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Abstract

Histone methylation is dynamically regulated to shape the epigenome and adjust central

nuclear processes including transcription, cell cycle control and DNA repair. Lysine-specific

histone demethylase 2 (LSD2) has been implicated in multiple types of human cancers.

However, its functions remain poorly understood. This study investigated the histone

demethylase LSD2 homolog AMX-1 in C. elegans and uncovered a potential link between

H3K4me2 modulation and DNA interstrand crosslink (ICL) repair. AMX-1 is a histone

demethylase and mainly localizes to embryonic cells, the mitotic gut and sheath cells. Lack

of AMX-1 expression resulted in embryonic lethality, a decreased brood size and disorga-

nized premeiotic tip germline nuclei. Expression of AMX-1 and of the histone H3K4

demethylase SPR-5 is reciprocally up-regulated upon lack of each other and the mutants

show increased H3K4me2 levels in the germline, indicating that AMX-1 and SPR-5 regulate

H3K4me2 demethylation. Loss of AMX-1 function activates the CHK-1 kinase acting down-

stream of ATR and leads to the accumulation of RAD-51 foci and increased DNA damage-

dependent apoptosis in the germline. AMX-1 is required for the proper expression of mis-

match repair component MutL/MLH-1 and sensitivity against ICLs. Interestingly, formation

of ICLs lead to ubiquitination-dependent subcellular relocalization of AMX-1. Taken

together, our data suggest that AMX-1 functions in ICL repair in the germline.

Author summary

Epigenetic failures in DNA damage repair have long been implicated in multiple types of

human cancers, including colorectal and stomach cancer. Several studies reported histone

demethylases’ roles in DNA damage repair; however, the mechanisms by which histone

demethylases contribute to DNA damage repair are not very clear. Here, we describe a

mammalian LSD2 homolog AMX-1 in C. elegans and uncover a potential link between

H3K4me2 modulation and DNA interstrand crosslink repair. AMX-1 mainly localizes to

embryonic cells, the mitotic gut and sheath cells. AMX-1 regulates H3K4me2 demethyla-

tion and is necessary for sensitivity against interstrand crosslink damage.
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Introduction

A nucleosome consists of a H2A, H2B, H3 and H4 histone octamer wrapped around by

DNA and further condensed into chromatin [1]. Histones undergo post-translational modi-

fications at various sites along their tails, such as methylation, acetylation, and phosphoryla-

tion [2]. These modifications affect chromatin structure and help orchestrate events such as

transcription, DNA damage repair, and meiotic crossover recombination [1]. For example,

methylation of lysine four on histone H3 (H3K4) is typically associated with increased tran-

scription (euchromatin), while methylation of K9 on H3 is associated with heterochromatin

[3–5].

LSD1, the first histone demethylase identified, reverses mono- or di-methylation of H3K4

in promoter regions in human cells [6]. Studies in flies and yeast revealed impaired fertility in

the absence of LSD1 [7–9]. Later, C. elegans LSD1/SPR-5 mutant analysis revealed progressive

sterility through generations with evidence of a progressive accumulation of H3K4me2 for a

subset of genes [10]. Other studies discovered that this histone demethylase is essential for

DNA double-strand break (DSB) repair and p53-dependent germ cell apoptosis in the C. ele-
gans germline [11], linking H3K4me2 modulation to DSB repair. H3K4me2 levels are impor-

tant for recovery from DNA damage repair due to global gene expression changes [12]. Also,

H3K4me2 is modulated by the Fanconi anemia pathway connecting the regulation of histone

methylation level to DNA damage repair [13].

While LSD1 has been investigated extensively by multiple laboratories, another histone

demethylase homolog, LSD2, has been relatively less studied. Studies show that LSD2 func-

tions as a histone demethylase and regulates genomic imprinting and gene expression [14,15].

Other studies demonstrate its overexpression in different types of cancer cells; however, we are

still far from understanding the mechanisms of how LSD2 works [16–19].

C. elegans has three histone demethylase homologs, SPR-5, AMX-1 and LSD-1. Several

reports focused on the roles played by the mammalian LSD1 homolog C. elegans SPR-5 in

DNA damage repair. However, the functions of the mammalian LSD2 homolog, AMX-1,

are not as well understood. Based on the high degree of amino acid sequence conservation

shared between AMX-1 and SPR-5, and that expression of AMX-1 can compensate for the

absence of SPR-5, we hypothesized that AMX-1 is engaged in DNA damage repair. Here

we have identified a role for the histone demethylase AMX-1, conserved from worms

through humans, in the DNA interstrand crosslink (ICL) repair in C. elegans for the first

time.

We show that AMX-1 mainly localizes to embryonic, the mitotic gut and sheath cells, sug-

gesting a role in mitotic nuclei. Consistently, lack of AMX-1 expression resulted in embryonic

lethality, a decreased brood size and a disorganized premeiotic tip where mitotically dividing

nuclei are located in the germline. Loss of AMX-1 function activates the CHK-1 kinase signal

downstream of ATR and leads to the accumulation of RAD-51 foci accompanied by a higher

level of DNA damage-dependent apoptosis in the germline, suggesting that its function is nec-

essary for DNA damage repair. amx-1 mutants exhibited reduced MutL/MLH-1 levels and tol-

erance to ICLs. Furthermore, AMX-1 undergoes relocalization upon induction of ICLs, in a

manner dependent on the ubiquitination pathway. Lack of AMX-1 expression leads to a signif-

icant increase in H3K4me2 levels in both mitotic and meiotic regions of the germline, suggest-

ing that AMX-1 regulates H3K4me2 modulation. Although AMX-1 and SPR-5 exhibit

reciprocal up-regulated expression upon lack of each other, they are not fully functionally

redundant. Altogether, our analysis supports a model in which the histone demethylase AMX-

1 plays a role in ICL repair.
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Results

AMX-1 is a conserved histone demethylase

amx-1 (open reading frame R13G10.2) is one of the three histone demethylases identified

based on amino acid sequence homology in C. elegans. amx-1 encodes for an 824 amino acid

protein that contains SWIRM and amine oxidase domains (Figs 1 and S1). Unlike SPR-5,

which is a homolog of human LSD1 in C. elegans, AMX-1 does not contain a TOWER domain

and is therefore classified as an LSD2 homolog. Both SWIRM and amine oxidase domains are

well conserved between worm and human LSD2 suggesting these are functional orthologs

(38% identity and 64% similarity for the SWIRM domain and 37% identity and 73% similarity

for the amine oxidase domain). The high degree of conservation of both SWIRM and amine

oxidase domains throughout species supports concurrent conservation of the AMX-1 role in

different species. However, C. elegans AMX-1 does not contain a zinc-finger motif found in its

mammalian counterpart, reflecting evolutionary variation as well.

AMX-1 is required for normal fertility and germline progression

The amx-1 deletion mutant (ok659) carries a 2636 base pair deletion encompassing the entire

SWIRM and 89% of the amine oxidase coding region (Figs 1A and 1B and S1). Therefore, it is

predicted that the deletion mutation would result in the loss of potential histone demethylase

function. As expected, analysis of wild type and amx-1 mutant lysates by RT-PCR revealed a

~90% reduction of mRNA expression of amx-1 compared to control, suggesting the lack of

mRNA expression in the mutant (Fig 1C).

amx-1 homozygous mutants do not exhibit larval arrest (% adult) or a high incidence of

males (Him, % male) among its progeny suggesting that AMX-1 does not have a role during

Fig 1. LSD1/2 homology between C. elegans and humans. (A) Schematic of human LSD1 and LSD2 proteins shown with the corresponding C. elegans
homologs underneath. amx-1(ok659) carries a large deletion encompassing the SWIRM domain and most of the amine oxidase domain. ZF = zinc

finger domain. (B) Representative amino acid sequence alignment of worm, human, mouse and fly LSD2 homologs. Conservation of the SWIRM and

amine oxidase domains are shown. For a full amino acid sequence alignment, see S1 Fig. (�) denotes a single, fully conserved residue; (:) represents

conservation between groups of highly similar properties and (.) indicates conservation between groups of weakly similar properties. (C) Semi-

quantitative RT-PCR analysis of whole worm lysates from amx-1(ok659) mutants reveals a 90% reduction in mRNA expression compared to wild type,

suggesting that ok659 is a null mutant. gpd-1 is an internal mRNA expression control.

https://doi.org/10.1371/journal.pgen.1009715.g001
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larval development or sex chromosome segregation (Fig 2A). However, homozygous mutants

exhibit a significant 2.4-fold increase in embryonic lethality (2.7% compared to 1.1%,

P = 0.0004 by the two-tailed Mann-Whitney test, 95% C.I.) and 17% reduction in brood size

compared to wild type (256 compared to 309, P = 0.0001 by the two-tailed Mann-Whitney

test, 95% C.I.). Also, the brood size was not significantly reduced in the heterozygotes, suggest-

ing that ok659 is a recessive allele (S2 Fig).

Embryonic lethality and reduced fertility suggest a role for AMX-1 in promoting meiotic

chromosome segregation. Therefore, we investigated whether AMX-1 plays a role in the germ-

line by assessing germ cell progression in DAPI-stained gonads from age-matched hermaph-

rodites (Fig 2B). We observed a decrease in the length of the premeiotic tip, which is occupied

by mitotic nuclei, in amx-1 mutants compared to wild type (26% reduction, 72.2 μm for wild

type and 53.5 μm for amx-1). Conversely, neither the length of the transition zone (leptotene/

zygotene stages), where meiosis initiates (65.8 μm for wild type and 68.4 for amx-1), or the

overall gonad length were altered (from distal tip to late pachytene, 358.3 μm for wt and 338.5

for amx-1, P = 0.2565). Furthermore, we observed an increased number of gonads with gaps in

amx-1 mutants while nuclei were organized in a normal temporal and spatial manner in wild

Fig 2. AMX-1 is a conserved protein required for proper embryonic survival, brood size and germ cell progression. (A) Plate

phenotypes of amx-1 mutants. % adult to identify potential larval arrest, % male, embryonic lethality and brood size are scored for

the progeny of worms of the indicated genotypes. Error bars represent standard error of the mean. N = 24 for each genotype.
�P<0.0001 by the two-tailed Mann-Whitney test, 95% C.I. (B) Left, Images show DAPI-stained nuclei (blue) in germlines from

wild type and amx-1 mutants. The length of the premeiotic tip (PMT) in the amx-1 mutant is shorter than in wild type, while

neither the length of transition zone or the total length of the germline are affected. The gonads in amx-1 mutants also displayed

an increase in gaps (asterisks) compared to wild type. Bar, 10μm. Right, Quantification of the lengths of the PMT (red dash line),

transition zone (green dash line), and germline (indicated by arrows), and the number of gaps (asterisks) per gonad for the

indicated genotypes. Error bars indicate standard deviation. N => 24 gonads.

https://doi.org/10.1371/journal.pgen.1009715.g002
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type gonads. Taken together, these results suggest AMX-1 is required for proper germ cell pro-

gression with a primary role in mitotic progression.

AMX-1 localizes to embryonic cells and mitotic nuclei

To gain some insight into the function of AMX-1, amx-1::GFP transgenic animals were gener-

ated using CRISPR-Cas9 as described in [20,21]. amx-1::GFP transgenic animals exhibit a nor-

mal brood size while amx-1 mutants exhibit a decreased brood size suggesting that amx-1::

GFP transgenic animals express functional AMX-1 (P = 0.7922, S3 Fig).

We examined amx-1::GFP localization by immunostaining dissected hermaphrodite

gonads with an anti-GFP antibody. Consistent with the phenotypic results, AMX-1-GFP signal

is mainly observed in the nuclei of gut cells, embryonic cells (regardless of their stage), and

sheath cells (Fig 3A and S1 Table). No obvious signal was observed in the control (N2) strain

or upon amx-1 RNAi depletion, which supports the specificity of the antigen-antibody reac-

tion (Figs 3A and S4). Moreover, nuclei from premeiotic tip to diakinesis stages for the most

part do not exhibit AMX-1-GFP signal, except for 5% of the premeiotic tip and pachytene

nuclei where it was detected along the DAPI-stained chromosomes (S5 Fig). AMX-1-GFP sig-

nal was not detected either in sperm or pharyngeal neurons (Fig 3B).

amx-1 gene expression had been previously reported to be up-regulated in spr-5 mutants

based on microarray studies [10,11]. To further understand the interplay of these two genes at

the cellular level, we examined the expression of AMX-1 in the spr-5 mutants. Interestingly,

lack of SPR-5 expression induces a further increase in AMX-1 levels in gut and embryonic

cells (4.9- and 1.9-fold induction, respectively, Fig 3A), however, no evident induction from

premeiotic tip to diakinesis or mitotic sheath cells was observed. These observations suggest

tissue-specific compensation involving the two histone demethylase genes.

Lack of either AMX-1 or SPR-5 results in reciprocal up-regulated

expression in mitotic cells

To further investigate the interplay between the two histone demethylases, AMX-1 and SPR-5,

we examined their expression levels using quantitative real-time PCR (Fig 3C). While the lack

of amx-1 leads to ~3.2 fold up-regulation of spr-5 mRNA expression, the absence of spr-5
results in ~5.8 fold up-regulation of amx-1 suggesting a reciprocal compensation between

amx-1 and spr-5 expression. Consistent with our immunostaining results, this mRNA expres-

sion pattern suggests that AMX-1 expressed in mitotic cells might compensate, at least in part,

for the lack of SPR-5. Altogether, these observations support AMX-1 expression in embryonic

cells and mitotic nuclei in line with its mitotic roles observed in our phenotypic analysis (Fig

2).

AMX-1 regulates H3K4me2 methylation with properties distinct from

SPR-5

Given that AMX-1 contains a conserved amine oxidase domain and is up-regulated upon lack

of SPR-5 expression, we next examined AMX-1 histone demethylase activity in vivo by stain-

ing for dimethylated H3K4 level. Specifically, dissected gonads from wild type, spr-5 and amx-
1 age-matched adult hermaphrodites were probed for H3K4me2. Consistent with previous

reports, spr-5 mutants display a significant increase in H3K4me2 signal compared to wild type

in embryos and at the pachytene stage (Fig 4, P = 0.0001, two-tailed Mann-Whitney test, 95%

C.I., [10,11]). Lack of AMX-1 expression results in a significant increase in H3K4me2 level in

both embryos and germlines. We found that the signal intensities are significantly increased in
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Fig 3. AMX-1 is expressed in the nuclei of gut, embryonic and sheath cells and is further upregulated in absence of SPR-5. (A)

Immunolocalization of AMX-1-GFP utilizing an anti-GFP antibody in the indicated mitotic cells and at different stages in the gonads of

control (N2 worms), wild type (amx-1::GFP worms) and spr-5; amx-1::GFP worms. AMX-1-GFP signal is detected in the nuclei of mitotic

cells including gut, embryonic and sheath cells. The absence of SPR-5 expression results in increased AMX-1 signal in mitotic cells. Right,

relative intensity of AMX-1 expression measurements. �P<0.0001 by the two-tailed Mann–Whitney test, 95% C.I. No distinct signal is
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embryonic cells (~1.8 fold), premeiotic tip nuclei (~1.8 fold), and pachytene nuclei (~1.8 fold)

compared to wild type, supporting a role for amx-1 in germline and somatic H3K4me2 regula-

tion (P<0.0001 for all three comparisons, two-tailed Mann-Whitney test, 95% C.I.). Interest-

ingly, amx-1 mutants altered histone methylation level in the premeiotic tip while spr-5 did

not, suggesting that AMX-1 has distinct properties from SPR-5 in modulating histone methyl-

ation. Consistent with this, spr-5;amx-1 double mutants did not display additive or synergistic

histone methylation levels relative to amx-1 single mutants (in premeiotic tip nuclei,

P = 0.1461; in embryos, P = 0.3080; in pachytene nuclei, P = 0.6434; and in gut cells,

P = 0.7680).

detected in either amx-1::GFP or spr-5;amx-1::GFP worms during meiotic progression (Transition zone, Pachytene, Diplotene and

Diakinesis). Bars, 10μm. (B) At spermatheca or pharynx, no distinct signal is detected in either amx-1::GFP or spr-5;amx-1::GFP worms.

Bars, 10 μm. (C) mRNA expression levels of spr-5 and amx-1 quantified by qRT-PCR. Relative mRNA expression measured in wild type,

amx-1, and spr-5 mutants. ~3.2-fold induction of spr-5 mRNA in amx-1 and ~5.8-fold induction of amx-1 mRNA expression in spr-5
mutants are detected.

https://doi.org/10.1371/journal.pgen.1009715.g003

Fig 4. Lack of AMX-1 expression results in a significant increase in H3K4me2 level in both embryos and germlines. (A) H3K4me2 signal intensity

was significantly increased in nuclei in embryonic cells (~1.8-fold), premeiotic tip (~1.8-fold), and pachytene (~1.8-fold) compared to wild type

(P<0.0001 for all three comparisons). No significant induction was detected in gut nuclei (P = 0.0847 for amx-1 and wt). spr-5;amx-1 double mutants

did not display additive or synergistic effects on histone methylation levels compared to amx-1 single mutants (in PMT, P = 0.1461; in embryo,

P = 0.3080; in pachytene, P = 0.6434; in gut cells, P = 0.7680 for amx-1 and spr-5;amx-1). Individual nuclei were sampled for fluorescence intensity using

ImageJ. The bars represent the mean fluorescence intensity. N = 5–8 gonads. (B) Representative images used for the analysis. Bars, 2 μm. Wider field

images are available in S10 Fig.

https://doi.org/10.1371/journal.pgen.1009715.g004
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The DNA damage checkpoint is activated in amx-1 germline nuclei

Genotoxic stress or DNA replication stress can lead to checkpoint responses in the C. elegans
germline. Activation of the mitotic DNA damage checkpoint leads to elevation of ATL-1 (ATR

homolog) and phosphorylated CHK-1 (pCHK-1) in germline nuclei [22]. In amx-1 mutants,

elevated levels of pCHK-1 foci are observed in germline nuclei even without exogenous DNA

damage exposure (Fig 5A and S2 Table). Increased pCHK-1 signal is detected in embryos, pre-

meiotic tip-transition zone and pachytene nuclei and this increase requires the upstream path-

way component ATL-1 (C. elegans ATR homolog). Consistently, amx-1 mutants exhibit a

higher level of egl-1 expression, a DNA damage response marker, suggesting the lack of AMX-

1 expression activates the DNA damage checkpoint in an ATL-1 dependent manner.

AMX-1 is required for sensitivity upon interstrand crosslink DNA damage

To examine the role of AMX-1 in DNA damage repair, adult hermaphrodites were exposed to

multiple types of DNA damage and embryonic lethality was monitored as described in [23–

25] (Fig 5B). As previously shown, lack of SPR-5 induced sensitivity against DSBs by γ-irradia-

tion (IR) exposure [11], however amx-1 mutants did not alter hatching frequencies compared

to wild type, suggesting that AMX-1 function may not be required for DSB repair (Fig 5B,

P> 0.9999 at 60 gray dose and P = 0.5072 at 120 gray doses for wt and amx-1). Interestingly,

exposure to nitrogen mustard (HN2), which produces ICLs, improved hatching levels in amx-
1 mutants compared to wild type (76% vs 94% at 100 μM P = 0.0139 and 51% vs 89% at

150 μM P = 0.0003, while lack of HIM-18, an ortholog of MUS312/Slx4 that is required for

ICL repair [23], confers sensitivity as shown by relative hatching of 21% at 100 μM and 26% at

150 μM). Consistently, amx-1 mutants also exhibited tolerance to cisplatin, which produces

DNA crosslinks (83% vs 92% at 300 ug/ml P = 0.0119). In addition to tolerance to nitrogen

mustard, amx-1 mutants displayed chromosome fragments at the premeiotic tip, further sup-

porting a role for AMX-1 in ICL repair (Fig 5C). Neither ICL resistance or sensitivity was

observed with lack of SPR-5 expression (S6 Fig) suggesting that AMX-1 and SPR-5 exert sepa-

rate functions in DNA damage repair.

In addition, UVC, which induces cyclobutane pyrimidine dimers, and camptothecin,

which results in a single-ended DNA DSB when collision of a replication fork occurs at the

lesion, did not reduce hatching levels in amx-1 mutants compared to wild type (Fig 5B, for

UVC, 99% (wt) vs 100% (amx-1) at 100 J/m2, P = 0.166,1 and 97% (wt) vs 96% (amx-1) at 200

J/m2, P = 0.6858; for camptothecin, 98% (wt) vs 99% (amx-1) at 100 nM, P = 0.4038, 97% (wt)

vs 96% (amx-1) at 500 nM, P = 0.1374, and 92% (wt) vs 93% (amx-1) at 750 nM, P = 0.5669).

Exposure to hydroxyurea (HU), which results in a checkpoint-dependent cell cycle arrest, led

to no significant changes in hatching in amx-1 mutants compared to wild type (99% and 99%,

respectively, at 15 mM, P = 0.6538, and 93% (wt) vs 97% (amx-1) at 25 mM, P = 0.2228) while

lack of ZTF-8, an ortholog of RHINO, induced sensitivity as previously shown [22]. Taken

together, these results indicate that the function of AMX-1 in DNA repair exhibits a high

degree of DNA damage specificity, being required for sensitivity against interstrand crosslinks.

AMX-1 endows proper expression of MLH-1, thus allowing sensitivity

against DNA interstrand crosslink damage

Given that AMX-1 exhibits histone demethylase activity and regulation of histone methylation

has been implicated in the regulation of gene expression levels [14,26], we hypothesize that

AMX-1 may regulate the expression of DNA repair genes leading to resistance against ICLs

rather than directly being engaged in the repair process. To test this, we examined whether
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Fig 5. Absence of AMX-1 induces DNA damage checkpoint activation and AMX-1 is required for sensitivity upon interstrand crosslink damage. (A)

The DNA damage checkpoint is activated in amx-1 mutants, as shown by the increased pCHK-1 signal observed in embryonic cells, premeiotic tip-

transition zone (TZ) and pachytene nuclei. Insets show higher magnification images. Bars, 2 μm. Right, in line with increased pCHK-1 signal, amx-1
mutants exhibit a higher level of egl-1 mRNA expression. (B) Relative hatching of wild type, amx-1, spr-5, him-18, or ztf-8 mutants after treatment with the

indicated doses of gamma-irradiation (IR), nitrogen mustard (HN2), UVC, camptothecin, and hydroxyurea (HU). spr-5, him-18 or ztf-8 were used as
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AMX-1 regulates the proper expression of genes in the Fanconi anemia (FA), mismatch repair,

and nucleotide excision repair (NER) pathways, all of which have been implicated in ICL

repair [12,13,27–30]. While mRNA expression of two key FA components, fcd-2 and fncm-1,

and two key NER components, csb-1 and xpc-1, was not significantly altered, interestingly,

amx-1 mutants exhibited an ~43% reduction in mlh-1 expression compared to wild type (Fig

5D). However, no significant change in msh-2 expression was observed, implying that AMX-1

regulation is constrained to the MutL complex only.

To explore whether proper expression of MLH-1 allows susceptibility to ICLs, we depleted

MLH-1 expression by RNAi and assessed the frequency of hatching upon exposure to DNA

crosslinking damage by either HN2 or cisplatin. Lack of MLH-1 expression resulted in

increased tolerance to both HN2 and cisplatin compared to control, indicating that down-reg-

ulation of MLH-1 may be sufficient for the ICL tolerance displayed by amx-1 mutants (S7 Fig).

The localization of AMX-1 is altered in response to interstrand crosslink

DNA damage in a manner dependent on ubiquitination

To determine whether AMX-1 localization is altered in response to ICL formation, we exposed

wild type worms to HN2 and monitored AMX-1 localization. Unlike the unexposed worms, in

which AMX-1 signal is present evenly in all of the embryonic and intestine cells, an uneven/

mosaic distribution of AMX-1 signal is observed upon HN2 treatment (Fig 6A). Embryos con-

taining both stronger and weaker signals are observed. Overall, average signal intensity is

reduced by 30% compared to control upon HN2 treatment (Fig 6B). Also, 5% of embryos and

2% of intestine cells exhibited complete lack of AMX-1 signal following HN2 treatment

whereas AMX-1 signal was always observed in untreated control (S1 Table).

Given the altered signal observed in the +HN2 worms together with a predicted ubiquitina-

tion site (Lysine 11) from in silico analysis [31], these results suggest that AMX-1 may either be

relocalized or degraded after ICL DNA damage. To test this idea, we depleted ubiquitin-activat-

ing enzyme E1 UBA-1 expression and monitored AMX-1 localization. Depletion of UBA-1

expression with RNAi feeding rescues the uneven or absent AMX-1 signal, suggesting that poly-

ubiquitination of AMX-1 leads to relocalization of AMX-1 upon ICL repair (P = 0.0001, com-

paring with and without UBA-1 depletion, Fig 6B and 6C). Lack of alteration in amx-1 mRNA

expression level upon HN2 exposure further supports post-translational modification (Fig 6D).

AMX-1 is required for proper DNA damage repair progression in germline

nuclei

Nuclei are positioned in a temporal-spatial manner along the germline in C. elegans, proceeding

in a distal to proximal orientation from mitosis into the various stages of meiotic prophase I. Tak-

ing advantage of this well-defined organization, levels of RAD-51 foci, which mark sites undergo-

ing DSB repair [32], were quantitated both in mitotic (premeiotic tip) and meiotic nuclei

(transition zone and pachytene) and compared between wild type and amx-1 mutants (Fig 7A).

controls. Exposure to nitrogen mustard improved hatching levels in amx-1 mutants. Asterisks indicate statistical significance between wild type and amx-1
calculated by the two-tailed Mann-Whitney test, 95% C.I. (C) amx-1 mutants are susceptible to ICLs. Nitrogen mustard (HN2) exposure leads to increased

numbers of gonads with chromosome fragments (arrows) compared to wild type. Representative images of nuclei in the premeiotic tip from amx-1 mutants

treated with 150 μM HN2. 6 out of 30 (20%) gonads contained broken chromosomes for amx-1 and 0 out of 20 (0%) gonads for wild type. Bar, 2 μm. (D)

Lack of amx-1 expression decreases MutL/mlh-1 expression. Changes of relative mRNA expression levels of Fanconi anemia (fcd-2 and fncm-1), mismatch

repair (mlh-1 and msh-2), and nucleotide excision repair (csb-1 and xpc-1) genes. mRNA expression was monitored with 1–2 sets of qPCR primers spanning

exon-exon junctions for each indicated gene. The data shown are the means with SEM analyzed employing an unpaired, two-tailed t-test. Assay repeated

three times with at least two independent sample preparations. Tubulin encoding tba-1 was used as an endogenous reference. Asterisks (�) indicate

significant differences in mRNA expression compared to wild type.

https://doi.org/10.1371/journal.pgen.1009715.g005
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In wild type, only a few RAD-51 foci are detected in mitotic nuclei in the premeiotic tip of

the germline and these are mainly derived from single stranded DNA gaps formed at stalled

replication forks or resected DSBs resulting from collapsed replication forks [33]. During mei-

otic prophase, SPO-11-dependent programmed meiotic DSBs are induced and higher numbers

of RAD-51 foci are detected peaking in mid-pachytene. In amx-1 mutants, the mildly elevated

levels of RAD-51 foci observed at the premeiotic tip were not significantly different compared

to wild type (Fig 7B, an average of 0.1 and 0.2 RAD-51 foci/nucleus for wild type and amx-1,

respectively). This mild elevation in the levels of RAD-51 foci persisted from mitosis through

the mid pachytene stage of meiosis, but in late pachytene the levels of RAD-51 foci were signifi-

cantly higher in amx-1 mutants (an average of 3.2, 5.2, 4.1 RAD-51 foci/nucleus were observed

in amx-1 compared to 3.1, 4.4, 3.2 for wild type at early, mid and late pachytene, respectively;

P = 0.8059, P = 0.0743 and P = 0.0041(�) for each stage). Nuclei containing higher numbers of

RAD-51 foci were more frequently observed in late pachytene in amx-1 mutants compared to

wild type (>10 RAD-51 foci/nucleus in 10/25 amx-1 gonads compared to 0/25 gonads in wild

type (Fig 7C). Interestingly, the higher levels of RAD-51 foci detected by late pachytene were no

Fig 6. Interstrand crosslink DNA damage leads to ubiquitination-dependent AMX-1 relocalization. (A) Nitrogen mustard (HN2) exposure induces

relocalization of AMX-1::GFP signals. Arrows indicate embryo cells containing no/weak (red) or stronger (yellow) signals. Bar,10μm. (B) Quantitation of

relative intensity of the AMX-1::GFP signal in embryos from the indicated genotypes. Asterisks indicate statistical significance. 66–250 embryos from 6–8

worms were analyzed. Error bars represent standard deviations. (C) Depletion by RNAi of the E1 ubiquitin-activating enzyme UBA-1, suppresses the

uneven/mosaic signals exhibited in amx-1::GFP transgenic animals. AMX-1::GFP signal intensity from embryos are quantitated in panel B. P = 0.1084

from amx-1::GFP + HN2. (D) mRNA expression level of amx-1 is not altered after HN2 treatment. P = 0.4960. Error bars represent standard deviations.

https://doi.org/10.1371/journal.pgen.1009715.g006
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longer observed at the diplotene stage (0.3 foci/nucleus for both genotypes, P = 0.1500) suggest-

ing completion of DNA damage repair upon exit from late pachytene and entrance into the dip-

lotene stage. However, repair of the elevated levels of RAD-51 foci detected in late pachytene

may not be dependent on non-homologous end-joining since CKU-80 depletion in amx-1
mutants did not result in elevated levels of RAD-51 foci persisting into late prophase I (S9 Fig).

To better understand DSB formation in amx-1 mutants, we monitored the levels of RAD-

51 foci in the germlines of amx-1;spo-11 double mutants which lack the formation of

Fig 7. AMX-1 is required for DNA repair and lack of AMX-1 activates cep-1/p53-dependent germ cell apoptosis. (A) Diagram of a C. elegans
germline indicating the germline nuclei progression and the position of zones scored for RAD-51 foci. Image is modified from Kim et al [22]. (B)

Histogram represents the quantitation of RAD-51 foci in germlines of the indicated genotypes. Shown are the mean numbers of RAD-51 foci observed

per nucleus on each zone along the germline axis (x-axis). We compared the levels of RAD-51 foci between wild type and amx-1 mutants (left) and

monitored SPO-11-independent (middle) and SPO-11-dependent (right panel) RAD-51 foci levels. To identify the levels of SPO-11-dependent (meiotic)

foci, the mean number of RAD-51 foci observed in amx-1;spo-11 mutants was subtracted from those in amx-1 mutants. Error bars represent standard

error of the mean. Asterisks indicate statistical significance by the two-tailed Mann–Whitney test, 95% C.I. (C) amx-1 mutants contain pachytene nuclei

with>10 RAD-51 foci per nucleus which may undergo apoptosis (indicated by yellow arrows, 10 out of 25 gonads). Bar, 2 μm. (D) High-resolution

images of pachytene nuclei from wild type and amx-1 mutants with 150 μM HN2 treatment immunostained for RAD-51. Bar, 2 μm. (E) Left,

quantification of germline apoptosis in the indicated genotypes. cep-1/p53 is a mutant with defective DNA damage-induced apoptosis utilized as a

control. Asterisks indicate statistical significance. P = 0.2732 for wt and cep-1;amx-1. P< 0.0001 all others, by the two-tailed Mann–Whitney test, 95% C.

I. Right, Quantification of pCHK-1 foci in pachytene nuclei in the indicated genotypes. P = 0.0299 for cep-1;amx-1 and cep-1 by the t-test, 95% C.I. (F)

Number of DAPI-stained bodies observed in diakinesis oocytes from the indicated genotypes. The number of -1 oocytes scored (n) is indicated next to

the genotypes.

https://doi.org/10.1371/journal.pgen.1009715.g007
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programmed meiotic DSBs (Fig 7B). Elevated levels of RAD-51 foci in both mitotic (premei-

otic tip; PMT) and meiotic (pachytene) nuclei in amx-1;spo-11 double mutants compared to

spo-11 single mutants suggest these are SPO-11-independent RAD-51 foci. However, when we

subtracted the mitotic DSBs found in amx-1;spo-11 from the total number of RAD-51 foci in

amx-1 mutants, higher levels of RAD-51 were detected in mid and late pachytene in amx-1
mutants suggesting that SPO-11-dependent meiotic DSBs are also elevated in amx-1 mutants.

Finally, since amx-1 mutants exhibit tolerance against HN2, it is plausible that RAD-51 foci

levels might decrease in amx-1 mutants compared with wild-type after HN2 treatment.

Indeed, wild type worms exhibited gonads with higher levels of RAD-51 compared to amx-1
mutants, further validating the ICL tolerance (Fig 7D). Of note, no distinct RAD-51 foci are

observed in wild type control embryos after HN2 exposure (S8 Fig).

Taken together, in line with our phenotypic analysis, the pattern of elevated RAD-51 foci

suggests unrepaired interstrand crosslink damage accumulated from mitotic nuclei transduced

and carried over into meiosis in amx-1 mutants.

Increased germ cell apoptosis in amx-1 mutants is CEP-1/p53-dependent

Unrepaired DNA damage can activate a DNA damage checkpoint resulting in increased apo-

ptosis during late pachytene in the C. elegans germline [34]. We examined whether the elevated

levels of RAD-51 foci observed in amx-1 mutants induced a high level of apoptosis. In amx-1
mutants, increased levels of germ cell apoptosis were observed compared to wild type (8.3

(amx-1) compared to 3.8 (wt) apoptotic nuclei; P<0.0001 the two-tailed Mann-Whitney test,

95% C.I., Fig 7E). We further tested whether the high level of apoptosis was mediated by the

CEP-1/p53 DNA damage checkpoint. Interestingly, the elevated germ cell apoptosis in amx-1
mutants was suppressed by 2-fold in cep-1/p53; amx-1 double mutants (4.2 for cep-1;amx-1,

P<0.0001 for amx-1 and cep-1;amx-1) suggesting that the elevated apoptosis stems from the

activation of a DNA damage checkpoint in late pachytene as a result of damage incurred in the

germline. Consistently, DAPI-stained fragments observed in premeiotic tip nuclei upon HN2

exposure (Fig 5C) were also rescued in cep-1;amx-1 mutants (6.7% gonads contain fragments

vs. 20% in amx-1). Interestingly, the cep-1;amx-1 mutant exhibited a mild but higher level of

apoptosis compared to a cep-1 single mutant (2.7 for cep-1, P<0.0001), suggesting that some

portion of the observed germ cell apoptosis is independent of the cep-1/p53 pathway [35]. The

higher level of pCHK-1 foci in the double mutant also supports this idea (Fig 7E).

AMX-1 is not required for regulating meiotic crossover frequency

To determine whether AMX-1 plays a role in meiotic crossover formation, we monitored cross-

over frequency in amx-1 mutants compared with wild type. We found six pairs of attached

homologous chromosomes were detected in late diakinesis oocytes in amx-1 mutants, suggest-

ing that crossover formation resulted in the formation of chiasmata at levels similar to wild type

(Fig 7F). Consistently, no discernible larval arrest or high incidence of male phenotype supports

the idea that AMX-1 does not have a role during larval development or sex chromosome segre-

gation (Fig 2A). Altogether, our data indicate that while AMX-1 is required for proper sensitiv-

ity against mitotic ICLs, it is not requisite for interhomolog crossover formation.

Discussion

AMX-1 is expressed in mitotic cells

AMX-1 signal is predominantly detected in somatic and mitotic germline nuclei and rarely in

pachytene nuclei, suggesting that AMX-1 is generally expressed in mitotic cells, unlike SPR-5
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which localizes to both mitotic and meiotic germline nuclei [13]. Consistently, an in situ
hybridization assay also supports the expression of AMX-1 in mitotic cells [36]. Of note,

another report found neuronal expression of mNeonGreen under the amx-1 promoter in a

chromosome integrated plasmid [37]. However, no discernible signal was detected in neuronal

regions using our CRISPR-Cas engineered transgenic worms carrying AMX-1::GFP located at

the endogenous locus (Fig 3). Thus, the difference is likely owing to an expression of AMX-1

in the nonendogenous plasmid-based genome integration.

AMX-1 and SPR-5 exhibit reciprocal up-regulated expression in mitotic

cells, but are not fully functionally redundant

The compensation of gene expressions between amx-1 and spr-5 was evidenced by quantitative

real-time PCR (Fig 3C). Consistently, immunostaining results found that AMX-1 expression

increased upon lack of SPR-5 in the mitotic embryonic cells and gut cells, where the two his-

tone demethylases overlap (Fig 3A). However, lack of SPR-5 did not lead to elevation of AMX-

1 signal in mitotic sheath cells or germline nuclei indicating that these histone demethylases

do not execute fully redundant functions and execute tissue-specific roles. In line with this

idea, lack of AMX-1 expression resulted in accumulation of H3K4me2 in embryonic cells and

germline nuclei (Fig 4). Interestingly, the lack of SPR-5 did not affect H3K4me2 levels in the

premeiotic tip, while H3K4me2 levels were elevated at the premeiotic tip in the amx-1 mutants

suggesting a non-redundant function for the two genes. spr-5;amx-1 double mutants, lacking

expression of both histone demethylases, revealed H3K4me2 levels similar to those in amx-1
single mutants, further supporting this idea. Similarly, no distinct changes were observed in

embryonic cells or pachytene nuclei between single and double mutants.

Interestingly, AMX-1::GFP signal was detected in gut cells (Fig 3). Studies in other species

have identified roles for histone methylation in maintaining intestine integrity and proper

immune response [38,39]. Given that AMX-1 is expressed in the gut cells and further altered

by lack of SPR-5, the abovementioned functions may also exist in C. elegans.

AMX-1 endows proper sensitivity against interstrand crosslink DNA

damage

AMX-1 and SPR-5 work together to maintain histone methylation levels. On the other hand,

they also engage in independent DNA damage repair pathways. While SPR-5 responds to

DSBs, AMX-1 endows sensitivity against interstrand crosslink DNA damage and undergoes

ubiquitination-dependent relocalization upon ICL induction (Figs 5 and 6). However, spr-5
mutants display no distinct phenotype upon ICL damage and amx-1 mutants are not sensitive

to exogenous DSBs (Figs 5B and S6). Second, the expression pattern of the two also supports

their independent functions. Specifically, the expression of AMX-1 increases upon lack of

SPR-5 in gut and embryonic cells (Fig 3). However, AMX-1 signal does not increase in the

meiotic region where SPR-5 expression is normally enriched, suggesting that AMX-1 and

SPR-5 may possess independent roles. It is interesting to note that although AMX-1 rarely

localizes to germline nuclei, lack of AMX-1 leads to increased levels of H3K4 dimethylation in

germline nuclei (Fig 4).

Of note, a recent study by Wang et al. reported that the amx-1 mutant is resistant to UV

irradiation and UV-induced H3K4me2 is independent of nucleotide excision repair [12].

While this may seem to be contradictory to our result (Fig 5B), our assay exposes adult worms

to UVC to measure levels of hatching (embryonic viability) and therefore is focused on effects

taking place within the germline and/or embryonic development. Wang et al. monitored

purely larval growth, which could account for the different DNA damage sensitivity outcomes.
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In C. elegans, upon response to replication stress, the replication checkpoint proteins ATL-

1 (ATR), CHK-1 (CHK1), and RPA-1 are activated and monoubiquitylate interstrand cross-

link repair (ICLR) component FCD-2 to its downstream effectors [40–42]. Likewise, amx-1
mutants exhibit activation of the ATR/CHK-1 pathway and p53/CEP-1-mediated DNA dam-

age-induced apoptosis, which supports the idea that AMX-1 is engaged in ICLR (Figs 7 and 8).

However, we cannot exclude the possibility that AMX-1 plays other roles in addition to ICL

damage repair as suggested by the residual apoptosis found in cep-1;amx-1 double mutants

compared with cep-1 single.

ICL resistance via defective mismatch repair

DNA repair components are necessary for repairing DNA lesions and providing proper DNA

damage resistance. These include DNA homologous repair genes including RAD-51, MCM8

and SPR-5 [11,43,44]. On the other hand, deficiency of the mismatch repair pathway involves

a wide range of DNA damage tolerance, thereby increasing chemoresistance and tumor het-

erogeneity [28]. Similarly, the lack of AMX-1 induced DNA interstrand crosslinking tolerance

followed by an accumulation of RAD-51 foci (Fig 7). RAD-51 foci mark unrepaired inter-

strand crosslink damage; on the other hand, up-regulation of RAD-51 may also lead to the

HN2 tolerance exhibited by amx-1 mutants [44,45]. However, given that the amx-1 mutant

does not exhibit tolerance against double-strand breaks (Fig 5B), the drug resistance from

RAD-51 overexpression is implausible.

Alternatively, AMX-1 may target mismatch repair (MMR) and moderate its expression

level. Thus, lack of amx-1 confers resistance to ICL as exhibited in MMR-defective conditions

Fig 8. Model for the role of histone demethylase AMX-1 in DNA damage repair. Top, in wild-type animals, we

propose that AMX-1 and SPR-5 act in both redundant and non-redundant manners. Upon ICL damage, AMX-1 is

ubiquitylated and regulates the proper expression of MLH-1 (mismatch repair MutL homolog). Bottom, in the absence

of AMX-1, SPR-5 expression is up-regulated. A DNA damage checkpoint is activated in amx-1 mutants in the absence

of exogenous damage, suggesting that lack of AMX-1 responds to endogenous DNA damage. Upon HN2 exposure,

lack of AMX-1 leads to reduced MLH-1 expression and ICL tolerance.

https://doi.org/10.1371/journal.pgen.1009715.g008
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[28]. Indeed, reduced expression of the C. elegans mutL homolog mlh-1 in the amx-1 mutants

(Fig 5D) together with the ICL tolerance observed in mlh-1 depleted worms (S7 Fig), suggest

that the tolerance exhibited by amx-1 mutants likely originates from a defective mutL mis-

match repair function.

It is worth noting that although the amx-1 mutants bear tolerance to ICL damage, they also

display chromosome fragmentation at the premeiotic tip (Fig 5C), suggesting that loss of

AMX-1 may result in multiple phenotypes not only restricted to defects in ICL repair. Consis-

tent with this, amx-1 mutants exhibited both CEP-1/p53-dependent and -independent apopto-

sis (Fig 7E) as well as embryonic lethality, reduced brood size, altered germ cell progression

and DNA damage checkpoint activation.

Previously, AMX-1’s mammalian homolog LSD2 has been implicated in regulating gene

transcription by modulating H3K4me2 [14]. Likewise, since AMX-1 modulates histone meth-

ylation level in the germline and somatic cells, identifying the targets for AMX-1 would help

understand how it works for repair of ICLs.

AMX-1 and LSD2

AMX-1 harbors SWIRM and amine oxidase domains found in various species suggesting

functional conservation among LSD2 homologs. In contrast, the absence of a zinc-finger motif

in AMX-1 reflects its evolutionary variation and diverged function (Fig 1A). Mammalian

LSD2 has been reported to act as an E3 ubiquitin ligase and inhibit cancer cell growth by pro-

moting ubiquitination-dependent proteasome degradation [19]. However, the zinc-finger

domain, which is essential for E3 ligase activity, was not discovered in AMX-1. Instead, that

ubiquitinated AMX-1 is found to be relocalized upon DNA damage suggests functional diver-

gence between the mammalian and C. elegans histone demethylases.

Previously, a few histone demethylases have been reported as tumor suppressors. Jumonji

C family PHF2 histone demethylase knockdown induced resistance to anticancer agents in a

p53-dependent manner [46]. Its abnormal expression in breast, head, and neck cancers sug-

gests the potential function of PHF2 as a tumor suppressor [47,48]. Jumonji D3 is another

tumor suppressor induced during differentiation of glioblastoma stem cells and it regulates

p53 stabilization [49]. Similarly, increased tolerance against interstrand crosslinking agents in

the AMX-1 lacking worms suggests the potential target of AMX-1 as a tumor suppressor. In

line with our observations, a few reports found abnormal expression of LSD2 has been impli-

cated in human cancers [19,50]. E3 ubiquitin ligase comprised of two zinc-finger motifs inhib-

its lung cancer growth by targeting O-GlcNAc transferase for polyubiquitylation. However,

given that the absence of zinc-finger motifs in AMX-1 still allows the sensitivity to ICLs, an

additional tumor suppressor role may be present in human cells.

In summary, our study revealed that AMX-1 is required for proper fertility, embryonic sur-

vival and adequate regulation of H3K4me2 in both mitotic and meiotic nuclei in C. elegans.
Histone demethylase AMX-1 allows proper sensitivity to interstrand crosslinks by modulating

expression of the mismatch repair gene mlh-1 and undergoing ubiquitination-mediated relo-

calization upon ICL formation.

The study of the roles of histone demethylases in DNA damage repair has gained much

attention since the discovery of a role for SPR-5/humanLSD1 in DNA double-strand break

repair [11]. The insights we provide on how AMX-1 works for DNA interstrand crosslink

repair and CEP-1/p53-dependent germ cell apoptosis shed light on how histone demethylases

operate in different DNA damage repair pathway and, akin to a tumor suppressor gene, may

serve as a potential therapeutic target. Our study may expand this theme to the context of a

previously unknown link between histone demethylase and DNA damage repair.
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Materials and methods

Strains and alleles

All C. elegans strains were cultured at 20˚C under standard conditions as described and the N2

Bristol strain was used as the wild-type [51]. The following mutations were used in this study:

LGI: spr-5(by101), cep-1(lg12501), hT2[bli-4(e937) let-?(q782) qIs48](I; III); LGIII: amx-1
(ok659), ztf-8(tm2176), qC1[dpy-19(e1259) glp-1(q339) qIs26] (III), amx-1(rj20[amx-1::gfp::ha
+ loxP unc-119(+) loxP]) unc-119(ed3) III), him-18(tm2181), unc-119(ed3) ruIs32 [pie-1p::

GFP::H2B + unc-119(+)](III). The amx-1 deletion mutant (ok659) was provided by the C. ele-
gans Gene Knockout Project at the Oklahoma Medical Research Foundation, which was part

of the International C. elegans Gene Knockout Consortium. amx-1 deletion mutant (ok659)

carries a 2636 base pair deletion encompassing the entire SWIRM domain and most (89%) of

the amine oxidase domain (Figs 1 and S1). To maintain amx-1(ok659) mutants, worms were

outcrossed to the wild-type N2 and balanced with qC1 with roller and GFP markers.

Transgenic worms

The amx-1(rj20) transgenic worm was generated with CRISPR-Cas9 technology as described

[20] [52]. In brief, we built the repair template by inserting GFP+HA between the last and the

stop codon of AMX-1. The unc-119(+) sequence presented in the repair template rescued the

Unc phenotype of injected animals. The transgenic animal was genotyped and outcrossed with

wild type six times.

Analysis of protein conservation and motifs

AMX-1 alignments were performed using the Uniplot Clustal O multiple sequence alignment

tool (www.uniprot.org/help/sequence-alignments)).

Plate phenotyping

The brood sizes scored correspond to the total number of eggs laid by each worm. The level of

embryonic lethality corresponds to the percentage of eggs laid that remained unhatched 24

hours post-laying; the level of larval lethality was the percentage of hatched worms that did not

survive to adulthood; the level of males (%Him) was the percentage of adults that were males.

Entire progeny for at least 20 worms were analyzed for each genotype at each generation

reported. Statistical comparisons between genotypes were performed using the two-tailed

Mann-Whitney test, 95% confidence interval (C.I.).

DNA damage sensitivity test

Young adult homozygous amx-1 animals were picked from the progeny of amx-1/qC1 parent

animals. To assess for IR sensitivity, animals were treated with 0, 60 or 120 Gy of γ-IR from a

Cs137 source at a dose rate of 1.8 Gy/min. For HN2 sensitivity, animals were treated with 0, 50,

100 or 150 μM of HN2 (mechlorethamine hydrochloride; Sigma) in M9 buffer containing E.

coli OP50 with slow shaking in the dark for ~20 hours. UV irradiation treatment was per-

formed utilizing the XL-100 Spectrolinker UVC. Worms were exposed to 0, 100 or 200 J/m2 of

UVC and plated to allow recovery for 3 hours. Camptothecin (Sigma) treatment was with

doses of 0, 100, 500, or 750 nM. HU sensitivity was assessed by placing animals on seeded

NGM plates containing either 0, 15, or 25 mM HU for 20–24 hours. After the DNA damage

treatments, animals were washed twice with M9 containing Triton X100 (100 ml/L) [22,25].

Hatching sensitivity was examined in>24 animals ~3 hours after HU treatment. For all other

damage sensitivity experiments, over 24 animals were plated, ~7 per plate, and hatching was
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assessed for the time period of 20–24 hours following treatment. Each assay was replicated at

least twice in independent experiments.

Quantitative analysis for RAD-51 foci

Quantitative analysis of RAD-51 foci was performed as described in [32]. Between five to eight

germlines were scored for each genotype. At least 100 nuclei for each zone for a given genotype

were analyzed. Statistical comparisons between genotypes were performed using the two-tailed

Mann-Whitney test, 95% confidence interval (C.I.).

To monitor RAD-51 foci after HN2 exposure, wild type N2 and amx-1 mutants were incu-

bated with 150 μM of HN2 in NGM containing E. coli OP50 for 20 hours.

RNA interference

Feeding RNAi experiments were performed at 20˚C as described [53] using the Ahringer

RNAi library clone targeting UBA-1 [54]. RNAi clones targeting CKU-80 and MLH-1 were

obtained from Marc Vidal’s lab [55]. HT115 bacteria carrying the empty pL4440 vector were

used as control RNAi. cDNA was produced from single-worm RNA extracts using the

ABscript II First synthesis system (ABclonal RK20400). RNAi effectiveness was examined by

assaying the expression of the transcript being depleted in four individual animals subjected to

RNAi by feeding. Expression of either the tba-1(F26E4.8) or myo-3 (K12F2.1) transcripts was

used as a control.

Quantitative real time PCR (qPCR)

cDNA was produced from 3–5 worm RNA extracts using the ABscript II First synthesis

(ABclonal RK20400). Real-time quantitative PCR amplifications for were carried out using

ABclonal 2X SYBR Green Fast mix (Abclonal RK21200). Amplification was carried out in a

LineGene 4800 (FQD48A BIOER) with initial polymerase activation at 95˚C for 2 min, fol-

lowed by 40 cycles of: 95˚C for 15 sec denaturation, 60˚C for 20 sec for annealing and elonga-

tion. After 40 cycles, a melting curve analysis was carried out (60˚C to 95˚C) to verify the

specificity of amplicons. Tubulin encoding tba-1 gene was selected for a reference gene based

on C. elegans microarray expression data [56]. Primer sequences are listed in S3 Table.

Immunofluorescence staining

Whole-mount preparations of dissected gonads, fixation and immunostaining procedures

were carried out as described in [32]. Primary antibodies were used at the following dilutions:

chicken α-GFP (1:300, Abcam AB13970), mouse α-H3K4me2 (1:300, Millipore CMA-303)

and rabbit α-pCHK-1 (1:200, Santa Cruz SC17922). Secondary antibodies used were: FITC

anti-chicken (1:300), Cy3 anti-mouse (1:300) and Cy3 anti-Rabbit (1:250) from Jackson

Immunochemicals. Immunofluorescence images were collected at 0.2 μm intervals with an

Eclipse Ti2-E inverted microscope and a DSQi2 camera (Nikon). Photos were taken with a 60

x objective in combination with 1.5x auxiliary magnification and were subjected to deconvolu-

tion by using the NIS Elements software (Nikon). Partial projections of half nuclei were

shown.

To examine AMX-1 histone demethylase activity in vivo by staining for dimethylated H3K4

level, dissected gonads from wild type, spr-5 and amx-1 age-matched adult hermaphrodites

were probed for H3K4me2. To ensure that both control and mutant animals were processed

and imaged under identical conditions, we dissected the control and mutant animals on the

same slide. For this purpose, as controls we used either a wild type strain expressing GFP::
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H2B, which can be easily distinguished from the mutants due to the GFP signal present

throughout the dissected gonads, or wild type (N2) animals, which were fixed on the same

slide but not mixed with the mutant (care was taken to keep the wild type (N2) and mutant dis-

sected gonads on separate sections of the same slides). Fluorescent intensity signal is sampled

from multiple nuclei from different gonads and quantitated by using ImageJ (Fig 4).

Quantitative analysis of germ cell apoptosis

Germlines of age-matched (20 hours post-L4) animals were analyzed by acridine orange stain-

ing, as described in [57], utilizing a Nikon Ti2-E fluorescence microscope. Between 22 and 95

gonads were scored for each genotype. Statistical comparisons between genotypes were per-

formed using the two-tailed Mann-Whitney test, 95% C.I.

Supporting information

S1 Fig. Representative amino acid sequence alignment of LSD2/AMX-1 sequences. AMX-1

(C. elegans CELE_B0019.1), KDM1B (humans), SW:Q8CIG3 (mouse) and Su(var)3-3-PB (fly)

were aligned using the Uniplot Clustal O multiple sequence alignment tool. SWIRM and his-

tone demethylase domains are indicated. (�) denotes a single, fully conserved residue; (:) indi-

cates conservation between groups of highly similar properties and (.) represents conservation

between groups of weakly similar properties.

(TIF)

S2 Fig. Homozygous amx-1 mutants exhibit a reduction in brood size compared to wild

type; however, brood size was not significantly reduced in the heterozygote, suggesting

that ok659 is a recessive allele. Brood size is scored among the progeny of worms of the indi-

cated genotypes. Error bars represent the standard error of the mean. N = 24 for each geno-

type. An asterisk indicates a statistically significant reduction compared to wild type by the

two-tailed Mann-Whitney test, 95% C.I.

(TIF)

S3 Fig. Brood size is not affected in amx-1::GFP transgenic animals suggesting that it

expresses functional AMX-1. The brood size of amx-1 mutants is significantly decreased

compared to wild type (P = 0.0087) while it is not altered for amx-1::GFP worms (P = 0.7922).

(TIF)

S4 Fig. amx-1::GFP signal is not observed in embryos following amx-1 RNAi depletion.

Asterisks indicate gut autofluorescence. Bar = 10μm.

(TIF)

S5 Fig. AMX-1 is rarely localized in the germline. We observed 5% of gonads containing

AMX-1::GFP signal either in the premeiotic tip or pachytene stage (5 out of 100 and 5 out of

96, respectively). Wild type (N2) is used as a control. P = 0.032 in control versus AMX-1::GFP

in the premeiotic tip, and P = 0.0248 in control versus AMX-1::GFP in pachytene, by the two-

tailed t-test. Bars = 10μm.

(TIF)

S6 Fig. amx-1 mutant exhibits resistance against interstrand crosslinking agents (150 μM

HN2) while no distinct resistance is observed upon lack of SPR-5 expression. N = 70–80

worms.

(TIF)
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S7 Fig. Relative hatching observed for eggs laid by either control worms (empty vector;

pL4440) or worms depleted of mlh-1 by RNAi after treatment with the indicated doses of

nitrogen mustard and cisplatin. 8% vs 24% at 150 μM HN2, P = 0.0003, and 82% vs 95% at

300 μg/ml cisplatin, P<0.0001, by the two-tailed Mann-Whitney test, 95% C.I.

(TIF)

S8 Fig. Co-immunostaining for RAD-51 and AMX-1::GFP in early embryos treated with

HN2. No distinct RAD-51 foci were observed in embryos in wild type control. amx-1::GFP

animals were treated with 150 μM of HN2 in NGM containing E. coli OP50 for 20 hours.

Higher magnification image is shown as inset. Bar = 2 μm.

(TIF)

S9 Fig. Quantitation of RAD-51 foci in germlines of the indicated genotypes. Mean num-

bers of RAD-51 foci observed per nucleus on each zone along the germline axis (x-axis).

P = 0.8888 in amx-1 and amx-1 + cku-80 (RNAi) in early pachytene. P = 0.1763 in amx-1 and

amx-1 + cku-80 (RNAi) in mid pachytene. P = 0.5509 in amx-1 and amx-1 + cku-80 (RNAi) in

late pachytene. P = 0.2431 in amx-1 and amx-1 + cku-80 (RNAi) in diplotene by the two-tailed

Mann–Whitney test, 95% C.I. Error bars represent standard error of the mean.

(TIF)

S10 Fig. Wider field high-magnification images of whole-mounted gonads immunostained

for H3K4me2. Premeiotic tip and pachytene stage nuclei are shown for the indicated geno-

types. Bars, 2 μm.

(TIF)

S1 Table. Number of gonads exhibiting AMX-1::GFP signal observed in this study for the

indicated genotypes.

(DOCX)

S2 Table. Number of gonads containing pCHK1 signal observed in this study for the indi-

cated genotypes.

(DOCX)

S3 Table. Primer information for Gene Expression Assessed by qPCR analysis.

(DOCX)
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