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Abstract. This paper analyzes the impact of reservoir computing, and, in particu-
lar, of Deep Echo State Networks, to the modeling of highly non-linear dynamical
systems that can be commonly found in the industry. Several applications are
presented focusing on forecasting models related to energy content of steelwork
byproduct gasses. Deep Echo State Network models are trained, validated and
tested by exploiting datasets coming from a real industrial context, with good
results in terms of accuracy of the predictions.
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1 Introduction

These last few years have shown a dizzying growth trend in the application of Artificial
Intelligence (AI) techniques, not only in the academic world, in which AI is considered
a standard technique, with many fields that have reached a satisfactory level of devel-
opment, but also outside the academia and, in particular, in industrial context. The new
consciousness of some industrial sectors, and in particular the steel industry, towards
the concepts of circular economy and sustainable development requires to tackle chal-
lenging technological and scientific problems, such as the optimization of the use and
reuse of energy sources. At the same time, the need arises to improve the product qual-
ity in order to face the increasing competition in the markets of goods and services.
Nowadays stakeholders are converging towards the idea that AI is a clear turning point
for optimally addressing current and future challenges [1] and have begun, in the last
decade, a race to cancel the knowledge gaps that exist in the industrial world between the
engineering experience, which is currently based on standard modeling, optimization
and control techniques and the so-called data-driven tools and techniques. Among these
latter ones, surely AI plays a fundamental role in facing the challenge of digitalization
[2] and nowadays the level of understanding and, above all, of acceptance of AI as an
effective and reliable technique [3] is surely increased.
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In this context, reservoir computing is inserted, a tool capable of making the philoso-
phy and technique underlying the AI, aimed at the study and modeling of timeseries and
dynamic processes, more understandable and affordable in terms of computation skills,
efficiency and quality of obtained results. Reservoir computing has been introduced by
the work of Maass et al., in which has been described a particular Recurrent Neural
Network (RNN) architecture, called Liquid-state machine [4].

The literature in the field of reservoir computing applied to industrial processes is
quite extensive, and in particular among the various techniques emerges that based on
the Echo State Network, thanks to characteristics that make this approachmore attractive
and effective. Interesting examples of their application are shown in the work of Wang
[5] in which ESN and sparse adaboost method are exploited to forecast the electricity
consumption in industrial areas; Matino presented a work related to the prediction of
blast furnace gas through ESN techniques [6] and Dettori applied several AI methodolo-
gies aiming at modelling energy transformation equipment [7]. Colla et al. presented a
work related to the use of outlier detection and advanced variable selection to reservoir
application in industry [8]. Another interesting work related to the application of ESN
to Model predictive control methodologies is presented by Pan [9].

This work presents some models developed within the European project entitled
“Optimization of the management of the process gas network within the integrated
steelworks” (GASNET), which aims at supporting the optimal use and distribution of
valuable energy resources and byproduct gasses while minimizing the environmental
impact. This problem is of utmost importance for integrated steelworks, i.e. the indus-
trial plants which produce steel from virgin raw material, as considerable savings in
CO2 emissions as well as in natural gas consumptions can be achieved by means of an
optimal distribution of the off-gases, such as discussed in [10–12]. In particular, in the
present work, the models are developed through a recent reservoir computing method-
ology called Deep Echo State Network (DESN). The novelty of the work consists in
the application of this novel Neural Network (NN) architecture, which allows modelling
complex nonlinear dynamics that can be typically found in industrial processes. The
effectiveness of the proposed methodology has ben compared respect to other state of
art neural network architectures.

The paper is organized as follows: Sect. 2 describes the DESN architecture, Sect. 3
presents processes, models and datasets used, Sect. 4 describes methods and results,
while Sect. 5 provides some concluding remarks.

2 Deep Echo-State Network Architecture

ESN is an efficient tool and a universal uniform approximator [13], well known for
its intrinsic capability of reconstructing complex dynamical input/output relationships.
The concept behind the ESN approach is to generate within a reservoir a rich set of
dynamics starting from the exciting input. The frequency information content of the
input is somehow distorted and enriched through the non-linear reservoir filter and then
used to compute a regression on a target. In the last decade, the research in the field
of reservoir computing has deepened the study of the characteristics of ESNs up to a
further evolutionary step in its architecture, which borrows the concepts introduced by
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Deep Learning and amplifies its effectiveness through the use of algorithms that do
not use heavy backpropagation routines. The resulted DESN approach introduced by
Gallicchio [14, 15] consists of the exploitation of N reservoirs r connected in series in a
deep learning fashion and a readout that collects all the reservoirs dynamics to compute
the output of the network, as shown in Fig. 1.

Fig. 1. Architecture of a DESN.

At time k, the state of neurons in each reservoir layers xi(k) is updated due to the
action of its exciting input. The first reservoir layer receives in input the vector u(k),
the following layers receive in input the updated state of the previous reservoir layer
xi−1(k), whose dynamic is updated according to the following equations:

x1(k) = f
(
cinW in1u(k) +Wr1x1(k − 1) + ν1(k)

)
(1)

xi(k) = f
(
cisW inixi−1(k) +Wrixi(k − 1) + νi(k)

)
(2)

where i is the i-th reservoir layer, f is typically a tanh function, cin and cis are respectively
the input scaling and inter-scaling factors, W in1 and W ini are, respectively, the input
matrix of the first and i-th reservoir layer with dimensions n1 × nin and ni × ni−1, ni is
the number of neurons of the i-th reservoir,Wri is the reservoir matrix of i-th reservoir,
y is the output of the DESN and νi is a small amplitude white noise. The output of the
readout is updated as:

y(k) = fout(Woutx(k)) (3)

where x(k) is the complete vector of states, fout is the readout neuron function, typically
the identical function for time series regression tasks,Wout a nout × nT matrix and nT is
the total number of reservoir neurons of the DESN.

Some of the aspects that make the approach particularly effective compared to those
based on other recurrent networks are the architectural characteristics of the DESN and
the training procedures that focus only in the weights of the readout.

More in detail, as said before, the only scope of the reservoir is to generate a rich
set of dynamics, while the readout has to combine them in effective way, in order to
minimize the regression error through non-iterative algorithms. The training phase is
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carried out in two sequential routines: The reservoir and input initializations and the
readout training.

In the first phase, input and reservoir matrixes are initialized with the only constraint
of obtaining a reservoir characterized by stable dynamics. In other words, the state of
the reservoir has to be contractive and each neuron has to gradually forget their previous
activation. These properties are summarized in the so-called Echo State Property (ESP),
widely studied and deepen in several works of Yildiz and Jaeger [16] and then extended
also to the case of DESN in the work of Gallicchio [15]. These works define necessary,
sufficient conditions and empirical guidelines for the design of a contractive reservoir.

More in detail, each reservoir matrix Wri is initialized as a sparse randomized Ŵri ,
which entries are defined in the range [−1, 1]. The sparsity, defined as the percentual
of non-zero element over the total, is the percentual number of connections within the
reservoir. This parameter is typically set below 5%.

The first step to design a single contractive reservoir is to scale its matrix Ŵri in
order to obtain the desired spectral radius ρ̃i:

Wri = ρ̃i
Ŵri

ρ
(
Ŵri

) (4)

In the case of DESN, the necessary condition to guarantee the ESP is that the greater
of the spectral radius of all the reservoirs is less than one. This condition is a guideline
to design a contractive global reservoir, but empirically is also sufficient. The spectral
radius of each layer is an important hyperparameter, whose choice is subject to opti-
mization. While the reservoir system is initialized, also each reservoir input matrixW ini
is initialized randomly with weights in the range [−1, 1]. In the Eq. (1) and (2) these
matrixes are actually scaled by further coefficients cin and cis, namely input scaling and
inter-scaling factors, that are important hyperparameters and subject to optimization.
Once all these matrixes are initialized and left untrained, it is possible to train the read-
out by exploiting linear regression routines. A straightforward solution is the Tikhonov
regularization least square algorithm, calculated on the training dataset:

Wout = ȲXT
(
XXT + λI

)−1
(5)

where Ȳ and X are respectively the sequences of targets and states of all the reservoirs,
the latter calculated by using Eqs. (1) and (2). λ is the regularization coefficient that
allows to solve also ill-posed inversions and, in general, could be object of optimization
during the hyperparameter selection phase.

3 Models and Datasets

Between the several processes involved during the development of GASNET project, in
this paper we present two case studies related to the prediction of energetic content and
chemical characteristics of Blast Furnace (BF) off-gas, a particular byproduct gas (BFG)
generated during the production of pig iron that can be reused as a valuable energy carrier
to produce electrical energy or process steam. In particular, for the aims of GASNET
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project, it is useful to predict the future behavior and characteristics of the off-gas by
using a restrict number of process measurements and future knowledge of the process
scheduling for 2 h ahead. Together with the prediction of the BFG production, this paper
presents an application in which is consumed, the hot blast stoves, also called Cowpers.

In particular, in this process the preheating of the air takes place, subsequently blown
inside the BF for the production of pig iron, through the combustion of BFG and other
byproduct gasses typically available in some integrated steelworks, such as Coke Oven
Gas (COG).

The targets of the first two models are the BFG volume flow and its Net Calorific
Value (NCV). For each target will be developed a specific model capable of predicting
the entire sequence of 2 h ahead dynamic behavior in a one-shot multistep manner.

The targets of the third and fourth model are respectively the consumption of BFG
and COG burned in the cowpers. Also in this case a specific model capable of predicting
the entire sequence of 2 h ahead dynamic behavior in a one-shot multistep manner.

Themodelswill be trained exploiting real data of industrial partners, through datasets
related to a period of 30 days with sampling time of 1 min, sufficient to describe the
main dynamics of the process.

Data pre-processing has represented a fundamental step for models design. Unre-
liable data have been identified through suitable outliers detection techniques [17, 18].
Moreover, the inputs of each model have been selected by exploiting a variable selection
approach based on Genetic Algorithms [19, 20].

All the models have in input the scheduling of the respective process for 2 h ahead, a
Boolean information that describes if the respective process is active or not. The model
that predictsBFGFlowhas in input also the currentmeasurements of theO2 content in the
cold wind, the cold wind volume flow, the pressure of the hot wind and the BFG volume
flow. The model that predicts the BFG NCV has in input also the same measurements
and in addiction the current CO and H2 contents in the BFG. The third model, which
predicts the BFG consumption in the cowpers, takes in input its abovementioned process
scheduling and the current measurements of the cold wind flow and the BFG and COG
consumed in the cowpers. The fourth model, which predicts the COG consumption in
the cowpers takes the same inputs of the previous model and in addiction the future
2 h predictions of BFG NCV. The input/output architecture of each model is depicted in
Fig. 2, while the inputs and target dataset descriptions and Units of Measurement (UoM)
are shown in the Table 1.

4 Methods and Numerical Results

In order to evaluate the effectiveness of the DESN architectures for predicting the future
behavior of the considered processes, a comparison is proposed between the results
achievable through DESN and another rather efficient architecture for modeling time-
series characterized by non-linear dynamics, i.e. the Long Short-TermMemory (LSTM)
[21]. In this work, the LSTM architecture is configured a series of input layer, a LSTM
layer, LLSTM fully connected layers, and a linear readout.

Each model has been developed through a systematic procedure. In first place, it is
necessary to define an optimal architecture for each model, by choosing a good set of
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Fig. 2. Input/Output architecture of the models

Table 1. Input/output descriptions of each model

Variables Description UoM

Scheduling of BFG process Boolean variable aimed at describing the
status of the BF process. On (1), Off (0)

–

Scheduling of cowpers Boolean variable aimed at describing the
status of the cowpers. On (1), Off (0)

–

O2 content in cold wind Volume percentage of oxygen in the cold
wind in input to the BF after heating

%

Cold wind flow Volume flowrate of cold wind in input to the
BF after heating

m3/h

Hot wind pressure Pressure of hot wind in input to the BF bar

BFG production Volume of produced BF gas m3/h

CO content Volume percentage of carbon monoxide in
BF gas

%

H2 content Volume percentage of hydrogen in BF gas %

BFG consumption in the cowpers Consumption of BF gas in cowpers m3/h

COG consumption in the cowpers Consumption of COG gas in cowpers m3/h

hyperparameters. For the DESN the considered hyperparameters are the of number of
layers and neurons of each reservoir, the spectral radius, the input scaling factor and
the inter-layer scaling factor. For the LSTM the considered hyperparameters are the
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number of fully connected layers in series LLSTM , and the number of neurons of each
fully connected layer, with the i-th layer characterized by NLSTMi neurons.

For the sake of simplicity, each layer of the DESN has the same number of neurons
NDESN and the same spectral radius ρL. Moreover, each layer after the first has the
same inter-layer scaling factor. The selection of the hyperparameters is an open topic for
scientific research, and several works in literature give guidelines or recommend some
particular algorithms for their choice, such as [22]. In our work their optimization is
carried out through a random search technique [23] during which 1000 training trials
have been carried out using a uniform distribution in the intervals: number of reservoir
layers LDESN = [2 12]; Total Number of Reservoir Neurons= [200 2000], ρL = [0.1 1];
Input scaling cin = [0.01 10]; Inter Scaling cis = [0.1 1].

In the case of LSTM, the random search is performed over 1000 training trials
with a uniform distribution of the hyperparameters in the intervals: LLSTM = [1 10],
NLSTMi = [30 300]. The LSTMs have been trained through the ADAM training method
[24]. The randomsearch algorithmdoes not allowfinding the best set of hyperparameters,
but in general a good approximation of the optimal solution.

The optimal set of DESN and LSTM hyperparameters minimizes the mean value
of the Normalized Root Mean Square Error (NRMSE) of all the outputs of the model
mNRMSE, evaluated on the validation set. The comparison between the two different
architectures is assessed by evaluating themNRMSE,which is a particularly robust index
with respect to the Mean Absolute Percent Error (MAPE) or other common metrics, due
to the formulation that takes into account the overall range of the targets. Furthermore,
the MAPE is not an adequate measure when intermittent target values (too many values
equal or near to 0) are treated.

mNRMSE = 100 1
ny

ny∑

j=1

(√
1
Ns

∑Ns
k=1(ȳj(k)−yj(k))

2

max(yj)−min(yj)

)

(6)

The dataset is composed of about 45000 samples, divided in two parts: the first 50%
is used for the choice of hyperparameters and subsequently for training the optimal
networks, the remaining 50% is used for the test of the trained models. During the phase
of the hyperparameters selection, the first fraction of the overall dataset is in turn divided
into 60% training and 40% validation.

The DESN results related to the trained optimal network are summarized in Table 2,
which shows the results on the test dataset and the optimal architecture of eachmodel. The
comparison between the DESN- and LSTM-based architectures is reported in Table 3,
in terms of mNRMSE on the training and test dataset.

In the one-shot multistep ahead forecast approach, the k-th output is referred to k
sample ahead prediction. For all the models, the error is low in the first 10–20 samples of
prediction and, as it can normally be expected, it tends to increase as we want to predict
the phenomenon in the distant future. An example of prediction 2 h ahead of the BFG and
COG consumption in the cowpers through DESN and LSTM architectures are shown in
Fig. 3 and Fig. 4, respectively, which allow a comparison between the measured-target
values (in blue) and the LSTM and DESN forecasted values (respectively in orange and
yellow). In deeper detail, the figures show an example of one-shoot multistep prediction
of the abovementioned process for a specific instant of prediction, during which the
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Table 2. Optimal DESN architectures and test results of each model.

Model LDESN NDESN ρL cin cis Test mNRMSE

BFG flow 7 90 0.549 0.154 0.952 6.7

BFG NCV 5 139 0.991 0.214 0.031 7.3

Cowpers BFG cons 5 293 0.447 5.10 0.022 6.09

Cowpers COG cons 5 180 0.722 0.073 0.691 9.87

Table 3. Comparison between DESN and LSTM architectures

Model Architecture Training mNRMSE Test mNRMSE

BFG flow DESN 5.02 6.70

LSTM 7.95 10.92

BFG NCV DESN 5.93 7.31

LSTM 8.36 16.6

Cowpers BFG consumption DESN 4.60 6.09

LSTM 4.95 6.38

Cowpers COG consumption DESN 8.08 9.87

LSTM 11.6 13.4

target is characterized by a rich dynamic content. For confidentiality constraints, in the
figures the absolute ranges of the measured and predicted values are normalized.

The results achieved during the test of the modelling approach are very encouraging.
In particular, the models related to the BFG production and its energy contents are
characterized of errors around 7% that, considering the heavy nonlinearity of the multi
inputmulti outputBFprocess, for control application are very low. This allows predicting
theBFGproductionwith good accuracy, sufficient to optimize its use in an energy control
and optimization strategy, and to provide a support to process operators for the following
2 h.

In the case of BFG consumption in the cowpers, the prediction errors are satisfac-
tory. The model for the prediction of COG consumption in the cowpers show a greater
error, but also in this case the model can be considered useful in an energy control and
optimization strategy.

The comparison between DESN and LSTM shows a clear difference between the
results and the quality of the prediction obtainable with the two different architectures.
In each proposed modelled process, DESNs outperform LSTMs on both training and
test dataset. In particular, with respect to LSTM architecture, DESNs allow obtaining an
improvement of the performances of the 4 models, equal to 4.22%, 9.29%, 0.29% and
3.53%, respectively.
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Fig. 3. Prediction example of BFG consumption in the cowpers.

Fig. 4. Prediction example of COG consumption in the cowpers.

5 Conclusions

This paper describes the application of a particular reservoir computing technique called
Deep Echo State Network to the modelling of nonlinear dynamics typical of complex
industrial processes. The presented case studies are the forecast of energetic content in
blast furnace gasses, produced during the production of pig iron in steelworks and one
application of its consumption in the process called Hot Blast Stoves (Cowpers). The
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models have been trained, validated and tested by using real data. In particular, the hyper-
parameters of the DESN-based models are optimized through a random search approach
that aims to minimize the validation error. The proposed DESN-based methodology has
been compared with an LSTM-based architecture in order to assess the accuracy with
respect to the state of art. The results show a great advantage in usingDESNs tomodel the
dynamic behavior of the considered processes, with respect to the LSTM architecture.
The achieved results are satisfactory and the trained models are effectively used inside
a control strategy for the optimal distribution of byproduct gasses aiming at minimize
the environmental impact of steelworks.
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