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ABSTRACT: To deal with divergences of functional integrals in field-theoretic
simulations (FTS) of complex fluids, the microscopic density is often smeared by
being replaced by a convoluted one, typically using a Gaussian masking function.
The smearing changes radically the nature of nonbonded interactions of the
original microscopic density and results in a regularized model that is free of
ultraviolet (UV) divergences. In this work, we first resolve a few fundamental
issues related with the use of masking functions for δ-interactions in FTS and then
we detail a new methodology that builds on the concept of multiconvoluted
inverse potentials and a principle of model equivalence for statistical weights to
accommodate more physically relevant interactions in FTS. The capabilities of the
new approach are highlighted by examining the Gaussian-regularized Edwards model (GREM) and the Yukawa potential. A
successful test calculation of the excess chemical potential of a polymer chain in a good solvent with the GREM illustrates the power
of the new theoretical framework.

1. INTRODUCTION
In a series of papers in 1965 and 1966, Edwards1,2 proposed a
theory for homopolymer chains in good solvent based on a
minimal model for pairwise, excluded-volume interactions in
the form of a Dirac delta function, u(r − r′) = u0 δ(r − r′),
with u0 being the strength parameter of the interaction. As
noted by Villet and Fredrickson,3 despite its simplicity, such a
purely repulsive model has served over the years as a prototype
for more complicated field theories. For example, in
conjunction with the continuous Gaussian chain backbone,
the model has helped capture many universal features of
polymer solutions.4−7 Edwards had also noted that a field
theory based on such a treatment of nonbonded interactions
exhibits an ultraviolet (UV) divergence originating from
infinite functional integrals involving polymer-segment self-
interaction energies. To control this divergence, Villet and
Fredrickson proposed a regularization framework that replaces
the Dirac delta with a Gaussian interaction potential that is
finite on contact. Following Wang’s8 regularization scheme for
electrolyte solutions, they treated polymer monomers not as
point masses but as the centers of a Gaussian density
distribution. It is this distributed mass that interacts then by
a delta function potential, thus overcoming the pathologies of
the original model. Villet and Fredrickson used a Gaussian
form for the masking function
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where a describes a characteristic polymer-segment (e.g., a
monomer) length scale. This is known today as the Gaussian-
regularized Edwards model (GREM). Prakash and Öttinger9

have also used a narrow Gaussian repulsive potential to
regularize excluded-volume effects described by a δ-function in
Brownian dynamics simulations of dilute polymer solutions.
We also mention the treatment of nonbonded interactions in
the form of a weighted density functional, which has been used
to regularize microscopic particle densities in the context of
self-consistent mean-field calculations.10−13

Mathematically, the new mass density field ρ̆(r) is defined
by the convolution of the masking (or distribution) function
with the monomer position density ρ̂(r) as ρ̆(r) =
∫ Γ(r − r′)ρ̂(r′) d3r′ or, equivalently, ρ̆(r) = [Γ ∗ ρ̂] (r).
Due to the convoluted microscopic density, the total
interaction potential between n particles in volume V,
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which is the starting point for developing the smeared version
of the model, is expressed as
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where we have made use of Dirac’s bra−ket notation.14,15
From eq 2, we understand that the self-interaction term also
involves the convolution of the masking function Γ with u(0),
thus possible model divergences arising from u(0) can be
removed. From eq 2, we also get the impression that one could
have considered the entire formulation in the context of an
effective potential Γ ∗ u ∗ Γ acting on ρ̂; however, it is
important to emphasize that the particle-to-field trans-
formation (the next step in the field-theoretic simulations,
FTS model-building hierarchy) is with respect to the original
pair potential u, i.e., it is the quantity Γ ∗ ρ̂ (namely, ρ̆) that is
subjected to the transformation and not ρ̂. In the hypothetical
case of transforming with respect to the effective potential Γ ∗
u ∗ Γ while keeping the microscopic density ρ̂ intact, the
theoretical barrier of finding the functional inverse entering the
formalism through the subsequent Hubbard−Stratonovich
transformation from particles to fields would have still been
there. The convolution ρ̆ = Γ ∗ ρ̂ reminds us of the unitary
transformation of the wave function or of the Hamiltonian in
quantum mechanics eventually resulting in a simplified form of
the Schrödinger equation, which, however, has the same
solution as the original problem. Moreover, in the present
context, we have assumed a translationally invariant trans-
formation, but one can also consider applying it locally by
invoking a particle coarse-graining that depends on space.
Writing down the corresponding partition function in the

nVT ensemble (n denotes the number of molecules, V is the
v o l u m e , a n d T i s t h e t e m p e r a t u r e ) ,

r U rd exp( )
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Stratonovich transformation, use of the Gaussian integral
identity leads to
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By exchanging terms in the convolution of the exponent
according to ⟨w|Γ ∗ ρ̂⟩ = ⟨Γ ∗ w|ρ̂⟩ and simplifying, we derive
the following expression for the Hamiltonian of the smeared
model

w w u w n Q i w
1

2
ln1[ ] = | | [ ]

(4)

Compared to the original nonsmeared model described by

w w u w n Q iw
1

2
ln1[ ] = | | [ ]

(5)

the masking function Γ in the smeared one enters the
Hamiltonian through the reduced partition function Q.
Based on the above modeling scheme, Villet and co-

workers3,16 have nicely worked out a UV regularized version of
the Edwards model and of the field-based observables derived
from it by adopting the three-dimensional (3D) Gaussian
masking function described by eq 1. For such Gaussian masked
δ-interactions, the effective interactions between point particles
are described through (see also ref 3)
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Effectively, point-like particles in this Gaussian-smeared
description interact via a potential that is also a Gaussian but
characterized by an adjusted variance 2a2.
Koski and co-workers have also made use of masked δ-

interactions to model polymer nanocomposites.17 In their case,
however, and due to the finite spatial extent of the particles, the
masking function was chosen to be a complementary error
function, with the understanding that the expanded (mass)
structures interact locally one with the other via δ-interactions.
Thus, in contrast to GREM, the analytical calculation of the
effective interaction potential is not anymore a straightforward
task. And the same is true for the inverse problem: Given the
shape of the effective interaction potential (see, e.g., Figure 3 in
Koski et al.17), identifying the mathematical form of the
underlying masking function is quite challenging.
Overall, it appears that the choice of the masking function is

arbitrary to some extent or, to express it differently, there
seems to be some good freedom in choosing Γ. Our goal in
this work is to discuss this freedom in detail and exploit it to
expand as much as possible the spectrum of advanced
interactions that can be incorporated into the FTS framework.
Our focus is not on the distributed-density regularization of
the underlying microscopic model itself but on the more
rigorous statistical-mechanical treatment of the effective
nonbonded interactions that emanate from it.

2. THEORY
2.1. Basic Requirements for General Smeared Density

Models. Our starting point for identifying masking functions
that can transform δ-interactions to tractable effective
potentials for use in the FTS formalism is eq 6a above,
which holds for any masking function. For the subsequent
analysis, we transform this equation into Fourier space and
solve formally for Γ̂, the Fourier transform of Γ, with the help
of the convolution theorem to get

u
u

k
k
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( )

0
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(7)

This simple equation may seem inconspicuous, yet it has
several implications regarding the choice and actual use of
masking functions. First, it implies that the Fourier transform
û′ of the effective pair potential should exist, a rather strict
requirement since it immediately excludes the vast majority of
typical pair potentials (in their unregularized form) exhibiting
specific divergences at r = 0. Second, and this is less obvious,
the Fourier integral of radially symmetric pair potentials
contains only real terms. For real masking functions, the square
root must be positive, and thus, with u0 > 0, û′ must be
positive. Because of our considering real masking functions,
only those qualify for adoption in FTS for which Γ̂ is also
positive. Third, the derived hypothetical Fourier-transformed Γ̂
should be unproblematic to treat mathematically or numeri-
cally on the way back to Γ. As we will see below, this last point
sets certain requirements on the large wavenumber behavior of
the function Γ̂ in the corresponding Fourier integral.
In view of all of these general requirements for the masking

function, the task of identifying analytic forms of Γ or u′ for
physically meaningful interactions seems challenging. None-
theless, the details of such a generalization can be
demonstrated by means of a novel example. Motivated by
the use of decaying exponential interactions as already
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discussed in ref 15, we consider in particular the effective
potential

u A B Br r( ) exp( ), 01 = | | > (8)

whose 3D-Fourier transform is
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Using eq 7 and comparing with the functional form of the
Yukawa potential
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we can readily identify the corresponding masking function
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Exponentially decaying effective interactions such as that of eq
8 between point-like particles can thus be modeled by
convolution of the microscopic density with a function similar
to that of the Yukawa potential. Conversely, for the effective
potential
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the Fourier pairs from eqs 8 and 9 imply the following masking
function:
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As in the case of effective Gaussian interactions, the similarity
between the functional forms of the potential u2′ and the
masking function Γ2 is readily apparent.
2.2. Reformulating an Equation for u−1. We turn our

attention now to the particle-to-field transformation wherein
the inverse potential u−1 immediately shows up. The inverse
p o t e n t i a l i s f o r m a l l y d e fi n e d t h r o u g h

r u ur r r r r rd ( , ) ( , ) ( )3 1
3 = , which is equivalent to

u u r r( ) ( )1[ ] = (15)

Equation 15 allows us to solve for u−1 through Fourier
transform

u uk k( ) ( ( ))1 1[ ] = [ ] (16)

This last relation imposes certain constraints on the functional
form of u for u k( ( )) 1[ ] to be a well-defined function. First,
and similar to the case of the effective interaction potential u′
discussed in the previous section, an important condition that
u must possess is to have a Fourier transform. Once again, this
condition excludes hard-core models with specific divergences
at r = 0 . Second, and to avoid divergences in
u uk k( ) ( )1 1[ ] , it is essential that u uk k( ) ( )[ ] has
no roots and thus does not change sign as a function of k.
Interaction potentials for which such a sign change of their
Fourier transform occurs are special in other respects18 but
cannot be used in the context of the FTS methodology

discussed here. In light of the discrete, positive definite matrix
u introduced and discussed in ref 15, the typical requirement û
> 0 in the FTS literature4 is then rather straightforward to
understand.
Equation 16 reveals a key theoretical problem in the relation

between u and u−1: Typical interaction potentials u, such as the
Yukawa one discussed above, drop to zero at large distances r.
Likewise, their Fourier transform û drops to zero for large
wavenumbers k and the transformation between u and û via
the corresponding radial Fourier integrals is unproblematic and
rather straightforward to perform. However, when considering
the inverse û−1 in eq 16, the decrease of û with k (the
magnitude of k) results in an increase of û−1 with k. In turn,
and given the rising values of the integrand in the Fourier
integral with increasing k, this behavior renders the derivation
of u−1 through back Fourier transform quite challenging. By
means of the intuitive potential smearing picture, the
fundamental question may even arise whether it is in principle
possible at all to transform nondelta functions by smearing to a
single delta peak. The answer to this question can be found in
the realm of the so-called implicit δ-interactions already
discussed in ref 14: there exist functions that have a very close
but nonobvious connection to the delta function that becomes
obvious only when we work in Fourier space, thus rendering
such a smearing indeed possible. For the Yukawa potential of
eq 10 or the Coulomb potential u r( )

rc
B= (which can also be

considered as the limit of the Yukawa potential when BY → 0),
it is interesting to note that such an increase of û−1 with k is
captured by the Laplacian (acting on the delta function) with
u−1 then being specified by u r r( ) ( )c

1 1
4

2

B
= . This nice

property has already been exploited in a recent publication15 to
directly calculate u−1 for advanced interatomic potentials.
2.3. Multiconvolutions and Model Equivalence. The

adoption of a masking function implies a fundamental change
in the nature of the original particle model, since

u u| | | | (17)

for Γ(r) ≠ δ(r) and general u. We have seen earlier that the
field-theoretic Hamiltonian of the smeared model, eq 4,
differs from the original Hamiltonian , eq 5, only as far as
the functional argument of the reduced partition function Q is
concerned. That Q is the only component of the field-theoretic
model wherein the microscopic density appears has motivated
a useful subscript shorthand notation below. Indeed, and given
that the reduced partition function Q is defined directly in
terms of the ⟨w|ρ̂⟩ leftover involving the microscopic density ρ̂
from the particle-to-field transformation in the absence of any
segment connectivity as

Q iw
V
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exp( )n
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we can decorate Q with a ρ̂ subscript, namely, Q[iw]ρ̂ ≔ Q[iw],
so that for the single-convoluted microscopic density ρ̆(r) ≔
[Γ ∗ ρ̂](r), we can write
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where we have introduced the notation

Q iw Q i w[ ] [ ] (20)

to indicate the dependence of Q on Γ through ρ̆. This
motivates us to introduce a general (nondecorated)
placeholder density ρ associated with Q for any (i.e., general)
interatomic potential u. We also understand that

w u w w u w1 1| | | | (21)

for Γ(r) ≠ δ(r) and general u−1. Thus, it is advantageous to
also label the (inverse) potential with an appropriate subscript
so that, and with respect to inequality eq 21, the entire quantity

u ur r( ) ( )2
1

1
1[ ] (22)

can be viewed as an effective convoluted inverse potential,
further implying that

u ur r( ) ( )1 2= [ ] (23)

Let us now apply this idea to the particle-to-field trans-
formation for two different models denoted as (u1, ρ1) and (u2,
ρ2), respectively, with the understanding that potential u1 is
associated with a general microscopic density ρ1, and potential
u2 is associated with a general microscopic density ρ2. For the
pair (u1, ρ1), we can write
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and, similarly, for the pair (u2, ρ2), we can write
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The last equation is compatible with the fact that the model
described by u2−1 has been changed by another model involving
the double convolution of u1−1 with the masking function Γ.
Even more importantly, however, and in contrast to the
GREM3 case discussed above where the model was modified
by smearing the microscopic density, now we have full freedom
to choose the corresponding microscopic density field ρ2 in
relation to ρ1 such that model equivalence is established. In
particular, by requiring the statistical weights implied by the
partition functions of eqs 24 and 25 to be equivalent, we find

u u1 2 1 2 2 2| | = | |!
and thus

r r( ) ( )2 1= [ ]!
(26)

Together with eqs 22 and 23, this connection between general
microscopic densities can be used recursively to interconnect
additional field descriptions, based on the particular choices of
(u1, ρ1) and (u2, ρ2). From this perspective, one could also
imagine introducing additional transformations, thus going
from double convolutions to multiconvolutions.

To interpret the effect of transforming the field-theoretic
model at the level of the particle-based description, let us
consider first the case ρ1 = ρ̂ corresponding to point particles
interacting via a physical pair potential u1 for which the
calculation of u1−1 as a standalone function may be difficult to
accomplish due to a nondecaying behavior of û1−1 in Fourier
space, as we already explained above. We also consider the
alternative case ρ2 = ρ̆ with ρ̆(r) = [Γ ∗ ρ̂](r), with the
understanding that we deal now with smeared particles
interacting with each other through the pair potential u2. In
view of eq 23, it might appear that the specification of u2 is as
difficult to accomplish as the direct calculation of u1−1.
However, through the principle of model equivalence, we
require eqs 24 and 25 to provide equivalent complex
probability weights as far as the calculation of statistical
averages for the system properties under study is concerned.
Then, the functional form of u2 may remain only of
hypothetical interest since problems in Fourier space arising
from the ill-decaying behavior of û1−1 can be circumvented in
the case of û2−1 by choosing a suitable masking function whose
Fourier transform Γ̂ decays appropriately fast compared to the
slowly varying û1−1. In this way, a standalone function u2−1
describing the inverse potential can be calculated, which can be
used next to also study the original system (the one
characterized by the interaction potential u1 and the micro-
scopic density ρ1) through the corresponding field-theoretic
Hamiltonian of eq 25, namely

w w u w n Q iw
1

2
ln2 2

1
2

[ ] = | | [ ]
(27)

The proposed modeling scheme is highlighted in Figure 1
showing how the (u1, ρ1) and (u2, ρ2) pairs of FTS modeling
blocks are linked together and how the principle of model
equivalence helps compute u2−1. The u2−1 is connected to u1−1

Figure 1. Schematic interpretation of the idea of a multiconvoluted
inverse showing the passage from the (u1, ρ1) to the (u2, ρ2) pair of
building blocks, their equivalence, and the final utilization of u2−1 to
carry out efficient FTS calculations. Clouds on the upper and bottom
right correspond to the smeared particles. A model involving the
direct potentials u1 and u2 implies a particle description, whereas a
model involving the inverse potentials u1−1 and u2−1 implies a field
description.
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through the masking function, which can be chosen at will,
with two convolutions. It is this tremendous modeling freedom
that multiconvoluted functions offer, which allows us to build
realistic models in FTS that are more chemistry-specific and
thus more physically relevant for the family of complex fluids
that we wish to simulate, as discussed next with two examples.

3. RESULTS
3.1. Multiconvoluted Edwards Model. In the example of

the GREM, a Gaussian masking function is used. As shown in
Table 1, due to the simple form of the interactions, both u1 and
its inverse u1−1 can be analytically determined, but this is not so
straightforward for u2. Nevertheless, it is possible to specify the
inverse u2−1 by requiring model equivalence. Moreover, in
Table 1, the same Γ has been used to denote both the masking
function for the density and also for the passage from one
model (the original) to the other (the convoluted one), which
is not the case in general as one can imagine using two
different Γ’s. To demonstrate then the equivalence of the
original and of the convoluted models, we implemented the
GREM in a fully fluctuating field calculation following ref 3. A
physical quantity on which Villet and Fredrickson3 put a
special focus was the excess chemical potential defined in terms
of the Helmholtz free energy as A

n T V,
= and which can be

split into an ideal and an excess part, μ = μid + μex, with the
excess part given by

k T Q iw
n

u 0ln
2

( )ex1,2 B ,
m

11 2
= [ ] [ ]

(28)

where nm is the number of monomers per chain. Based on this
relation, we introduce a field-theoretic observable in
connection with the excess chemical potential as

Q iwln1,2 ,1 2
= [ ] (29)

such that

n
u 0

2
( )ex1,2 1,2

m
1= [ ]

(30)

Following Villet and Fredrickson,3 dimensionless units can be
introduced and the chain propagators for continuous chains
can be computed according to the pseudo-spectral algorithm4

employing the improved scheme suggested by Ranjan, Qin,
and Morse19 for integration along the chain contour. For the t
integration of the complex Langevin (CL) equation, the limit
method of ref 20 was used, a straightforward extension of the
Euler−Maruyama (EM) method. Simulation results (instanta-
neous values) for the real part of the excess chemical potential-
related observable μ̃ from the two models are shown in Figure
2. In both cases, and starting from a (randomly chosen) initial
state, the corresponding curves approach rapidly the
equilibrium behavior where they are seen to fluctuate rapidly
around the same asymptotic steady-state value. The equili-
brium value is obtained as an ensemble average (the mean of

the accumulated instantaneous values) in the asymptotic
regime. For a consistent choice of Γ (and only then), the two
asymptotic values are observed to agree perfectly and are also
in excellent agreement with the results of Villet and
Fredrickson (Figure 2a in ref 3).
3.2. Yukawa Potential. Of course, in the GREM example,

the simple functional form of u1 allows its inverse u1−1 to be
determined rather straightforwardly. Thus, our basic intention
(to apply the new methodology to derive an inverse u2−1 as a
standalone function that exhibits the desired decaying behavior
in Fourier space and which can then be computed numerically)
is not fully revealed in this example. It is revealed, however, in
the second example, that of the Yukawa potential, whose
inverse, albeit not trivial to determine, is known.
For the Yukawa potential, u1 = uY as defined by eq 10. To

calculate the inverse u2−1, it is useful to provide not only the
Fourier transform ûY of uY itself, eq 11, but also the Fourier
transform of the Gaussian masking function ΓG defined in ref
1, namely, ( )ak k( ) expG

1
2

2 2= | | . With these Fourier

transforms and the adjusted variance σ̅2 ≔ 2a2 of the Gaussian,
the inverse u2−1 can be found from eq 22 and reads

( )u Bk k k( ) ( )exp
A2

1 1
4

2
Y
2 1

2
2 2

Y
= | | + | | . The coupling of

the first nondecaying interaction potential term to the second
decaying exponential masking term is obvious. The presence of
the exponential term makes the radial Fourier integral
involving û2−1 straightforward to solve for, which allows next
to obtain the transform in the spatial domain

Table 1. Correspondence between the Original GREM by Villet and Fredrickson3 and the Convoluted GREM Proposed Here

original GREM convoluted GREM

microscopic density ρ1 = Γ ∗ ρ̂ ρ2 = Γ ∗ Γ ∗ ρ̂
interaction potential u1 = u0 δ u2 not specified
inverse potential u1−1 = u0−1 δ u2−1 = Γ ∗ u1−1 ∗ Γ

field-theoretic Hamiltonian w u w n Q i wln1
1

2 1
1= | | [ ] w u w n Q i wln2

1
2 1

1= | | [ ]

Figure 2. Comparison of the field-theoretic observable μ̃1 obtained
from our implementation of the GREM following Villet and
Fredrickson3 against the observable μ̃2 of the novel alternative
model proposed here.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c06734
J. Phys. Chem. B 2022, 126, 10948−10954

10952

https://pubs.acs.org/doi/10.1021/acs.jpcb.2c06734?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c06734?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c06734?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c06734?fig=fig2&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c06734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

u
A

Br r

r

( )
1

4
3

1
(2 )

exp
2

2
1

Y

2

4 2 Y
2

2 3/2

2

2

= | |

× | |
(31)

revealing a Gaussian contribution. Even more important, parts
of the polynomial in parentheses can be replaced by the 3D
Laplacian acting on the Gaussian such that the inverse can also
be expressed as
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(32)

Then, and as in the GREM example and its alternative
description as contrasted in Table 1, the inverse u2−1 may be
used in an alternative FTS model defined, for instance, by 2
of eq 27.
Before we close this example, it is instructive to discuss the

limiting behavior of u2−1. As it is apparent, the u2−1 approaches
u1−1 in the limit that the masking function reduces to the Dirac
delta function, i.e., in the limit of an infinitely narrow Gaussian

function ( )r( ) lim exp r
0

1
(2 ) 22 3/2

2

2= | | . This representa-

tion of the Dirac delta function can be used to calculate the
inverse of the Yukawa potential as a limiting case of eq 32

u u

A
B

r r

r

( ) lim ( )

1
4

( ) ( )

Y
1

0
2

1

Y

2
Y
2

=

=
(33)

the latter expression already being known from Edwards’
seminal work.2 Our work implies that, in the limit σ̅ → 0, the
model described by eqs 27 and 32 is mathematically identical
to the model described by eqs 5 and 33. The case σ̅ → 0 is also
of interest in view of the Fourier transform û2−1 and suggests
that nondecaying functions in Fourier space are not problem-
atic themselves, but it is the determination of the functional
form of their inverse which is challenging. For nondecaying
Fourier transforms, the latter cannot be accomplished by just
solving the Fourier integral but requires appropriate
representations such as, e.g., in terms of derivatives of the
Dirac delta function, a path already followed in a recent
contribution15 to determine the inverse functional of the very
important Morse interatomic potential.
A very interesting point about u2−1 is that, if we have

computed it as a standalone function, the corresponding
masking function needs not necessarily be a Gaussian (as long
as it corrects for the ill-behaving increase of û1−1 with k). This is
quite an attractive feature of our methodology which could be
exploited to overcome convergence problems in implementa-
tions of the CL method for generating new realizations of the
fields since u2−1 appears directly in w

2 . With a judiciously
chosen masking function, scalable and highly optimized field-
update CL algorithms could thus be designed, characterized by
improved stability and accuracy properties compared to
existing codes.

4. CONCLUSIONS
We have presented a powerful model-building framework for
the FTS of complex fluids based on the use of multiconvoluted

inverse potentials and a principle of model equivalence that
overcomes theoretical barriers associated with divergences of
functional integrals and allows accommodating more chem-
istry-specific interactions in the microscopic model. In addition
to opening new directions in the field, our work holds the
promise of designing new CL sampling schemes characterized
by improved accuracy, which would be an important
development since it could further facilitate the use of the
CL method in simulation studies of the fluctuating properties
of complex polymer systems. In the present contribution, we
used the new methodology to compute the excess chemical
potential of a polymer chain and compare it with previous
works. In the future, we plan to exploit the new method to
address a variety of problems in soft matter, starting from the
conformational properties of polymer solutions and melts,
while retaining the connection of the microscopic model to the
chemistry of the system.
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