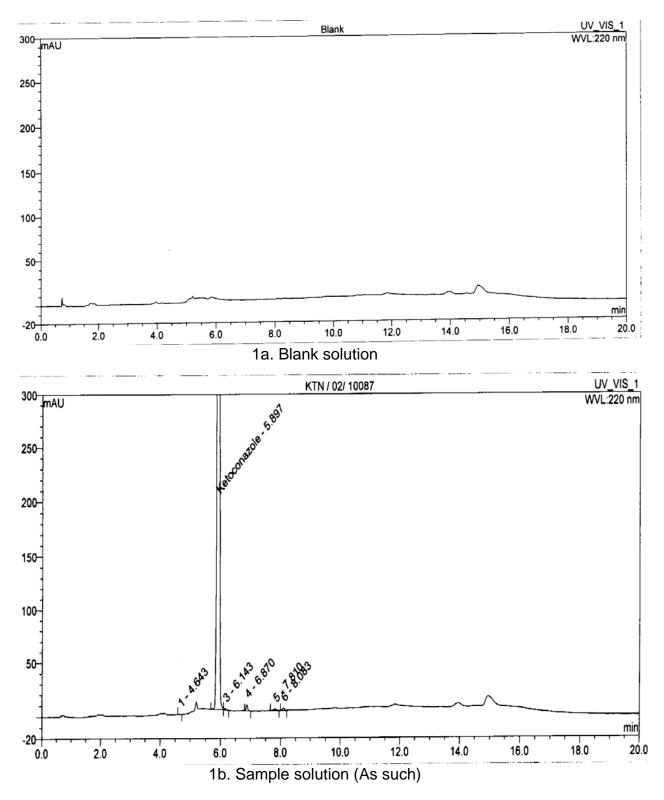
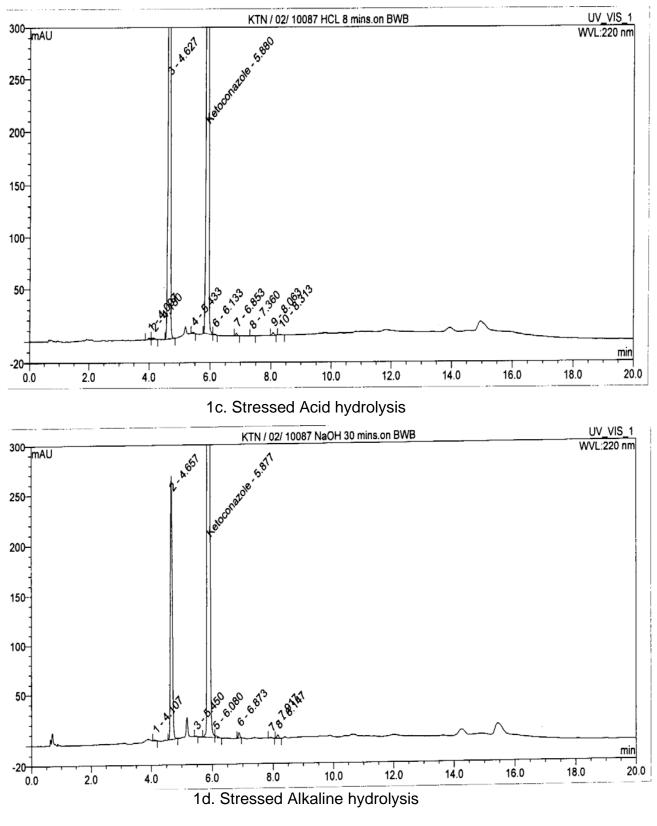
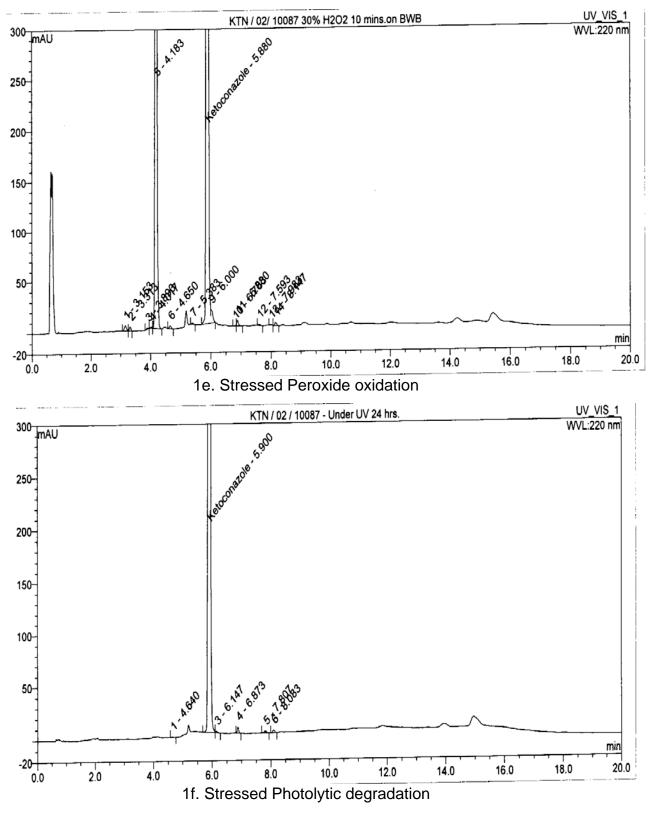
Oxidation

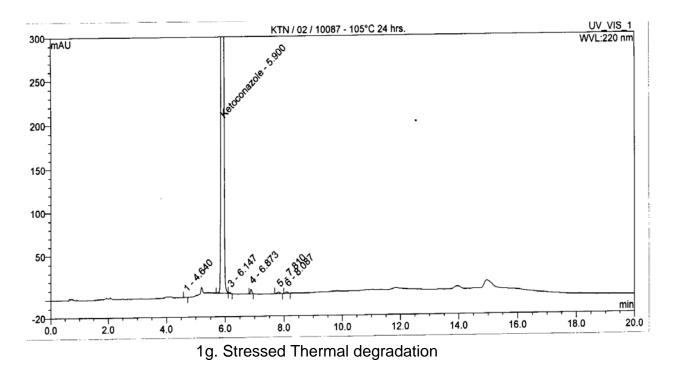
250.0 mg of test sample + 2ml 30%H2O2 into 25 ml volumetric flask and heated for 10 min on boiling water bath. Make up the volume to 25 ml with methanol. Pipette out 4 ml into 50 ml volumetric flask and dilute to volume with methanol.

One unknown degradation impurity was observed under oxidative stress condition and it is different from the impurity observed under acidic/ basic condition (Table 5 and figure 1e). In figure 1.e, the main degradation product is unknown impurity at RRT 0.72.

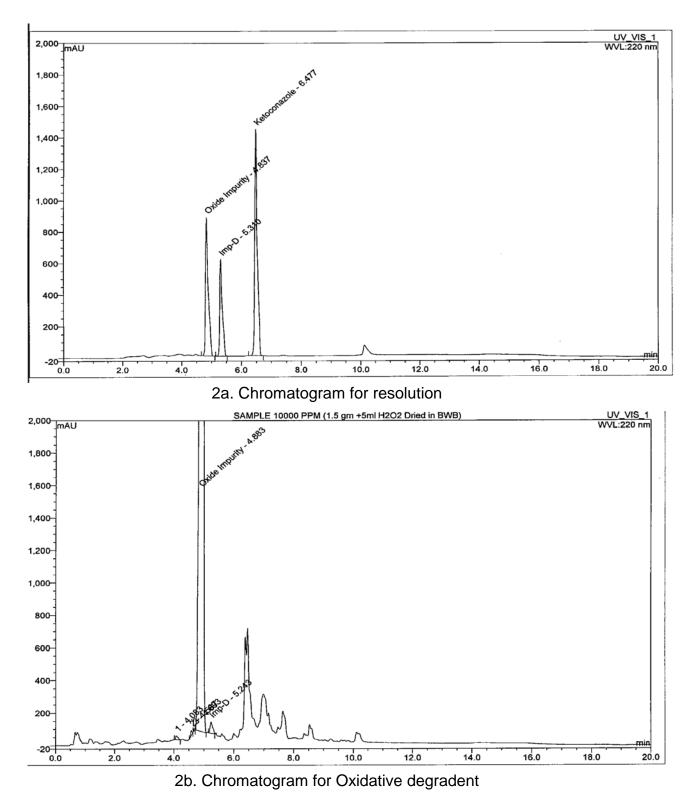
Tab. 5. Results of Oxidative degradation (30% H₂O₂)

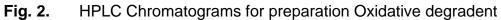
Name of compounds	RRT	Sample "as such"	Initial	4 hours at 25°C	10 minutes heating at 100°C
Unknown	~0.54	ND	ND	ND	0.219
Unknown	~0.56	ND	ND	ND	0.134
Unknown	~0.66	ND	0.125	0.149	0.084
Unknown	~0.72	ND	0.172	0.860	23.528
Unknown	~0.80	0.005	0.007	0.008	0.078
Ketoconazole	~1.00	99.535	99.185	98.478	74.995
Unknown	~1.03	0.049	0.124	0.116	0.500
Unknown	~1.19	0.196	0.213	0.212	0.174
Unknown	~1.32	0.104	0.012	0.010	0.047
Unknown	~1.38	0.114	0.124	0.124	0.122

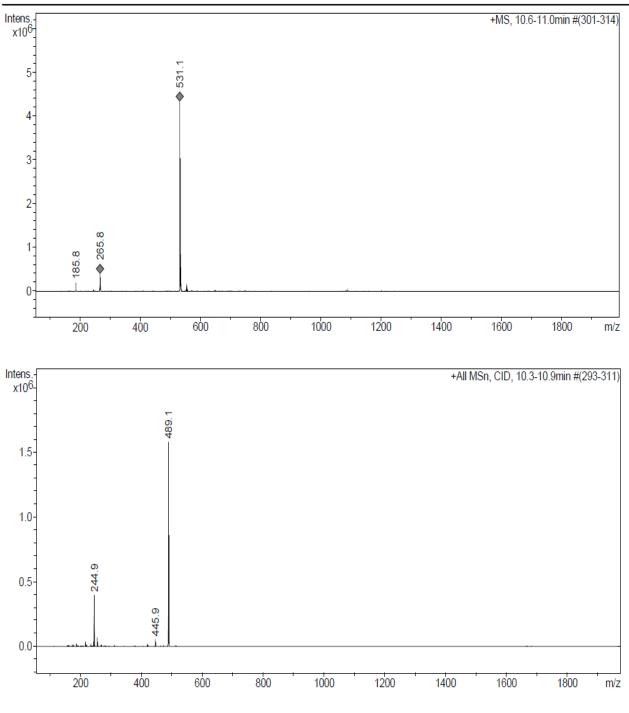





Fig. 1. HPLC Chromatograms for Stressed conditions

Thermal


Test sample of Ketoconazole was subjected to thermal degradation by exposure to oven at 105°C for 24h and 60°C at 5 days and 10 days. 250.0 mg test sample of Ketoconazole were dissolved and diluted with methanol to 25 ml. Pipette out 4 ml into 50 ml volumetric flask and dilute to volume with methanol.


Photolysis


About 250.0 mg test sample of Ketoconazole is kept for UV degradation for 24hours at 254 nm wavelength and then dissolved and diluted with methanol to 25 ml. Pipette out 4 ml into 50 ml volumetric flask and dilute to volume with methanol. The drug substance was found stable under photo and thermal stress conditions as shown in below (Table 6, figure 1f and 1g).

Name of	RRT	Sample	105°C at	60°C at	60°C at	24 hours at
compound		"as such"	24 hours	5 days	10 days	254 nm
Unknown	~0.80	0.005	0.008	0.008	0.007	0.007
Ketoconazole	~1.00	99.535	99.576	99.578	99.561	99.536
Unknown	~1.03	0.049	0.046	0.050	0.055	0.053
Unknown	~1.19	0.196	0.179	0.183	0.190	0.195
Unknown	~1.32	0.104	0.103	0.093	0.102	0.097
Unknown	~1.38	0.114	0.085	0.084	0.083	0.109

Tab. 6. Results of Thermal and UV degradation

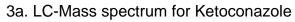
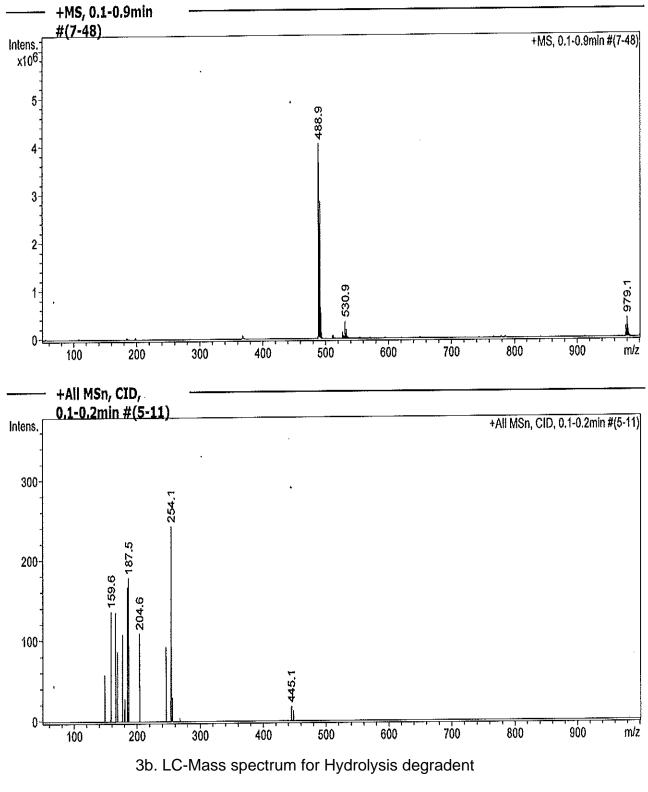
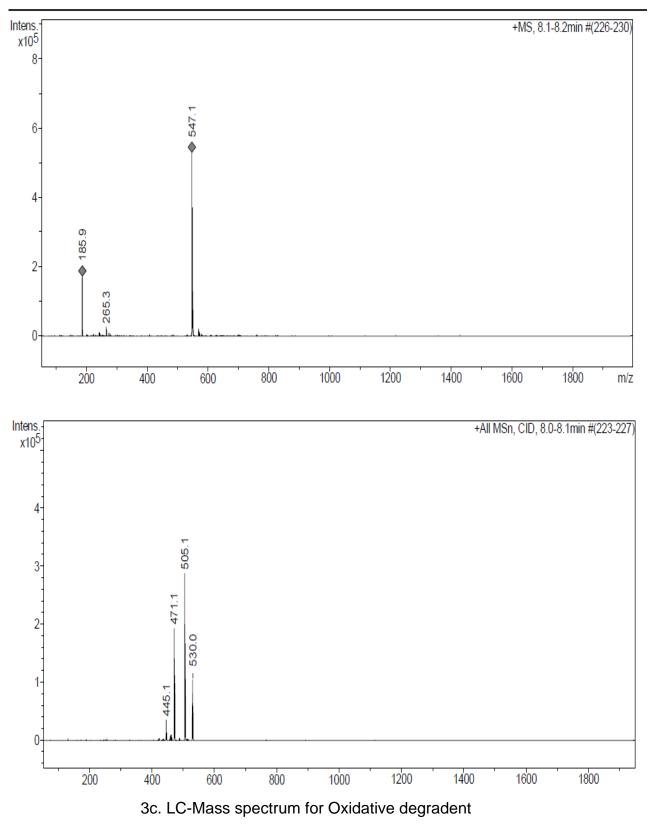




Fig. 3. LC-Mass spectrum for Ketoconazole and degradent products

Preparation of Impurities

Hydrolysis degradent, Impurity D as per Ph. Eur., is synthesized in-house and identified by HPLC analysis, Mass spectrometer (figure 3b) and elemental analysis (figure 6b). Oxidative degradent is prepared in-house by degradation of Ketoconazole with 30% hydrogen peroxide by heating up to evaporate to dryness at 80°C. Ketoconazole gets converted to its N-oxide and identified by HPLC (figure 2b), LCMS analysis (figure 3c), NMR analysis (figure 5b) and Elemental analysis (figure 6c, 6d).

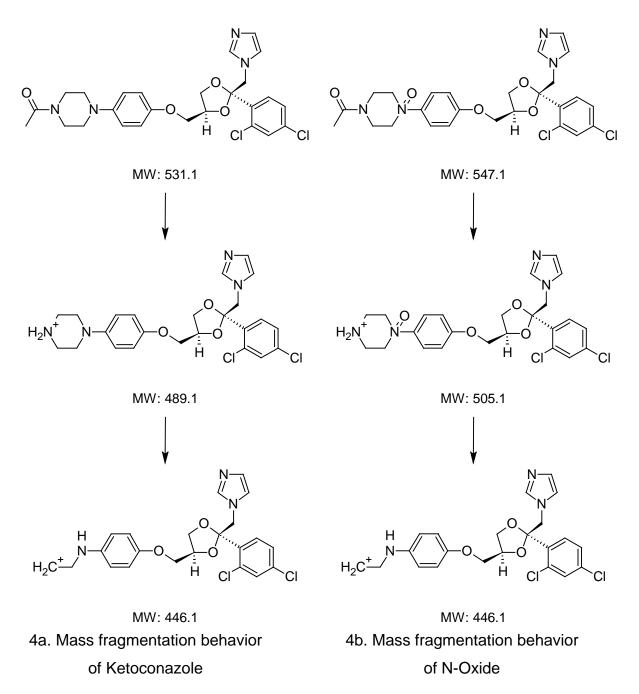


Fig. 4. Mass fragmentation behavior of Ketoconazole and N-Oxide

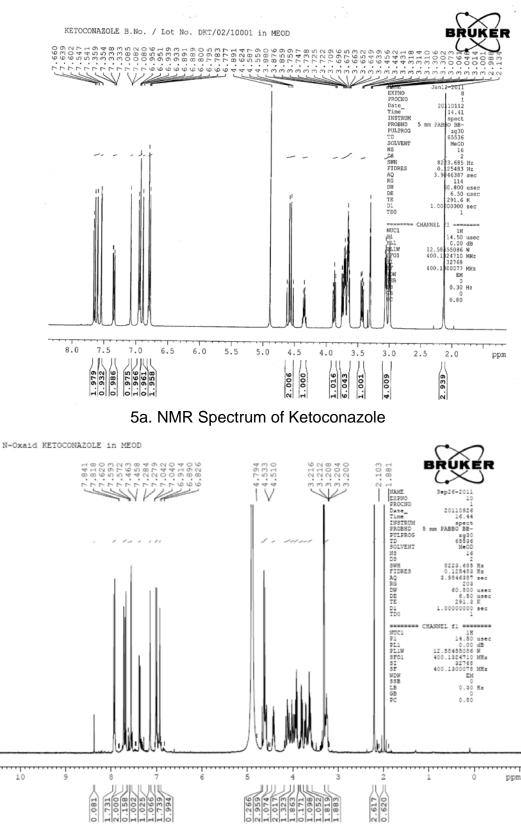
Elemental analysis

Elemental analysis (CHNO) of Ketoconazole, Hydrolysis degradent and Oxidative degradent performed and results shown below Table 7 and 8.

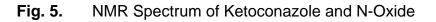
	Ketoconazole MW 531.43					degradent 547.43
Element	% Calc.	% Found	% Calc.	% Found	% Calc.	% Found
С	58.71	58.87	58.91	58.84	56.994	58.378
Н	5.27	5.38	5.32	5.35	5.115	5.254
Ν	10.54	10.55	11.45	10.62	10.230	10.092
0	12.04	12.03	9.82	10.03	14.614	14.066

 Tab. 7.
 Results of Elemental analysis

Tab. 8. No of atoms present in molecule


Element	Ketoconazole	Hydrolysis degradent	Oxidative degradent
С	26	24	26
Н	28	26	28
Ν	4	4	4
0	4	3	5
Observed Molecular formula	$C_{26}H_{28}CI_2N_4O_4$	$C_{24}H_{26}CI_2N_4O_3$	$C_{26}H_{28}CI_2N_4O_5$

NMR analysis


NMR analysis of Ketoconazole and the oxidative degradent were performed and the results are shown in Table 9.

Tab. 9.	Results of NMR analysis
---------	-------------------------

	Ketoc	onazole	Oxidative degradent		
	1H δ (ppm)	No of protons	1H δ (ppm)	No of protons	
1 CH ₃ group	2.134	2.939	2.103, 1.881	3.237	
7 CH_2 and	2.988–3.897	15.075	3.200-4.794	15.525	
1 CH group					
Aromatic protons	6.777–7.660	9.757	6.826–7.841	9.796	

5b. NMR Spectrum of N-Oxide

PAGE 1/1		TEST RESULTS	ORIGINAL
SR. N	o. TEST		OBSERVATION
1.	DESCRIPTION		WHITE POWDER
2.	NITROGEN		10.55%
3.	CARBON	· .	58.87%
4.	HYDROGEN		5.38%
5.	SULPHUR		NOT DETECTED
6.	OXYGEN		12.03%

6a. Elemental analysis for Ketoconazole

PACE 1/1		TEST RESULTS	ORIGI	NAL
SR. NO.	TEST		OBSERVATION	
1.	DESCRIPTION		WHITE POWDER	
2.	NITROGEN		10.62%	
3.	CARBON		58.84%	
4.	HYDROGEN		5.35%	
5.	SULPHUR		NOT DETECTED	
6.	OXYGEN		10.03%	

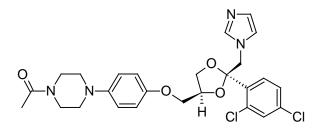
6b. Elemental analysis for Hydrolysis degradent

Results					
Element	RT (s)	Start (s)	End (s)	Area (µV.s)	Area %
Nitrogen	40	21	55	119042	5.381
Carbon	60	55	137	1708655	77.241
Hydrogen	184	167	298	384409	17.378
Sulphur				1	
Oxygen					

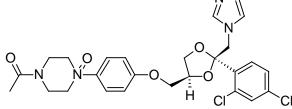
Element	Element %	Intercept	Slope	Correlation	K-Factor
Nitrogen	10.092	- 3.53E-3	6.292E-7	9.99293E-1	
Carbon	58.378	5.539E-3	2.261E-7	9.99387E-1	
Hydrogen	5.254	9.099E-3	1.04E-7	9.97158E-1	
Sulphur					
Oxygen					

6c. Elemental analysis for Oxidative degradent

Results

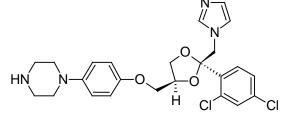

Element	RT(s)	Start (s)	End (s)	Area (µV.s)	Area %
Nitrogen					
Carbon					
Hydrogen				. 	
Sulphur					
0	55	46	102	530801	100.000
Oxygen	55				
Element	Element %	Intercept	Slope	Correlation	K-Factor
				Correlation	K-Factor
Element Nitrogen				Correlation	K-Factor
Element Nitrogen Carbon				Correlation	K-Factor
Element				Correlation 9.9942E-1	K-Factor

6d. Elemental analysis for Oxidative degradent


Fig. 6. Elemental analysis for Ketoconazole and degradent products

Results and discussion

The degradation of Ketoconazole was performed under different stress conditions. Two major degradants are observed under stress degradation. One is hydrolysis product of Ketoconazole observed under acid/ base condition and the other one is oxidative degradent observed under oxidative stress condition. The identification of oxidative degradent was achieved by LC-MS, NMR and Elemental analysis. The LC-MS data shows the mass 547.43 amu which exactly increase in the mass 16 amu from the Ketoconazole drug substance having mass 531.43 amu, which indicate the formation of N-oxide. LC-MS spectrums and fragmentation behavior of N-Oxide are given in figure 3c and 4b. Also, the elemental analysis of N-oxide shows the increase in oxygen atom (figure 6d), while in the case of hydrolysis decrease in oxygen atom compare to Ketoconazole. The NMR analysis of oxidative degradent shows the shifting of protons signal from their original position in Ketoconazole due to introduction electronegative oxygen atom (figure 5b).



Ketoconazole m/z 531.43 1-[4-(4-{[(2*R*,4*S*)-2-(2,4-dichlorophenyl)-2-(1*H*-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)piperazin-1-yl]ethanone

Oxidation Product

m/z = 547.431-[4-(4-{[(2*R*,4*S*)-2-(2,4-dichlorophenyl)-2-(1*H*-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)-4-oxidopiperazin-1-yl]ethanone

Hydrolysis Product m/z = 489.39 1-(4-{[(2*R*,4*S*)-2-(2,4-dichlorophenyl)-2-(1*H*-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)piperazine

Sch. 1. Structure of elucidated compounds

Hence, the formation of the oxidative degradation product from the drug as shown below is only due to the N-oxide formation at the piperazine ring. The lone pair at the nitrogen of the piperazine ring is more prone for oxidation to form an N-oxide. However, out of two nitrogen atoms, the electron pair on the nitrogen attached to the carbonyl group is participating in resonance delocalization with this group. Hence, the most possible N-Oxide at the nitrogen is at the one attached to the phenolic group (scheme 1).

Similar types of N-oxide degradents have been reported in the literature [14–16].

Conclusions

The Stress degradation on Ketoconazole was carried out under different acid, base, thermal, photo and oxidative stress conditions. The drug was found susceptible to acid, base and oxidative stress degradation. The unknown degradation products formed in the oxidative and hydrolysis stressed sample were identified using LC–MS and elemental analysis (CHNO). The investigations of oxidative and hydrolysis degradent will help to take proper care during selection of excipients in formulation, storage, packaging and handling of the drug product.

Acknowledgement

The authors are thankful to Mr. Lalit Mishra – Sharon Bio Medicine for their encouragement and support during the work.

Authors' Statement

Competing Interests

The authors declare no conflict of interest.

References

- [1] Vander Heyde Y, Nguyet AN, Detaevenier MR, Massart DL, Plaizier-Vercammen J. Simultaneous determination of ketoconazole and formaldehyde in a shampoo: liquid chromatography method development and validation. J Chromatogr A. 2002; 958: 191–201. http://www.ncbi.nlm.nih.gov/pubmed/12134817
- [2] Nguyen MN, Tallieu L, Plaizier-Vercammen J, Massart DL, Vander Heyden Y. Validation of an HPLC method on short columns to assay ketoconazole and formaldehyde in shampoo. J Pharm Biomed Anal. 2003; 32: 1–19. http://dx.doi.org/10.1016/S0731-7085(02)00640-4
- [3] Abdel-Moety EM, Khattab FI, Kelani KM, AbouAl-Alamein AM. Chromatographic determination of clotrimazole, ketoconazole and fluconazole in pharmaceutical formulations. Farmaco. 2002; 57: 931–938. http://dx.doi.org/10.1016/S0014-827X(02)01270-3

- [4] Vertzoni MV, Reppas C, Archontaki HA.
 Optimization and validation of a high-performance liquid chromatographic method with UV detection for the determination of ketoconazole in canine plasma.
 J Chromatogr B. 2006; 839: 62–67.
 http://dx.doi.org/10.1016/j.jchromb.2006.03.010
- [5] Velikinac I, Cudina O, Janković I, Agbaba D, Vladimirov S. Comparison of capillary zone electrophoresis and high performance liquid chromatography methods for quantitative determination of ketoconazole in drug formulations. Farmaco. 2004; 59: 419–424. http://dx.doi.org/10.1016/j.farmac.2003.11.019
- Bernal JL, del Nozal MJ, Toribio L, Montequi MI, Nieto EM.
 Separation of ketoconazole enantiomers by chiral subcritical-fluid chromatography. J Biochem Biophys Methods. 2000; 43: 241–250. http://dx.doi.org/10.1016/S0165-022X(00)00060-9
- Yuen KH, Peh KK.
 Simple high-performance liquid chromatographic method for determination of ketoconazole in human plasma.
 J Chromatogr B. 1998; 715: 436–440.
 http://dx.doi.org/10.1016/S0378-4347(98)00253-9
- Bajad S, Johri RK, Singh K, Singh J, Bedi KL.
 Simple high-performance liquid chromatography method for the simultaneous determination of ketoconazole and piperine in rat plasma and hepatocyte culture.
 J Chromatogr A. 2002; 949: 43–47.
 http://dx.doi.org/10.1016/S0021-9673(01)01260-2
- [9] Arranz P, Arranz A, Moreda JM, Cid A, Arranz JF. Stripping voltammetric and polarographic techniques for the determination of anti-fungal ketoconazole on the mercury electrode. J Pharm Biomed Anal. 2003; 33: 589–596. http://dx.doi.org/10.1016/S0731-7085(03)00247-4
- Giordani R, Trebaux J, Masi M, Regli P.
 Enhanced antifungal activity of ketoconazole by Euphorbia characias latex against Candida albicans. J Ethnopharmacol. 2001; 78: 1–5. http://dx.doi.org/10.1016/S0378-8741(01)00295-1
- [11] Bernal JL, del Nozal MJ, Toribio L, Montequi MI, Nieto EM. Separation of ketoconazole enantiomers by chiral subcritical-fluid chromatography. J Biochem Biophys Methods. 2000; 43: 241–250. http://dx.doi.org/10.1016/S0165-022X(00)00060-9
- de Bruijn P, Kehrer DF, Verweij J, Sparreboom A. Liquid chromatographic determination of ketoconazole, a potent inhibitor of CYP3A4-mediated metabolism. J Chromatogr B. 2001; 753: 395–400. http://www.ncbi.nlm.nih.gov/pubmed/11334355
- [13] Staub I, Flores L, Gosmann G, Pohlmann A, Fröehlich PE, Schapoval EES, Bergold AM. Photostability Studies of Ketoconazole: Isolation and Structural Elucidation of the Main Photodegradation Products. Lat Am J Pharm. 2010; 29: 1100–1106.
- [14] Reddy GVR, Kumar AP, Reddy BV, Kumar P, Gauttam HD. Identification of degradation products in Aripiprazole tablets by LC-QToF mass spectrometry. Eur J Chem. 2010; 1: 20–27. http://dx.doi.org/10.5155/eurjchem.1.1.20-27.11

- [15] Dyakonov T, Muir A, Nasri H, Toops D, Fatmi A.
 Isolation and characterization of cetirizine degradation product: mechanism of cetirizine oxidation. Pharm Res. 2010; 27: 1318–1324. http://dx.doi.org/10.1007/s11095-010-0114-x
- [16] Clement EM, Franklin M.
 Simultaneous measurement of zolmitriptan and its major metabolites N-desmethylzolmitriptan and zolmitriptan N-oxide in human plasma by high-performance liquid chromatography with coulometric detection.
 J Chromatogr B. 2002; 766: 339–343. http://dx.doi.org/10.1016/S0378-4347(01)00470-4