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Fluorescence-based assay as a new 
screening tool for toxic chemicals
Ewa Moczko1, Evgeny M. Mirkes2, César Cáceres3, Alexander N. Gorban2 & Sergey Piletsky4

Our study involves development of fluorescent cell-based diagnostic assay as a new approach in 
high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses 
and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring 
biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent 
dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-
chemical and physiological conditions. Using chemometric techniques the optical signal is processed 
providing qualitative information about analytical characteristics of the samples. This integrated 
approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing 
whether particular chemical agents are irritating or not for human skin. It has several advantages 
compared with traditional biochemical or biological assays and can impact the new way of high-
throughput screening and understanding cell activity. It also can provide reliable and reproducible 
method for assessing a risk of exposing people to different harmful substances, identification active 
compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

In recent years scientists are facing a growing pressure to move from conventional approaches evaluating toxic 
potential of the products and safety assessment of chemical compounds towards modern, inexpensive and more 
efficient in vitro methods1–3. A present surge in new initiatives not only among industrial scientists around the 
world but also academic researchers, promotes high-throughput in vitro methods and more human-relevant, 
non-animal systems4–6. Novel approaches introduce the research concept of the reduction, refinement, or even 
obviation the need for animals in research studies and toxicity testing. Majority of these techniques include 
cell-based (in vitro) methods such as stem cell technologies, tissue engineering, organs-on-chips7–12 or ‘omics 
technologies (including genomics, epigenomics, and proteomics)13–15. Recently, rapidly developing are com-
putational (in silico) toxicology and modeling techniques which have already revealed moderate success in 
advancing toxicity testing and risk assessment. They also promise enhancement and efficiency (time and price 
to solution) of the existing methods16,17. Despite the advantages, they still have to be coupled with experiments 
to prove adequacy of theoretical models which are applied to make predictions. Among variety of approaches, 
strategies and types of possible screening assays in toxicity evaluation the ones which have attracted increasing 
interests are in vitro cell-based sensing methods applying fluorescence18–20. They have demonstrated number of 
advantages in comparison to other, non-fluorescence methods such as higher sensitivity and the flexibility of 
using multi-wavelength option for simultaneously detection of the emission of different fluorophores, the decay 
time or the polarization of the fluorescence emission21–24. In toxicology studies, the use of combined fluorescent  
in vitro assays and in silico methods has a great potential to identify toxicants faster and easier, reducing the 
need for expensive complicated high-throughput screening techniques and whole-animal models14–16. Herein, we 
present a new concept for toxicity assays and data evaluation. Our approach combines cell-based optical method 
with multivariate data analysis as a novel, promising scientific strategy for assessing the safety of chemicals. A 
schematic illustration of the presented concept is shown in Fig. 1. The operating principle of the assay is similar 
to electronic noses and tongues systems which mimic mammalian smell and taste recognition, and their optical 
analogue previously used by authors for quantitative and qualitative analysis of the samples25,26. In particular, 
optical dyes array has been developed and optimized for simultaneous quantitative measurements of several 
physicochemical parameters, monitoring of growing cell cultures and identification of gastrointestinal diseases 
in humans.
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In recent studies, we improved the assay and enhanced its performance by applying computerized cell-based 
fluorescence system. The novelty of this work lies in a combination of dyes with human skin cells where cells 
produce characteristic response to toxic chemicals. Different toxicity effects of specific compounds are reported 
by dyes and reflected in the changes of their fluorescence spectra. For in vitro studies we have used human skin 
cells. For mathematical feature extraction we employed the dimensionality reduction methods: transformation 
of the set of fluorescent images into their cross-correlation space and principal component analysis (PCA)27 in 
this space. The classical heuristics (the Kaiser rule28 and the broken stick model29) advise to retain 4 or 5 principal 
components. To distinguish active from non-active chemicals they were used classification algorithms in the 
space of five first principal components: Fisher’s discriminant30, logistic regression31, kNN32, advanced kNN33, 
decision trees34 and various probability density function estimators35,36.

Already Fisher’s linear discriminant gave good result for toxicity diagnosis with specificity of 91% and sen-
sitivity of 86% in Leave-One-Out-Cross-Validation (LOOCV) test and 90%-89% on the randomly selected 
19-element test set. Advanced 3NN classification gave specificity of 97% and sensitivity of 93% in LOOCV test 
and specificity of 100% with sensitivity of 89% on the test set. Other nonlinear methods gave similar results. 
(Specificity represents the number of true negatives, in particular specificity of 97% means that 97 out of 100 
non-toxic chemicals are correctly classified, and sensitivity represents the number of true positives, thus sensitiv-
ity of 93% means that 93 out of 100 toxic chemicals are correctly classified). Very promising results proved that 
this technique offers possible alternative to the improvement or even replacement of exiting methods which ena-
ble identification of various analytes and safety assessment whether a drug, cosmetic or their specific ingredients 
are going to be harmful to humans, other animals or environment. Additionally, such non-animal method would 
be cheaper, quicker and more effective compare to long term animal testing.

Results
Characterization of the optical toxicity assay.  Our fluorescent-based assay relies on operating princi-
ple of e-noses and e-tongues and it has been applied already for quantitative and qualitative analysis of complex 
biological and clinical samples25,26. The fluorescent dyes were selected in the way that their mixture allows discreet 
reading of emission maxima with the wavelengths separated by at least 20 nm. For the minimum interference 
with biological samples they were responsive in the VIS-NIR range. In present work selected dyes were applied 
to monitor responses of human skin cells in the presence of chemical agents with different toxic properties, 
which may cause damage to human skin. In current studies (Methods) we cultivated human skin cells and incu-
bated them with different chemicals which triggered specific cellular responses. The mixture of five fluorescent 
dyes added to the solutions generated distinctive fluorescence spectra characteristic for toxic properties of tested 

Figure 1.  Schematic representation of sensing systems: (a) human olfactory system, (b) electronic analogue 
and (c) our optical analogue. Reprinted (adapted) with permission from (E. Moczko, I. V. Meglinski, C. Bessant 
and S. A. Piletsky. Anal.Chem., 2009, 81 (6), pp 2311–2316, http://pubs.acs.org/doi/full/10.1021/ac802482h). 
Copyright (2009) American Chemical Society.

http://pubs.acs.org/doi/full/10.1021/ac802482h
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chemicals. Control measurements were performed using samples without growing cells. The sample of fluores-
cence spectra obtained is presented in Fig. 2. Using chemometric approaches patterns of assay responses were 
further analyzed and the optical signals were related to the analytical characteristics of the samples.

Data analysis.  For each chemical we obtained two digitized fluorescence images: with growing cells and 
without growing cells (control). Both images are two-dimensional 511 ×​ 511 arrays of fluorescence intensities 
as functions of emission and excitation (Fig. 2). We tested 34 irritating (IRR) and 28 non-irritating (Non-IRR) 
compounds (62 chemicals in total). Tree classification problems were solved:

1.	 Predict the class of compound (IRR or Non-IRR) using the control fluorescence image (without growing 
cells) as the input;

2.	 Predict the class of compound using the fluorescence image with growing cells as the input;
3.	 Predict the class of compound using both input images (with and without cells).

For the first and the second classification problems the dimension of input is 511 ×​ 511 =​ 261,121 and for 
the third problem it is 2 ×​ 511 ×​ 511 =​ 522,242. These dimensions are much bigger than the number of samples 
available (62). Therefore, the first preprocessing task was dimensionality reduction. We transformed the set of flu-
orescent images into cross-correlation space and apply principal component analysis in this space. Then we select 

Figure 2.  Three-dimensional color mapped surface diagram (a) and color filled contour diagram (b) of 5 
fluorescent dyes: 8-Hydroxypyrene-1′,3,6-Trisulfonic Acid, Oregon Green 514, is Rhodamine B, Tris(4,7-
diphenyl-1,10-phenanthroline) ruthenium dichloride, Thionin Acetate. Measurements were performed in 
50 mM PBS buffer at pH 7.4.

Inputs without cells 
(task 1, control)

Inputs with 
cells (task 2)

Inputs with and 
without cells (task 3)

Specificity (%) 79 88 91

Sensitivity (%) 31 83 83

Sum (%) 110 171 174

Table 1.  Results of Fisher’s linear discriminant analysis for different classification tasks and all 62 
compounds.

Method

LOOCV (61 + 1) Training set test (43) Test set test (19)

Spec Sens Sum Spec Sens Sum Spec Sens Sum

DT 88 90 178 87 95 182 90 89 179

GM 82 76 158 91 75 166 90 78 168

3NN 88 90 181 87 90 177 90 78 168

LDA 88 83 171 91 85 176 90 89 179

LR 79 86 165 91 75 166 90 78 168

PDFE 79 86 165 96 80 176 90 78 168

Table 2.  Classification performance for different families of methods. Inputs with growing cells (task 2). 
Spec stands for Specificity (%), Sens stands for Sensitivity (%).
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the principal components for retaining using the Kaiser rule or the broken stick model. The developed approach 
reduced multidimensional input space of fluorescent images to four or five features. We retained five principal 
components in the cross-correlation space. Data in the space of the first three principal components are presented 
in Fig. 3a–c for different sets of inputs.

Separability and compactness of classes increase from the case a (control, compounds without cells) to the 
case c (inputs include both the control fluorescent image and the image for compounds with growing cells).

The first classification algorithm we applied is the simple and robust Fisher discriminant. Its classification 
results of the whole set of samples are presented in Table 1. It was not surprising that for the task 1 (control, 
without cells) the quality of classification was not satisfactory but for data of fluorescence with cells the linear 
discriminant analysis in the five-dimensional feature space worked quite well and its performance was further 
improved slightly for the combined inputs (task 3).

We tested several families of nonlinear classifiers to improve the classification performance: K nearest neigh-
bors (KNN), decision tree (DT), Gaussian mixture (GM), radial-basis functions for probability density function 
estimation (PDFE), weighted logistic regression (LR), naïve Bayes classifier (NB), Fisher’s linear discriminant 
analysis (LDA). Detailed description of the methods and their use was presented in the biomedical case study37.

Results of the best methods in the listed families are collected in Table 2 (for input fluorescence images with 
growing cells) and Table 3 (for input fluorescence images with and without cells together). The number of sam-
ples for testing is indicated in parentheses. Thus, LOOCV (61+​1) means that we used all 62 samples for future 
extraction, selected one sample for testing, 61 samples for training and repeat this operation in a loop for every 

Figure 3.  Samples in the space of the first three principal components: (a) samples with the control 
fluorescence images as the inputs (for the classification problem 1), (b) samples with the fluorescence image 
with growing cells as the inputs, (for the classification problem 2), (c) samples with both input images (with and 
without cells) as inputs (for the classification problem 3). Visually, class compactness and separability of classes 
increases from (a) to (c).

Method

LOOCV (61 + 1) Training set test (43) Test set test (19)

Spec Sens Sum Spec Sens Sum Spec Sens Sum

DT 91 93 184 83 95 178 70 89 159

GM 85 86 171 91 85 176 90 78 168

3NN 97 93 190 91 80 171 90 78 168

LDA 91 83 174 83 90 173 90 89 179

LR 85 86 171 87 70 157 90 78 168

PDFE 88 79 167 96 90 186 100 78 178

Table 3.  Classification performance for different families of methods. Inputs with and without cells (task 3). 
Spec stands for Specificity (%), Sens stands for Sensitivity (%).
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such splitting. Training set test (43) and test set test (19) mean that we split the samples into a test set with 19 
samples and a training set with 43 samples, used these 43 samples to extract features, trained and tested the clas-
sification algorithms on the training set and then test them on the test set which is not seen before. The results of 
all methods in all three tests (LOOCV 61+​1, test set test, and training test set) were quite good. There was no sign 
of overfitting because the difference between the training and the test sets tests was not large. The performance of 
Fisher’s linear discriminant in the tests was not significantly worse than the performance of the nonlinear meth-
ods. The 3NN method worked uniformly well and at this stage it can be recommended. It is the KNN method 
with k =​ 3, the adaptive distance, and the triangular kernel for distance transformation and voting. The optimal 
weight of Non-IRR class was 0.45.

Discussion
Human skin cells in the presence of fluorescent dyes interacted with different chemical agents which triggered 
cellular response, producing distinctive fluorescence patterns characteristic for its toxic properties. The optical 
signals were further processed and transformed into qualitative information whether compounds were toxic or 
not. To distinguish active from non-active chemicals, we employed dimensionality reduction and tested several 
families of classification algorithms in the five-dimensional space of extracted features: Fisher’s discriminant, 
logistic regression, kNN, advanced kNN, decision trees and various probability density function estimators. The 
best methods from these families gave both specificity and sensitivity above 80%, and specificity + sensitivity 
above 170%, where specificity represented the number of true negatives and sensitivity represented the number 
of true positives. Good performance of all tested families of the classification methods indicated that the physico-
chemical method developed allowed us to distinguish between toxic (IRR) and non-toxic (Non-IRR) compounds 
with confidence. The 3NN method worked uniformly well and demonstrated in LOOCV testing sensitivity of 
97% and specificity of 93% (for inputs with and without cells). At this stage it can be recommended for further 
use with these combined inputs.

Our results demonstrated that the optical assay can be successfully integrated with cell cultures and the phys-
icochemical changes produced by cells in the contact with different compounds reflected in the changes of fluo-
rescent pattern of dyes. This approach has several important advantages compared with traditional biochemical 
assays, such as lower cost, short time of measurements, high sensitivity and reproducibility. The major benefits of 
this technique also include possibility to develop automatic system to screen large number of samples quickly and 
efficiently, and to decipher molecular mechanism of toxic action. It can be employed in high-throughput screen-
ing, in particular in safety assessment of drugs, cosmetics, specific ingredients and provide alternative screening 
tool in medical research, pharmaceutical industry and other areas of chemical testing.

Methods
Composition of dye assay.  The assay was composed of five commercially available fluorescent dyes (see 
Table 4). For the minimum interferences with biological samples, selected fluorescent dyes were responsive in the 
VIS-NIR range. They have already been successfully applied as analytical tool for qualitative measurements of 
several physicochemical parameters such as pH, temperature, dissolved oxygen or ionic strength of a solution25 
and in biomedical diagnostics26. The mixture of fluorescent dyes were prepared as a stock solution of following 
dyes: 0.15 mM 8-Hydroxypyrene-1′,3,6-trisulfonic acid, 0.1 mM Rhodamine B, 2 mM Thionin acetate, 0.025 mM 
Oregon Green 514, 6 mM Tris (4,7 – diphenyl - 1,10 - phenanthroline) ruthenium dichloride. The solutions were 
prepared in deionised water and stored at ~5 °C, covered with aluminium foil to protect them from light. The 
200 μ​l of each dye stock solutions were mixed together and used in further experiments.

Samples preparation.  The cell line used in the experiments was human keratinocytes (HaCaT) pur-
chased from American Tissue Culture Collections (ATCC, Manassas, VA). DMEM (Dulbecco’s Modified Eagle’s 
medium) with L-glutamine and high glucose was purchased from Life Technologies (Invitrogen), UK. Trypan 
Blue, TrypLE and FBS (Fetal Bovine Serum), animal origin free were also purchased from Life Technologies 
(Invitrogen). Penicillin (P), streptomycin (S) and all chemicals used for testing of the optical assay were purchased 
from Sigma-Aldrich. Cells were grown at 37 °C in T75 cm2 tissue culture flask in DMEM medium with 10% 
FCS and 1% P/S for three days to reach at least 80% of confluency. Then the cells were splitted by removing old 
medium, rinsing them with PBS (phosphate buffer saline) and detaching them from the wells of the flask using 
2–3 mL of TrypLE. Cells with reagent were left in 37 °C/5% CO2 incubator for about 10 min. After all cells were 
detached, 3 mL of DMEM containing serum was added to the flask to inactivate TrypLE. Before the cells were 
resuspended in fresh medium, they density and viability was checked using automatic cell counter and Trypan 

Dye Name Excitation [nm] Emission [nm]
Extinction coefficient 

[cm−1M−1] Supplier CAS Number

1 8–Hydroxypyrene-1′,3,6-Trisulfonic 
Acid 470 527 24,000 (water) Sigma-Aldrich 6358-69-6

2 Oregon Green 514 carboxylic acid 504 528 86,000 (DMF) Molecular Probes N/A

3 Rhodamine B 541 576 88,000 (water) Sigma-Aldrich 81-88-9

4 Tris (4,7-diphenyl-1,10-phenanthroline) 
ruthenium dichloride 541 628 14600 (water) Sigma-Aldrich 50525-27-4

5 Thionin Acetate 463 637 53,000 (water) Sigma-Aldrich 78338-22-4

Table 4.  List of fluorescent dyes selected for the sensor array.
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Blue staining to calculate a split ratio required to obtained the right, constant number of cells for experiments and 
subcultering. All experiments were performed at cells density of 1 ×​ 105 cells/ml. The chemicals in toxicity tests 
were used at the concentrations of 0.1 mM for ones which cause irritation and 0.1 μ​m or less of the safe ones which 
should not cause any harm to human skin. All experiments were performed in triplicate. Applying the mixture 
of fluorescent dyes into the suspensions of cells did not change significantly their viability compared with toxic 
compounds and therefore was neglected.

Instrumentation.  The measurements of fluorescence intensity have been performed using three-dimensional 
spectrofluorimeter Jobin Yvon – SPEX FL-3D (Instruments SA, Stanmore, Middlesex, UK) at 0.5 s of time 
exposure. The spectra have been recorded over a range of excitation (74–691 nm) and emission (227–724 nm) 
wavelengths. The range of wavelengths was based on the technical specification of the spectrofluorometer. The 
fluorescence measurements were performed using quartz cuvettes with stoppers and a light path of 10 mm.

Fluorescent measurements.  In each measurement, the suspension of cells, 1 ml, was transferred into 
1.5 ml eppendorf, mixed with specific chemical compound and incubated for 10 min. Then the 50 μ​l of the mix-
ture of fluorescent dyes was added to the solution and 0.5 ml of that suspension was transferred to quartz cuvette 
to record the fluorescence signal.

Experiments.  All experiments to check the response of the cells to IRR and Non-IRR compounds were per-
formed in cell medium DMEM with 10% FBS and 1% P/S. The total number of tested compounds was 62 (34 for 
IRR and 28 for Non IRR). Controls were performed in the same conditions as actual measurements but in the 
absence of HaCaT cells.

Data analysis.  The first data analysis problem was dimensionality reduction and feature extraction. We per-
formed it in three steps:

1.	 Transformation of the set of fluorescent images into cross-correlation space;
2.	 Principal component analysis in the cross-correlation space;
3.	 Selection the principal components for retaining by usage of the Kaiser rule or the broken stick model.

At the first step we represent each fluorescence image by the vector of its correlation coefficients the images 
from the training set. This step reduces dimension to the number of samples in the training set. At the second 
step we perform the standard PCA for the samples represented by vectors of their correlation coefficients. At the 
third step, we select the number of principal components to retain using two well-known heuristics, the Kaiser 
rule (retain the principal components with the eigenvalues bigger than 1, that is the average eigenvalue of any 
correlation matrix) and the broken stick model. A broken stick method assumes that if the total variance (i.e., 
sum of the eigenvalues) is divided randomly amongst the various components, then the expected distribution 
of the eigenvalues will be close to a broken stick distribution. The broken stick distribution for n numbers is the 
distribution of the length of the pieces produced from an interval (a “stick”) by n-1 independent random cuts. 
Observed eigenvalues are selected as “non-random” or interpretable if they exceed eigenvalues generated by the 
broken-stick model38. The number of samples in the training set should not exceed 62 (the total number of sam-
ples available). If we use the LOOCV test then the training set always has 61 element. If we use the test set then 
it is less. For the test sets we select randomly 9 IRR and 10 Non-IRR compounds. For this type of testing, there 
remain 43 samples in the training set.

It is necessary to stress that the transformation of images into their cross-correlation space is a non-linear 
(bilinear) transformation on the training set because each training sample is transformed into a vector of its cor-
relation coefficients with all the training samples. After feature extraction this transformation becomes linear on 
test samples. It can be represented as the set of correlation coefficients of a test image with several standardized 
images. We can call these standardized images “masks”. The masks for the fluorescence images with and without 
growing cells (for the classification task 3) are presented in Supplementary Material.

For normalized and centralized data, the transformation of the set into cross-correlation space is equivalent to 
the representation of each image as a vector of squared Euclidean distances to other images.

The first classifier we used was Fisher’s discriminant. It was the linear classifier with an explicit formula for the 
discriminating functional.

The hyperplane separates classes. There is no general explicit rule for the threshold selection beyond normality 
hypothesis. Therefore, was found by maximization of the sum Sensitivity +​ Specificity.

For improvement of classification we tested several families of nonlinear classifiers:

•	 KNN. The basic concept of KNN is: class of object is the class of a majority of its k nearest neighbours. We 
used three distances: the Euclidian distance, the Fisher’s transformed distance and adaptive distance. Moreo-
ver we used a weighted vote procedure with weighting of neighbours by one of the standard kernel function.

•	 DT. We tested methods which differ by splitting criterion, by the set of the input features, by the features used 
in splitting criteria, and by the minimal number of instances in leaf.

•	 GM. We tested the Gaussian mixtures which differ by the set of input features and the correction method of 
prior probabilities.

•	 PDFE. We tested the versions of this method which differ by the kernel function, the set of input features, and 
the number of nearest neighbours (between 5 and 30) used to estimate the radius of neighborhood.
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•	 LR (no options).
•	 NB (the standard version, no options).
•	 LDA (described above).

The testing technology was described in detail in the supplementary material to the biomedical case study35.
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