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Abstract

Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) 

are the most common forms of dementia after Alzheimer’s disease (AD). The heterogeneity of 

these disorders and/or the clinical overlap with other diseases hinder the study of their genetic 

components. Even though Mendelian dementias are rare, the study of these forms of disease can 

have a significant impact in the lives of patients and families and have successfully brought to the 

fore many of the genes currently known to be involved in FTD and VaD, starting to give us a 

glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide 

association studies have also pointed to disease risk-associated loci. This has been particularly 

important for DLB where familial forms of disease are very rarely described. In this review we 

systematically describe the Mendelian and risk genes involved in these non-AD dementias in an 

effort to contribute to a better understanding of their genetic architecture, find differences and 

commonalities between different dementia phenotypes, and uncover areas that would benefit from 

more intense research endeavors.

1. Introduction

Alzheimer’s disease (AD) is consensually known to be the major cause of dementia, 

comprising around 60–80% of all dementia cases (Erkkinen et al., 2018). Some rare AD 

cases result from specific mutations and typically present with early-onset of disease and 

familial structure. The vast majority, however, occurs in a sporadic form, although even that 

form has an estimated heritability of 58–79%, that includes the small cumulative effects of 

multiple variants and genes (Gatz et al., 2006). Besides AD, the major causes of dementia 
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include a variety of diseases with the most prominent being dementia with Lewy bodies 

(DLB), frontotemporal dementia (FTD) and vascular dementia (VaD). Lewy body dementia 

has a prevalence of around 7.5% (Vann Jones and O’Brien, 2014), but this number can be as 

high as 30% (Erkkinen et al., 2018); FTD accounts for 12% of early-onset dementia cases 

(Rossor et al., 2010); and VaD is known to cause 13% of neuropathological cases and to 

contribute to at least an additional 12% of dementia cases (Knopman et al., 2003). The 

prevalence of each of these diseases can vary with population, age, sex and diagnostic 

procedures.

Even though in this review we focus on the most common causes of non-AD dementias 

mentioned above, other rarer forms of degenerative dementia should be briefly mentioned. 

These often manifest with additional clinical signs or are very rare and include, among 

others, corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), prion diseases, 

Huntington disease, spinocerebellar ataxias, mitochondrial diseases and leukodystrophies 

(Rossor et al., 2010).

These multiple causes of dementia are considered to be different clinical entities but, in 

many cases, may share pathogenic pathways and phenotypes. In fact, on an aging brain, 

different pathologies may occur and overlap, hampering diagnosis and the understanding of 

the specific biological processes underlying these disorders.

Genetics has played a critical role in our understanding of the molecular mechanisms 

involved in these diseases. Genetic changes lie upstream of the pathological changes, 

exerting effects throughout the lifetime. This is important in, at least, two dimensions: 

genetic signatures may be the best markers of ‘pure’ disorders and, given they are acting 

from conception, they may be the best targets for treatments and, particularly, preventing 

interventions. At the same time, the co-occurrence of pathologies suggests the existence of 

common risk factors and/or dysfunctional pathways, and this may be a result of shared 

genetic risk factors.

Studying the genetic similarities and contrasts between the different causes of dementia may 

help to build a framework of neurodegeneration pathways common to all these disorders that 

ultimately can contribute to more informed diagnoses, as well as the development of 

treatments and more directed research studies.

Here, we aim to review the current knowledge of the genetic architecture of non-AD 

dementias by systematically characterizing the genes and genetic loci known to be involved 

in the Mendelian and sporadic forms of these disorders.

2. Genetics of frontotemporal dementia

Frontotemporal dementia is heterogeneous on many levels: phenotypic, pathological and 

genetic. The most common clinical subtypes are behavioral variant FTD (bvFTD) and 

primary progressive aphasia (PPA). Both these phenotypes overlap, in a large number of 

patients, with amyotrophic lateral sclerosis (ALS) and the atypical parkinsonian syndromes 

CBS and PSP. Being the second most common cause of early-onset degenerative dementia, 

about a third of FTD cases are found to be genetic. There are different genes known to cause 
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this disease when mutated, with the majority of cases being associated with genetic changes 

in progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open 

reading frame 72 (C9ORF72) (Rohrer et al., 2009). However, there are other genes known to 

cause FTD in a smaller number of cases and the genetic landscape is rapidly expanding.

2.1. MAPT, GRN and C9ORF72

MAPT, which encodes microtubule-associated protein tau, was the first gene to be 

associated with FTD. The clinical presentation can vary: 44.8% of the patients develop a 

behavioral variant of FTD and 3.9% some form of PPA. MAPT mutation carriers have also 

been reported to present with PSP (4.2%), Parkinson’s disease (PD) (4.9%), AD (3.0%), 

CBS (1.8%) and rarely ALS (0.4%) phenotypes (Moore et al., 2020). MAPT mutations are 

relatively more common in the Netherlands and the US west coast (Moore et al., 2020) and, 

pathologically, are associated with tau deposits.

One of tau’s primary functions is to bind and promote the assembly of microtubules (Caillet-

Boudin et al., 2015). It has a natural alternative splicing mechanism at exon 10 that creates 

an equal number of isoforms containing 3 or 4 repeat segments (3R tau and 4R tau). 

Assembly of tau occurs at the repeats’ level, so it is not surprising that many of the 

pathogenic mutations are located on those repeats, affecting how tau interacts with 

microtubules (Ghetti et al., 2015). Known disease-causing variants are missense, silent or 

deletions with the majority occurring in exons 9–13, as well as intronic variants. These are 

mostly clustered in the 5′-splice site of the intron after exon 10. The mutations identified in 

MAPT can affect protein structure or the alternative splicing of exon 10. This latter 

mechanism creates an imbalance of the 3R/4R ratio with a relative increase of 4R tau 

leading to more interactions with microtubules (Ghetti et al., 2015).

GRN encodes progranulin, a precursor protein of 593 amino acids. When cleaved, it leads to 

the formation of granulins. The exact role of progranulin or granulins is not yet fully 

understood, but it has been linked to neuronal growth, lysosomal function, inflammation and 

stress response (Holler et al., 2017; Petkau and Leavitt, 2014).

Around 130 GRN mutations in 483 families have been identified, with a high prevalence in 

southern Europe, especially in Italy (Moore et al., 2020). Intriguingly, GRN mutations have 

been found more in women (58.4%) than men (Moore et al., 2020). The most common 

disease causative mutations are nonsense, frameshift and splice site variants leading to 

premature stop codons that activate nonsense-mediated decay, leading to haploinsufficiency 

and subsequent reduced progranulin protein levels (Baker et al., 2006; Cruts et al., 2006; 

Cruts and Van Broeckhoven, 2008). Other pathogenic variants include genomic deletions 

(Rovelet-Lecrux et al., 2008) or elimination of the initiation codon for protein synthesis 

(Cruts et al., 2006). Some missense mutations have also been associated with disease 

(Kleinberger et al., 2016). Consistent with the haploinsufficiency theory, patients with 

heterozygous mutations have 50% less progranulin levels both in cerebrospinal fluid (CSF) 

and plasma (Coppola et al., 2008).

Patients carrying GRN mutations have also been reported to present with phenotypes 

resembling AD, Lewy body dementia or CBS (Moore et al., 2020) and homozygous GRN 
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mutation carriers, presenting complete loss of progranulin, develop neuronal ceroid 

lipofuscinosis with early onset retinal degeneration, seizures and cerebellar ataxia (Smith et 

al., 2012).

Pathogenic repeat expansions in C9ORF72 are the most common genetic cause of FTD and 

ALS, explaining disease in 4–29% of individuals with FTD (Van Mossevelde et al., 2018). 

These have also been reported in patients with AD, PD, PSP, CBS, ataxia and Creutzfeldt-

Jakob disease (CJD) (Balendra and Isaacs, 2018) and were reported to be the most common 

cause of Huntington disease phenocopies (Hensman Moss et al., 2014). Although a 

threshold for pathogenicity has not been clearly determined for the number of repeats, a cut-

off of 30 repeats is typically used. Patients usually have expansions ranging from hundreds 

to thousands and most healthy individuals have less than 12 repeats (Balendra and Isaacs, 

2018). The pathogenic mechanisms of C9ORF72 mutations still need to be completely 

elucidated. Loss of function (possibly leading to defects in autophagy or lysosomal 

function), gain of protein function (characterized by toxic accumulation of dipeptide repeats) 

and gain of RNA function (characterized by toxic effects from the sense and antisense foci 

generated from the repeats) have been hypothesized as the underlying causes (Balendra and 

Isaacs, 2018). Epigenetic alterations in C9ORF72 associated disease have been postulated as 

the cause of reduction of gene product. Hypermethylation of the CpG-island located in the 

promoter region of C9ORF72 was only found in expansion carriers (Xi et al., 2013), and 

DNA methylation of the repeat expansion itself occurs in all carriers of alleles with > 90 

repeats, while small or intermediate alleles are completely unmethylated (Xi et al., 2015). 

The combined analyses of epigenetic and genetic data in C9ORF72 expansion carriers has 

also led to the identification of a 124.7 kb linkage disequilibrium block, tagged by 

rs9357140, and containing two overlapping genes (LOC101929163 and C6ORF10), 

associated with age at onset of disease not only in C9ORF72 expansion carriers, but also in 

FTD cases without expansions (Zhang et al., 2018).

2.2. Rare genetic causes of FTD

In addition to the most common mutated genes known to cause familial and a smaller 

proportion of sporadic FTD cases, there are several other genes that when mutated cause 

FTD in a much smaller number of cases. Many of these rare genetic forms fall within the 

spectrum of FTD-ALS with many of the genes identified so far causing one of these 

phenotypes or both. From these, TANK-binding kinase 1 (TBK1) is thought to be the one 

more frequently harboring FTD-causing mutations after MAPT, GRN and C9ORF72 
(Freischmidt et al., 2017; Helgason et al., 2013). TBK1 is a multifunctional kinase involved 

in the regulation of various cellular pathways, including immune response, inflammation, 

autophagy, cell proliferation, and insulin signaling. Heterozygous loss of function variants 

were initially shown to cause ALS and FTD (Freischmidt et al., 2015). Since then, in-frame 

deletions of single amino acids and missense variants have also been associated with these 

phenotypes, although their definite role in disease is still not known (Freischmidt et al., 

2017).

Mutations in the TAR DNA binding protein 43 (TDP-43)-encoding gene, TARDBP, are 

responsible for a smaller percentage (~1%) of FTD cases (Baizabal-Carvallo and Jankovic, 
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2016; Caroppo et al., 2016). TDP-43 is a RNA/DNA binding protein involved in RNA-

related metabolism (Prasad et al., 2019), with mutations associated with an anticipation 

phenomenon and reduced penetrance in most families (Caroppo et al., 2016). Reported 

TARDBP mutations causing FTD are rare and not definitely pathogenic (Hardy and 

Rogaeva, 2014), although recently, four patients from two kindreds were reported to carry 

the same mutation, increasing support for its role in “pure” FTD (Ramos et al., 2020).

Mutations in Sequestosome-1 (SQSTM1) were shown to segregate with FTD after the 

identification of p62 (the protein encoded by this gene) in neuronal and glial ubiquitin-

positive inclusions in different neurodegenerative diseases (Le Ber et al., 2013). SQSTM1 
mutations were initially associated with Paget’s disease. In FTD and ALS mutations are 

typically missense, but nonsense and deletions have also been described (Le Ber et al., 2013; 

van der Zee et al., 2014). In a case-control rare variant association analysis, no differences 

were found when taking into consideration the whole protein, but authors observed a 

clustering of rare variants in the ubiquitin-associated domain of p62 and argued that this 

domain drives the association and variants located there double the risk for FTD (van der 

Zee et al., 2014). Biallelic loss-of-function variants in SQSTM1 have been shown to cause a 

childhood or adolescence onset, neurodegenerative disease characterized by ataxia, gait 

abnormalities, dysarthria, dystonia, vertical gaze palsy, and cognitive decline (Haack et al., 

2016). The p62 protein participates in the degradation of ubiquitinated proteins by 

autophagy and is involved in cell differentiation, apoptosis and immune responses (Le Ber et 

al., 2013). Disease associated mutations are believed to lead to dysfunction of the 

degradation of proteins by affecting the binding of the p62 protein leading to disruption of 

selective autophagy pathways in neurodegenerative disease.

CHMP2B encodes the charged multivesicular body protein 2b, a subunit of the endosomal 

sorting complex required for transport-III, which is implicated in the final stages of cell 

division, egress of virus from cells, nuclear envelope reformation after mitosis and 

lysosomal degradation (Clayton et al., 2018; Gydesen et al., 2002). CHMP2B mutations can 

cause both FTD and ALS (Parkinson et al., 2006). Clearly pathogenic mutations lead to C-

terminus truncation of the protein, causing loss of the VPS4 binding domain. The reported 

mutations are nonsense or affecting gene splicing (van der Zee et al., 2008). Several 

missense mutations have also been reported, but their pathogenicity has not yet been clearly 

established (Han et al., 2012).

VCP encodes the valosin-containing protein, which is a member of a superfamily of proteins 

that uses the energy gained from ATP hydrolysis to structurally remodel proteins. VCP is 

part of the ubiquitin-proteasome system and it functions in diverse cellular processes 

including endoplasmic reticulum-associated protein degradation, mitophagy, autophagy and 

DNA repair (Meyer et al., 2012). Disease-causing missense mutations were initially 

associated with inclusion body myopathy associated with Paget disease of bone and FTD 

(Watts et al., 2004). This is an adult-onset rare disorder characterized by distal muscle 

weakness where VCP pathogenic variants cause myopathy in 90% of the cases, Paget 

disease of bone in 50%, and FTD in 30% (Van Mossevelde et al., 2018). The phenotypes 

associated with VCP mutations have since been extended to include motor neuron disease 
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(Johnson et al., 2010), and, more rarely, PD, AD, and peripheral neuropathies (Van 

Mossevelde et al., 2018).

A minority of FTD cases result from mutations in CHCHD10 which encodes the 

mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 10 (Bannwarth 

et al., 2014). Other phenotypes such as myopathy, cerebellar ataxia, ALS and PD have also 

been associated with mutations in this gene (Perrone et al., 2017). Reported mutations are 

missense or nonsense (Zhou et al., 2017) and are all concentrated in exon 2 (Zhou et al., 

2017). These are thought to lead to disease through a loss of function mechanism (Perrone et 

al., 2017). CHCHD10 is a multifunctional protein involved in the regulation of 

mitochondrial metabolism, synthesis of respiratory chain components, and modulation of 

cell apoptosis (Abramzon et al., 2020). A similar small number of cases have been 

associated with mutations in fused-in-sarcoma (FUS). In fact, evidence supporting the role 

of FUS mutations in pure FTD is conflicting (Hardy and Rogaeva, 2014; Lysikova et al., 

2019). FUS encodes the fused in sarcoma protein, which is part of a family of DNA/RNA 

binding proteins. It has several roles related to RNA metabolism, as well as DNA repair and 

cellular proliferation (Deng et al., 2014; Ling et al., 2013). Most mutations associated with 

disease are missense, but insertions and deletions (some of them causing frameshift 

mutations) have also been reported. About half of these disease-associated mutations are 

located in the last exon of the gene, which encodes a nuclear localization signal. Many of the 

remaining mutations are located in an exon encoding for a part of the Gly-rich low-

complexity (prion-like) domain, similar to the mutation distribution observed in TARDBP 
(Hardy and Rogaeva, 2014). The pathobiological mechanisms involved in disease may be 

due to gain of toxic function (overexpression of both the mutant and the normal protein are 

toxic in animal models) or loss of function (the mutant protein can bind the normal and 

suppress its and other proteins’ function) (Ling et al., 2013).

Other genes rarely responsible for pure FTD cases that are rare causes of ALS or FTD-ALS 

include UBQLN2, CCNF, OPTN, DCTN1, TUBA4A, and CYLD. UBQLN2 encodes 

ubiquilin 2, a component of the ubiquitin-proteasome system (Deng et al., 2011). The 

inheritance pattern is X-linked dominant, affecting equally men and women, although men 

have a significantly lower age at onset (Deng et al., 2011). Most patients develop ALS, but 

cases with FTD-ALS have been reported (Deng et al., 2011). Mutations are mostly missense 

but one in-frame deletion variant has also been reported (Renaud et al., 2019). Recently, 

CCNF (which encodes cyclin F) missense mutations have been shown to cause ALS and 

FTD (Williams et al., 2016a). The identification of mutations was performed initially in a 

single family, and additional variants were then identified in large international cohorts. It 

was also shown that expression of mutant CCNF in neuronal cells causes abnormal 

ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 (Williams et 

al., 2016a). Mutations in OPTN were initially described as causing ALS (Maruyama et al., 

2010), with loss-of-function as well as missense mutations being identified. Following this, 

pathogenic mutations in OPTN were also found in FTD (Pottier et al., 2015). OPTN encodes 

optineurin, a highly abundant protein, involved in several cellular processes, including the 

inflammatory response, autophagy, Golgi maintenance and vesicular transport (Toth and 

Atkin, 2018). DCTN1 encodes the dynactin subunit p150Glued. Dynactin is a motor protein 

involved in axonal transport, and the p150Glued subunit has an important role in dynactin’s 
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overall function. DCTN1 mutations are associated with Perry syndrome, but have also been 

found to cause ALS, FTD and PSP phenotypes (Konno et al., 2017). TUBA4A encodes 

tubulin alpha 4a, a protein involved in microtubule stabilization. TUBA4A mutations have 

been found at increased frequency in ALS cases, with at least two patients also developing 

FTD (Smith et al., 2014). Mutations were shown to destabilize the microtubule network, 

emphasizing the role of the cytoskeleton in ALS. CYLD has been recently shown to cause 

FTD and ALS in one European-Australian family (Dobson-Stone et al., 2020). Only one 

missense mutation (p.Met719Val) has been documented so far. CYLD seems to be involved 

in inflammatory processes by regulating NF-κB, and in autophagy (Dobson-Stone et al., 

2020). It has been previously shown to interact with many other genes associated with the 

FTD-ALS spectrum, such as TBK1 (Friedman et al., 2008), OPTN (Nagabhushana et al., 

2011) and SQSTM1 (Jin et al., 2008).

In addition to the well-recognized FTD-ALS spectrum, mutations in genes known to cause 

AD can also be associated with FTD phenotypes. This is the case for some mutations in 

PSEN1 and PSEN2 (Dermaut et al., 2004; Marcon et al., 2009). More recently, variants in 

TREM2 have been identified as a significant genetic risk factor for AD (Guerreiro et al., 

2013b). The triggering receptor expressed on myeloid cells 2 is a transmembrane 

glycoprotein innate immune phagocytic receptor expressed on brain microglia that has a key 

role in regulating the immune response and phagocytic activity in the central nervous system 

(CNS). Homozygous or compound heterozygous TREM2 mutations cause polycystic 

lipomembranous osteodysplasia with sclerosing leukoencephalopathy (or Nasu-Hakola 

disease) (Paloneva, 2002). Bi-allelic mutations in this gene have also been found in patients 

presenting a FTD phenotype without bone changes (Guerreiro et al., 2013a). Moreover, a 

recent meta-analysis of rare TREM2 variants found that variants p.Arg47His and 

p.Thr96Lys confer an ~2–3-fold increase in risk for FTD (Su et al., 2018), adding to 

previous suggestions of a possible role of TREM2 rare variants in this disease (Carmona et 

al., 2018; Cuyvers et al., 2014).

2.2.1. Other genes possibly related to FTD—In addition to TREM2 there are some 

genes associated with leukodystrophies that have been linked to FTD or FTD phenotypes. 

CSF1R, encoding the colony stimulating factor 1 receptor, was originally linked to 

autosomal-dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented 

glia and is highly expressed in microglia (Cuyvers et al., 2014). Some groups have identified 

patients harboring CSF1R mutations with FTD phenotypes (Kim et al., 2018; Swerdlow et 

al., 2009). AARS2, which encodes the mitochondrial alanyl-tRNA synthetase 2, has been 

reported to cause a leukodystrophy that sometimes has a frontal lobe-type dementia 

(Dallabona et al., 2014), and recently it was shown to cause FTD in a Korean cohort (Kim et 

al., 2018). A homozygous mutation in TMEM106B, a known FTD risk modifier (see next 

section for more details), was shown to cause a hypomyelinating leukodystrophy (Simons et 

al., 2017). Mutations in PLP1 cause Pelizaeus-Merzbacher disease, a rare X-linked disorder 

of the CNS, characterized by a hypomyelinating leukodystrophy. It is usually present in 

female carriers with a mild phenotype of personality changes, gait dysfunction and 

dementia, resembling FTD. Brain magnetic resonance imaging (MRI) may show diffuse 

leukodystrophy in these cases (Nance et al., 1996). Lastly, homozygous mutations in PSAP 

Guerreiro et al. Page 7

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(which encodes prosaposin, a regulator of progranulin) are associated with a fatal lysosomal 

storage disorder, causing metachromatic leukodystrophy (Kuchar et al., 2009; Nicholson et 

al., 2016). This is intriguing since white matter hyperintensities (WMH) are often seen on 

MRI brain scans in FTD due to GRN mutations. Whether these changes are related to 

vascular pathology remains unclear (Sudre et al., 2017).

Other genes have been identified in different conditions that can be related to FTD, although 

no specific pathogenic mutations have so far been shown to cause FTD. These include 

mutations in HNRNPA2B1 and HNRNPA1, which are part of the ubiquitously expressed 

RNA-binding proteins family and known to interact with TDP-43 (Budini et al., 2012). 

These were initially found as causative in multi-system proteinopathy (Kim et al., 2013a) 

but, so far, no pathogenic mutations have been identified in FTD (Le Ber et al., 2014; Seelen 

et al., 2014). In a similar manner, protein kinase CAMP-dependent type I regulatory subunit 

beta (PRKAR1B) mutations have been identified in cases of FUS-negative neuronal 

intermediate filament inclusion disease, an un-common neurodegenerative disorder that 

typically presents as early-onset FTD, associated with parkinsonism (Wong et al., 2014).

2.3. Genetic risk factors in FTD

Genome-wide association studies (GWAS) have revealed several genetic loci relevant for 

sporadic FTD with varying degrees of replication. In order to identify susceptibility loci 

specific for FTLD-TDP, Van Deerlin and colleagues performed a GWAS in 515 individuals 

and were able to identify a significant association with chromosome 7p21 region. This locus 

contains the transmembrane protein 106B (TMEM106B), a gene that has now been 

consistently replicated as an FTD risk factor and disease modifier (Pottier et al., 2018; Van 

Deerlin et al., 2010). It is involved in dendrite morphogenesis and maintenance by regulating 

lysosomal trafficking. It may act in disease by inhibiting retrograde transport of lysosomes 

along dendrites, and has been shown to modify disease onset in GRN, C9ORF72 and 

CHMP2B mutation carriers, with the risk allele being associated with a decrease of 13 years 

in the age at onset of GRN mutation carriers (Cruchaga et al., 2011; Pottier et al., 2018). 

More recently, it was also shown to modulate disease in other conditions, such as PD 

(Tropea et al., 2019) and limbic-predominant age-related TDP-43 encephalopathy (LATE) 

(Hokkanen et al., 2020). Currently lacking replication and arising from a targeted approach, 

genetic variants in the myelin associated oligodendrocyte basic protein (MOBP) have also 

been suggested to be clinical modifiers in FTD, after the association of one allele with 

disease duration (Irwin et al., 2014).

Novel potential risk loci were identified in a two-stage GWAS including 3,526 FTD cases 

and 9,402 controls: the chromosomes 6p21.3 (HLA locus) and 11q14 (RAB38/CTSC) 

regions. Of these, variants in the HLA locus encompassing butyrophilin-like 2 (MHC class 

II associated) (BTNL2) and close to the major histocompatibility complex class II HLA-
DRA/HLA-DRB5 showed the most consistent associations when analysing the whole 

cohort. The RAB38/CTSC locus was identified as a potential novel locus for the bvFTD 

subtype. In this same study a suggestive signal was also observed for the APOE/TOMM40 
locus (Ferrari et al., 2014). Although with inconsistent results, APOE has been studied as an 

FTD risk factor for many years (Verpillat et al., 2002). The ε4 haplotype, the strongest 
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genetic risk factor for AD, has been shown in several studies to also increase the risk of FTD 

(Mishra et al., 2017; Su et al., 2017). It is important to highlight the possibility of these 

significant associations in FTD resulting from the clinical overlap consistently seen in 

cohorts of clinical AD and FTD cases. Interestingly, both APOE and TOMM40 were 

identified to be associated with bvFTD when performing a gene based association analysis 

largely in the same cohort. The same analysis also identified ARHGAP35 (encoding Rho 

GTPase-activating protein 35) and SERPINA1 (encoding alpha-1 anti-trypsin) as modulators 

of risk of progressive non-fluent PPA FTD (Mishra et al., 2017). More recently a novel risk 

locus on chromosome 8, encompassing GFRA2, was identified in a genome-wide analysis. 

This was a replicated finding with support from in vitro studies that will be interesting to see 

replicated by other research groups in independent cohorts (Pottier et al., 2018).

Other genes also associated with FTD risk include UNC13A and SORT1. The first was 

initially described to modulate ALS survival, and has subsequently been associated with 

FTD as well (Diekstra et al., 2014; Placek et al., 2019). UNC13A encodes Unc-13 Homolog 

A, a member of a family of presynaptic proteins widespread in the nervous system and 

involved in the priming of presynaptic vesicles containing neurotransmitters before their 

release (Diekstra et al., 2014). Sortilin-1 (SORT1), a gene previously associated with AD 

risk, has also been shown to regulate progranulin levels (Carrasquillo et al., 2010). 

Interestingly, the C-terminus of progranulin is necessary to bind sortilin, a receptor protein 

that regulates intracellular protein trafficking in the Golgi (Hu et al., 2010).

Some genes known to be involved in polyQ expansion disorders have been associated with 

FTD. The most relevant of these findings include the identification of intermediary 

expansions in ATXN2 as a risk factor for FTD and ALS (Lattante et al., 2014); and the 

description of a family with an intermediate length expansion of TBP (associated with 

spinocerebellar ataxia-17) presenting as FTD (Olszewska et al., 2019). Further studies 

clarifying the interactions between polyQ disorders and FTD are warranted, particularly 

since ATXN1 intermediate-length expansions have also been associated with ALS (Lattante 

et al., 2018).

A rare MAPT variant (p.Ala152Thr) has been reported to increase the risk of developing 

FTD. The same variant was also associated with the risk of AD and PSP (Coppola et al., 

2012). Common variants near MAPT (tagging the H1 haplotype, which is also associated 

with higher tau expression) have been associated with AD, PD, FTD, and ALS (Desikan et 

al., 2015; Karch et al., 2018).

Taken together, these associations add further evidence for shared pathways in 

neurodegenerative dementias, possibly justify, at least in part, the sometimes intermixed 

clinical phenotypes and pathological characteristics seen in some dementia patients.

2.4. Considerations on the genetic architecture of FTD

Neurodegenerative dementias can be considered as spectrum disorders. FTD, as an example, 

is a highly heterogeneous disorder, with several distinct phenotypes and different 

pathological changes underlying disease. It is difficult to find a common feature for all 

patients in the FTD spectrum. Genetics reflects this heterogeneity: there is a small number of 
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genes underlying Mendelian disease in a considerable number of cases and a few sporadic 

patients; and there is an increasing number of mutated genes leading to disease in single 

families or in a very small number of FTD patients (Fig. 1). However, most of these genes 

can be assigned to a few pathways, possibly defining an identity molecular skeleton for the 

disease (Ferrari et al., 2019). Pathological studies suggest aberrant protein inclusions in the 

cytoplasm and nucleus of neurons and glia hyperproliferation as the major pathological 

hallmarks of FTD (Mackenzie and Neumann, 2016). A large portion of the genes associated 

with FTD are involved in cellular waste disposal pathways, leading to accumulation of 

proteins in the cytoplasm. In parallel, glial hyperproliferation suggests an important role of 

immune-related processes, with several identified genes having a role in this pathway. It is 

also interesting to note that, although their deposition is central in FTD, TARDBP, FUS and 

MAPT do not seem to be associated with these two pathways, suggesting the existence of 

other dysfunctional molecular processes. TARDBP and FUS (as well as HNRNPA2B1 and 

HNRNPA1) are involved in processes that control gene expression and RNA metabolism. 

The role of MAPT in FTD is still not fully understood, with protein aggregation or axonal 

transport dysfunction having been suggested as potential dysfunctional pathways. In 

addition to MAPT, other genes, namely TUBA4A and DCTN1, are also involved in axonal 

transport. Similarly, other pathways have been implicated in the pathogenesis of FTD, 

namely those sustaining neuronal development and homeostasis, synaptic dysfunction and 

DNA damage response (Ferrari et al., 2019). CHCHD10 (and possibly VCP) may also 

implicate mitochondrial dysfunction in disease pathogenesis (Fang et al., 2015). Further 

refinement of the molecular pathways involved in FTD is needed, which may result from 

larger GWAS studies, similar to what has been seen in AD.

3. Genetics of dementia with Lewy bodies

Apart from the characteristic dementia, symptoms of DLB include parkinsonism, 

hallucinations, cognitive fluctuations, and rapid eye movement (REM) sleep behavior 

disorder (McKeith et al., 2017). Despite being a common disease, accounting for up to 30% 

of all dementia cases, the genetics of DLB remains largely understudied (Erkkinen et al., 

2018). This is probably due, in part, to overlapping phenotypes with other neurodegenerative 

diseases, particularly PD and AD, and to a frequent coexistence of other pathologies 

(Robinson et al., 2018). This can lead to high rates of clinical misdiagnosis, which 

depending on several factors can range from 20 to 50% when comparing the accuracy of 

clinical diagnoses against autopsy results (Hohl et al., 2000; Rizzo et al., 2018). Evidence is 

growing for a strong genetic component to DLB, distinct from the genetic profile of other 

similar diseases. A recent study estimated the heritability of the disease to be about 60% 

(Guerreiro et al., 2019), and the number of studies implicating new loci is growing.

The strong overlap in phenotypic characteristics with AD and PD is also reflected in the 

genetics of DLB, with established risk factors SNCA, GBA, and APOE, also being 

implicated in PD (SNCA and GBA) and AD (APOE). Only these three genes have been 

consistently replicated in large scale genetic studies of DLB cases, including two recent 

GWAS (Guerreiro et al., 2018; Rongve et al., 2019).
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3.1. Well established DLB genes

SNCA was the first gene implicated in DLB. It encodes α-synuclein, a small neuron-

predominant protein, important for synaptic transmission (Benskey et al., 2016). Familial 

cases with dementia and parkinsonism were found to carry two point mutations, p.Ala53Thr 

and p.Glu46Lys (Morfis and Cordato, 2006; Singleton et al., 2003; Zarranz et al., 2004). 

Since this first report, a variety of mutations have been identified in SNCA in DLB cases 

(Table 1), however point mutations and copy number changes in SNCA are still rare overall 

causes of DLB. SNCA mutations in families lead to mixed phenotypes, and pathogenic 

mutations have been implicated in a variety of neurodegenerative diseases (Bougea et al., 

2017; Kiely et al., 2013; Markopoulou et al., 2008; Pasanen et al., 2014), with dementia 

symptoms often being variable.

The SNCA locus has also been consistently associated with the risk of developing DLB. The 

profile of association is different from that observed in PD, with the most associated variants 

located towards the 5’ end of the gene in DLB and towards the 3’ end in PD (Bras et al., 

2014a), suggesting a different disease mechanism between DLB and PD.

Another PD risk locus, GBA, has also been implicated in DLB (Gámez-Valero et al., 2016; 

Nalls et al., 2013; Shiner et al., 2016). GBA encodes glucocerebrosidase, a lysosomal 

enzyme thought to be responsible for increased protein aggregation and alterations in lipid 

levels due to lysosomal dysfunction when mutated in Lewy body disorders (Velayati et al., 

2010). Mutations in GBA have been reported to increase the risk of dementia in PD, and 

have been shown to be more frequent in DLB cases than PD cases (Meeus et al., 2012). 

Similarly to the SNCA locus, the GBA locus has reached genome-wide significance in 

GWAS of DLB. The variant thought to be driving the association at this locus is the 

p.Glu365Lys, which is also associated with PD (Berge-Seidl et al., 2017; Blauwendraat et 

al., 2020). Nonetheless, a variety of other variants within the locus have reported roles in 

DLB (Bras et al., 2014a; Clark et al., 2009; Gámez-Valero et al., 2016; Goker-Alpan et al., 

2006; Nalls et al., 2013; Nishioka et al., 2011; Shiner et al., 2016; Tsuang et al., 2012; 

Velayati et al., 2010) (Table 1). Some mutations such as p.Glu326Lys, decrease 

glucocerebrosidase activity. This change is detectable in CSF, making it a potential 

biomarker (Berge-Seidl et al., 2017). GBA has also been associated with earlier age at onset 

(Gámez-Valero et al., 2016; Nalls et al., 2013; Shiner et al., 2016) and worse cognitive 

symptoms in PD (Mata et al., 2016).

The ε4 allele of APOE is known to be the strongest genetic risk factor for AD. Similarly, 

statistically significant associations for this locus have been reported for the risk of 

developing DLB (Guerreiro et al., 2018). However, in DLB it has been a matter of debate if 

this risk arises from the ε4 allele independent stimulation of α-syn pathology (Dickson et 

al., 2018; Tsuang et al., 2013), or through the effects on amyloid-β and tau pathologies 

(similar to what happens in AD) (Irwin et al., 2017). If on one side the detection of an 

association of APOE risk in DLB brains with minimal AD-related pathology supports a 

dementia mechanism unrelated to amyloid pathology (Tsuang et al., 2013), on the other, the 

earlier age at onset of the disease as a result of AD pathology accompanying other DLB 

symptoms seems to support that APOE risk in DLB is driven by AD-related co-pathologies 

(Prokopenko et al., 2019). Although these are not mutually exclusive mechanisms, more 
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recently, two studies aiming to decipher the effect of APOE on α-synuclein using mouse 

models, reported that APOE ε4 increased α-synuclein phosphorylation, worsened motor and 

memory problems and, consequently, exacerbated neurodegeneration (Davis et al., 2020; 

Zhao et al., 2020). One of these studies (Davis et al., 2020) also confirmed the protective 

effect of APOE ε2 in DLB. Again, this protective effect had not been conclusively 

determined before, with conflicting results found in the literature (Singleton et al., 2002), but 

it is in line with previous results from our group (Fig. 2) (Guerreiro et al., 2015). APOE has 

also been associated with shorter survival span in DLB cases (Geiger et al., 2016; Keogh et 

al., 2016; Larsson et al., 2018) and has a significant potential as a therapeutic target.

3.2. GWAS in DLB

Additional loci have been associated with risk of disease in the two most recent DLB GWAS 

studies. In one of these studies, three novel loci reached genome-wide significance, but none 

were replicated in all stages of the analysis. The BCL7C/STX1B locus on chromosome 16 

and the GABRB3 locus on chromosome 15 were replicated in a meta-analysis but were not 

significant in the replication stage alone. However, both these loci remained significant after 

excluding all non-pathologically diagnosed samples, perhaps indicating a lack of power for 

the association. Two more loci were suggestive of an association in the discovery stage, 

SOX17 and CNTN1. The SOX17 association did not improve when considering only 

pathological samples, however the CNTN1 association improved and maintained a similar 

effect size in the replication stage, again suggesting the need for a study with improved 

statistical power (Guerreiro et al., 2018). Another study detected a new locus, ZFPM1, 

which showed a suggestive association, and may have a role in DLB based on a previously 

detected association with psychosis in AD (Zheng et al., 2015). None of the other suggestive 

loci in the previous GWAS were replicated.

While large scale genetic analyses are still limited in DLB, a recent paper investigated the 

potential role of copy number variations (CNVs) in DLB using the same cohort described by 

Guerreiro et al. (2018). This study detected 5 CNV regions with a significant association to 

DLB, 2 of which were not present in controls or publicly available databases: a deletion 

overlapping LAPTM4B and another deletion overlapping SPG9-NME1-NME2. The other 

three regions overlapped MSR1, PDZD2, and ADGRG7/TFG. This study also assessed the 

role of CNVs and genes previously identified to be associated with other neurodegenerative 

diseases. Five previously associated CNVs and 8 CNVs overlapping neurodegenerative 

associated genes were detected using this approach (Kun-Rodrigues et al., 2019).

3.3. Other variants in DLB

Given the historical unavailability of large, well-powered DLB datasets, most loci, genes and 

variants have been implicated in the disease through clinical case studies or using a 

candidate gene approach. Rare variants identified in a number of genes known to be 

implicated in other neurodegenerative diseases have been suggested to have a role in DLB. 

Many of these variants have been detailed in previous reviews (Orme et al., 2018; Outeiro et 

al., 2019), and are summarized in Table 1. Even though many of these variants are still 

lacking independent replication confirming their involvement in the disease, it is worth 

mentioning the potential role of some of these genes and specific variants in DLB.
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Very few mutations have been shown to definitely cause DLB. A recent study identified a 

known pathogenic mutation in CSF1R (p.Ile794Thr) in a patient clinically presenting as 

DLB (Sharma et al., 2019). In fact, CSF1R has been previously associated with parkinsonian 

features, in addition to dementia (Sundal et al., 2013). This extends the clinical presentations 

known to be associated with CSF1R mutations but the co-occurrence of two 

neuropathological processes (one associating with CSF1R and the other with Lewy body 

pathology) cannot be excluded. Neuropathological examination of these cases would be 

helpful in assessing this possibility (Sharma et al., 2019).

Several new, potentially pathogenic, variants have been implicated in a very aggressive, 

rapidly progressive disorder, clinically similar to CJD. One patient was clinically diagnosed 

with DLB, but later determined to have CJD. She harbored the p.Val180Ile mutation in 

PRNP (Tomizawa et al., 2020). Another variant in this gene (p.Met232Arg) had been 

previously reported in a confirmed DLB case. This particular variant led to the initial 

diagnosis of CJD, but upon autopsy, extensive Lewy pathology in the substantia nigra and 

cerebral cortices, along with lack of abnormal prion aggregates, kuru plaques, and 

spongiform degeneration led to the diagnosis of DLB (Koide et al., 2002). Similarly, two 

GBA variants (p.Asp140His and p.Glu326Lys) were reported in one patient, and two 

heterozygous variants in SORL1 (p.Asp140Asn and p.Arg1799Gln) have been identified in 

patients diagnosed with CJD that were later given a neuropathological diagnosis of DLB 

(Geut et al., 2019). In both instances, patients had a very rapid disease progression.

Other genes with potential roles in DLB are SNCB and EIF4G1: two variants (p.Val70Met 

and p.Pro123His) in SNCB were suggested to contribute to DLB (Ohtake et al., 2004), and 

another study implicated EIF4G1 in two familial DLB cases (Fujioka et al., 2013).

Variants in PLCG2 were originally associated with a protective effect in the risk of 

developing AD (Sims et al., 2017). More recently, a similar effect was suggested for DLB 

(and FTD) (van der Lee et al., 2019), although this is yet to be replicated (Orme et al., 2020).

In addition to these individual case studies, exome sequencing has been performed recently 

on cohorts of DLB cases. One study analyzed the exomes of 91 pathologically confirmed 

DLB cases for variants in previously known neurodegenerative genes. In total, likely 

pathogenic variants were identified in 4.4% of the cases with the identification of 18 rare 

heterozygous variants, 3 of which were reported as pathogenic (CHMP2B p.Ile29Val, PRKN 
p.Arg275Trp and p.Gly430Asp). Overall, the authors suggested that the lack of family 

history in most DLB cases can be associated with reduced penetrance of DLB-associated 

variants (Keogh et al., 2016). Additional variants in PSEN2 (p.Asp439Ala) and SQSTM1 
(p.Ala33Val) were also reported as likely pathogenic for DLB. While SQSTM1 had been 

previously detected in FTD (Fecto et al., 2011; Le Ber et al., 2013) and in a case of early 

onset AD (Cuyvers et al., 2015), PSEN2 had been previously associated with DLB in 

another study (Meeus et al., 2012). Four other variants of unknown pathogenicity were also 

reported in DLB (EIF4G1 p.Met1134Val, SQSTM1 p.Pro27Leu, GIGYF2 p.Ser1029Cys 

and p.Ser66Thr) (Keogh et al., 2016).
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The largest exome analysis to date, looking at 1,118 DLB cases also focused primarily on 

regions previously associated with neurodegenerative disease. In this analysis a known FTD 

pathogenic mutation in GRN (p.Arg493*) was identified in one case. The authors suggest 

that either the case was misdiagnosed as DLB or the phenotypes were largely 

indistinguishable. Rare variants were also detected in other genes, such as APP, CHCHD2, 

DCTN1, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Given the lack of confirmed 

pathogenic mutations detected in genes known to be associated with other neurodegenerative 

diseases, the authors suggested a potential role for novel rare variation, not shared with the 

other diseases included in the analysis (Orme et al., 2020).

3.4. Considerations on the genetic architecture of DLB

Because Mendelian mutations have not yet been found to specifically cause DLB, this 

disease has been considered to be non-genetic for many years. However, DLB cases have a 

history of dementia and PD in the family more frequently than controls (Boot et al., 2013; 

Papapetropoulos et al., 2006), and siblings have 2.3 fold higher risk of developing DLB if 

one sibling is affected (Nervi et al., 2011). Families including DLB cases present histories of 

disease that include parkinsonism and other dementias, which may contribute to the small 

number of DLB families currently described in the literature. Another contributing factor 

may be the potential involvement of recessive genetic factors in a late onset disease such as 

DLB, leading to pedigrees with small numbers of affected relatives and to the occurrence of 

familial cases as apparently sporadic in the population. These factors may also contribute to 

the fact that the genetic architecture of DLB is currently the least understood of all common 

dementias with only three GWAS loci currently associated in a replicated fashion with the 

disease and mutations in one of these loci (SNCA) representing the only consistent 

Mendelian cause of DLB (See Fig. 3.).

4. Genetics of vascular dementia

Vascular dementia is an umbrella term referring to a group of cerebrovascular diseases that 

lead to cognitive impairment, being the most severe clinical manifestation of vascular 

cognitive impairment (Gorelick et al., 2011). Different clinical entities are covered under 

this umbrella term, including rare familial forms such as cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); and sporadic 

forms such as those due to cerebral small vessel disease (CSVD), large artery atherosclerosis 

and cardioembolic stroke. Familial forms of VaD are typically monogenic while sporadic 

forms can be modulated by several risk factors (Ikram et al., 2017; Sun et al., 2015).

4.1. Mendelian forms of VaD

4.1.1. CADASIL—CADASIL is a monogenic disease that is inherited in an autosomal 

dominant fashion, although some sporadic cases have also been described (Coto et al., 2006; 

Joutel et al., 2000; Stojanov et al., 2014). Characteristic symptoms include migraine with 

aura, recurrent subcortical strokes, gait disturbance, psychiatric disorders, and subcortical 

dementia due to CSVD (Chabriat et al., 1995). Genetically, CADASIL is caused by 

mutations in NOTCH3 (Joutel et al., 1996). The NOTCH family is a highly conserved gene 

group that regulates cell-cell interaction, embryogenesis and tissue commitment. Notch3 is a 
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large type I transmembrane receptor, that regulates vasculogenesis, CNS neural stem cell 

maintenance and cell fate determination of CNS multipotent progenitor cells (Liu et al., 

2010b; Tanigaki et al., 2001).

The vast majority of NOTCH3 variants responsible for disease involve conserved cysteine 

residues, through amino acid change, deletion or splice site mutations located at the 

epidermal growth factor (EGF)-like repeats domain (Dichgans et al., 2001; Joutel et al., 

1997, 1996; Low et al., 2007; Pavlovic et al., 2013; Salloway and Hong, 1998). Mutations in 

NOTCH3 are usually heterozygous, but there are also rare descriptions of homozygous 

variants presenting with symptoms that can be milder, similar, or more severe than the 

typical phenotypes (Liem et al., 2008; Ragno et al., 2013; Soong et al., 2013; Tuominen et 

al., 2001; Vinciguerra et al., 2014). Whether cysteine-sparing variants can lead to CADASIL 

is still controversial, as many variants considered in previous studies are frequent in 

population databases of genome variability such as gnomAD (Bersano et al., 2012; Brass et 

al., 2009; Scheid et al., 2008). For a systematic review of these variants see Muiño et al. 

(Muiño et al., 2017). Recently, the effects of two cysteine-sparing mutations that are not 

present in gnomAD (p.Gly73Ala and p.Arg75Pro) and one known CADASIL mutation 

(p.Arg133Cys), were tested in cells and shown to follow the same trend on cell survival, 

suggesting that mutations not involving cysteines but located in the EGF-like repeats domain 

might have a role in CADASIL (Huang et al., 2020). Interestingly, loss of function mutations 

do not appear to cause CADASIL (Rutten et al., 2013).

4.1.2. CARASIL—CARASIL (cerebral autosomal recessive arteriopathy with subcortical 

infarcts and leukoencephalopathy) is typically a recessive monogenic disease that results 

from mutations in HTRA1 and usually presents with symptoms such as alopecia, 

spondylosis, and cognitive impairment due to CSVD (Hara et al., 2009). Mutations are 

generally homozygous missense, nonsense or frameshift, although some cases of compound 

heterozygous missense and frameshift mutations have been reported as well (Bianchi et al., 

2014; Cai et al., 2015; Hara et al., 2009; Mendioroz et al., 2010; Xie and Zhang, 2018). 

More recently, heterozygous mutations in HTRA1 have also been associated with disease 

(Verdura et al., 2015). It became apparent that there are two different phenotypes resulting 

from the pleiotropic effect of HTRA1 mutation in homozygous or heterozygous state: 

younger onset small vessel disease (SVD) with systemic manifestations (autosomal 

recessive), and later age at onset with absence of the typical extra-neurological features 

(autosomal dominant) (Verdura et al., 2015). HTRA1 binds and inhibits proteins of the 

transforming growth factor-beta (TGF-β) family. TGF-β proteins normally help control 

many critical cell functions, including the cells’ proliferation and differentiation, cell 

motility, and apoptosis, and TGF-β signaling is important for angiogenesis (Launay et al., 

2008; Zhang et al., 2012).

4.1.3. Fabry disease—Fabry disease is a lysosomal storage disease caused by 

deficiency of the α-galactosidase A enzyme, which disrupts the glycosphingolipid 

metabolism inducing stroke and VaD through one or more distinct mechanisms: CSVD, 

large artery disease and/or cardioembolism. (Nance et al., 2006). It is an X-linked disease 

caused by mutations in GLA (Bernstein et al., 1989) that can be missense, nonsense, 
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frameshift or splice site, with the latter having major effects in splicing patterns such as exon 

skipping, cryptic splicing site activation, new splicing site creation, intron retention, and 

enhancer disruption (Auray-Blais et al., 2008; Fukuhara et al., 1990; Ishii et al., 2002; Lai et 

al., 2003). Although in hemizygous males the symptomatology is more severe and the 

disease has a higher incidence, females can also be affected particularly at later ages and 

with an overall lower frequency in symptoms manifestation, with the exception of 

cerebrovascular phenotypes which are as frequent as in males (Mehta et al., 2009). In 

females, the complete inactivation of the GLA locus and heterozygous missense variants 

have been described, leading the disease to have an X-linked dominant pattern of inheritance 

(Guffon, 2003; Whybra et al., 2001).

4.1.4. Cerebral amyloid angiopathy—Cerebral amyloid angiopathy (CAA) is caused 

by the preferential and progressive deposition of amyloid-β in the walls of small arterioles 

and capillaries of the leptomeninges and cerebral cortex leading to lobar intracerebral 

haemorrhage, superficial siderosis and VaD symptoms (Levy et al., 1990). Missense 

mutations in APP (the first gene where mutations were shown to cause AD) and a deletion 

of two base pairs in a highly conserved region of the 3’ UTR of the gene, have been shown 

to cause CAA (Levy et al., 1990; Nicolas et al., 2016). Variants in PSEN1 and PSEN2 have 

also been described to cause CAA in AD patients (Dermaut et al., 2001; Mann et al., 2001; 

Nochlin et al., 1998). Du et al. proposed that SORL1, another gene related to AD, causes 

CAA-related inflammation. However, that finding, based on the identification of 

p.Lys1634Met, occurred in an APOE ε4 homozygous patient and the variant had an 

appreciable frequency in East Asia, where the patient originated from (Du et al., 2019). 

Other genes have also been shown to cause rare forms of CAA: stop-loss variants in ITM2B 
cause familial British and Danish dementias (Vidal et al., 1999, 2000); a missense mutation 

in CST3 causes the Icelandic type of CAA (Ghiso et al., 1986); mutations in TTR cause 

different forms of amyloidosis, including the transthyretin-type CAA (Petersen et al., 1997; 

Uchida et al., 1993); nonsense mutations in PRNP are associated with PRNP-related CAA 

(Ghetti et al., 1996; Revesz et al., 2009); and missense mutations in GSN lead to gelsolin 

amyloid angiopathy (de la Chapelle et al., 1992; Ghiso et al., 1990).

4.1.5. Other types of Mendelian VaD—It is worth briefly mentioning other genes that 

have also been associated with familial CSVD. These include COL4A1 and COL4A2 where 

heterozygous missense variants have been shown to cause CSVD with subcortical 

intracerebral hemorrhages and ischemic lacunar infarcts (Shah et al., 2010; Verbeek et al., 

2012). Mutations in COL4A1 3’UTR disrupt a miR-29 binding site with subsequent 

upregulation of COL4A1, causing pontine autosomal dominant microangiopathy with 

leukoencephalopathy (PADMAL) (Verdura et al., 2016) and multi-infarct dementia of 

Swedish type (Siitonen et al., 2017).

CARASAL (cathepsin A–related arteriopathy with strokes and leukoencephalopathy) is a 

recently described hereditary adult-onset CSVD in which the clinical picture seems to be 

dominated by therapy-resistant hypertension, ischemic and hemorrhagic strokes and late 

cognitive deterioration. It is an autosomal dominant disease caused by genetic variants in 

CTSA, encoding cathepsin A which functions include the degradation of endothelin-1. 
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Whether this peptide, a potent vasoconstrictor, plays a role in the pathogenesis of the disease 

is still unclear (Bugiani et al., 2016).

Heterozygous frameshift variants in TREX1 cause retinal vasculopathy with cerebral 

leukodystrophy (Richards et al., 2007). Bi-allelic missense variants in ADA2 cause an 

autoinflammatory disease presenting in child- or early-adulthood and manifesting with small 

vessel vasculitis resulting in ischemic and/or hemorrhagic strokes, or Sneddon syndrome 

(Bras et al., 2014b; Zhou et al., 2014).

Stroke mechanisms in autosomal dominant FOXC1 mutations include CSVD and large 

artery disease (mainly aneurysms of intracranial segment of internal carotid artery) 

(Søndergaard et al., 2017).

Other Mendelian conditions that may manifest with ischemic stroke and can lead to vascular 

cognitive impairment are represented in Table 2.

4.2. Sporadic forms of VaD

The majority of genetic studies in sporadic VaD have, so far, used a candidate gene 

approach. These case-control association studies typically focused on genes either known to 

be associated with other relevant diseases (such as AD, peripheral or cerebrovascular 

diseases), or known to be involved in molecular processes important for VaD (e.g.: 

inflammation or lipid metabolism) (Chapman et al., 1998; Endo et al., 2019). This approach, 

as it is the case in many other complex diseases, has not identified consistent, replicated 

associations between variants of interest and VaD. Examples of genes frequently studied in 

association with VaD but for which results are still inconclusive include: ACE, AGTR1, 

APOA1, CLU, F5, PSEN1, SERPINE1, SERPINA3, and UNC5C (Chapman et al., 1998; 

Kim et al., 2006a; Montañola et al., 2016; Nordestgaard et al., 2018; Skrobot et al., 2016; 

Sun et al., 2015; Wilson and Turnbough Jr, 1990; Yang et al., 2017; Zuliani et al., 2001). 

VEGFA is another candidate gene commonly mentioned as a risk factor for VaD. Its 

function probably relates to atherosclerosis whereas its expression appears to increase after 

damage caused by VaD to promote angiogenesis and recovery from neurological damage 

(Howell et al., 2005; Kim et al., 2006b; Park et al., 2018).

GWAS have also been used to study sporadic VaD but to a much smaller extent when 

compared with AD, for example, with only three GWAS currently reported in the literature 

specifically for VaD. Additionally, these studies were largely underpowered (the Dutch 

GWAS based on the Rotterdam Study included 67 patients, for example) and failed at the 

replication stage (Kim et al., 2013b; Schrijvers et al., 2012; Woo and Lee, 2012). Therefore, 

until independent replication is achieved, current GWAS hits for VaD should be treated with 

caution and perceived as not replicated.

In an attempt to overcome the small size of the individual cohorts in VaD association 

studies, several meta-analyses have been performed. Sun et al. focused on 69 studies 

comprising a total of 4,462 cases and 11,583 controls. The authors reported different levels 

of associations, particularly for APOE, MTHFR, PON1, TGFB1 and TNF (Sun et al., 2015). 

A similar study suggested an association for APOE and MTHFR, but not for PON1 (Skrobot 
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et al., 2016), highlighting the contradictory nature of many of these reports (Alam et al., 

2014; Bednarska-Makaruk et al., 2013; Dantoine et al., 2002; Liu et al., 2010a). On the other 

hand, there is growing evidence for the risk of VaD being modulated by variants in genes 

related to inflammation, although so far these associations have not reached genome-wide 

significance. Nonetheless, quantitative association studies have found TGFB1, TNF, IL1B, 

and IL6 serum or CSF levels to be different between VaD and controls (Kim and Lee, 2006; 

Peila et al., 2007; Pola et al., 2002; Yasutake, 2006; Yucesoy et al., 2006; Zuliani et al., 

2007).

4.2.1. VaD GWAS based on associated diseases and endophenotypes—
Additional lines of research have focused on the study of genes and GWAS results identified 

in related clinical entities, or in intermediate phenotypes. Endophenotypes are usually 

quantitative and part of disease causal pathway(s). This puts endophenotypes closer to genes 

when compared to clinical phenotypes, allowing for a greater power in gene discovery 

studies (Jian and Fornage, 2018). It should be noted that sample selection for association 

studies based on endophenotypes can be a source of bias if different underlying conditions 

are related to the endophenotype being tested. This can make interpretation of association 

signals specific to endophenotypes that show no correlation to association signals related to 

clinical diagnoses very challenging (Dick et al., 2006). Nonetheless, the use of 

endophenotypes to understand the genetic basis of several complex diseases has been 

successful. VaD endophenotypes have been tested for association using GWAS and GWAS 

meta-analyses approaches, including stroke (Malik et al., 2018; Neurology Working Group 

of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium, the Stroke Genetics Network (SiGN), and the International Stroke Genetics 

Consortium (ISGC), 2016; Williams et al., 2016b), ischemic stroke (Malik et al., 2016; 

NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium 

(ISGC), 2016), intracerebral hemorrhage (Woo et al., 2014), WMHs burden (Fornage et al., 

2011; Opherk et al., 2014; Traylor et al., 2016, 2019), and migraine phenotypes (Freilinger 

et al., 2012; Gormley et al., 2016). In 2016 a two-stage GWAS including 16,851 stroke cases 

and 32,473 controls replicated previous findings either in stroke or in subtypes of stroke for 

the associations of ALDH2, HDAC9, PITX2 and ZFHX3 and risk of disease (NINDS Stroke 

Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC), 2016). Two 

years later, a larger GWAS was performed in a cohort of approximately 70,000 stroke 

patients and 455,000 controls, and identified genome-wide significant associations at 32 

loci. Three of these loci overlapped known Mendelian genes (HTRA1, COL4A1 and 

COL4A2), while others confirmed previous findings for ABO, FOXF2, MMP12, PMF1/
SEMA4A, SH2B3, TSPAN2 and ZCCHC14 (Malik et al., 2018).

In a recent meta-analysis including 60,000 individuals with migraine and 300,000 controls, 

44 independent risk variants mapping to 38 loci were identified as genome-wide significant. 

Several previously reported loci were replicated, including HTRA1, PRDM16, TSPAN2/

NGF, MEF2D, TRPM8/HJURP, TGFBR2, PHACTR1, FHL5/UFL1, SUGCT, ASTN2, and 

LRP1/STAT6/SDR9C7 (Gormley et al., 2016). Two studies focused on WMHs burden in 

stroke patients replicated the associations with COL4A2, TRIM65, TRIM47, EFEMP1 and 

PMF1 as well as a novel association for PLEKHG1 (Traylor et al., 2016, 2019). WMHs 
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burden has also been specifically studied in CADASIL patients. Although not reaching 

genome-wide significance, the results suggested that several variants in addition to 

NOTCH3 have a role in WMHs in CADASIL (Opherk et al., 2014).

A GWAS study subdivided AD patients by their co-morbid features such as CAA and 

vascular brain injury (VBI), but none of their hits for both these features were genome-wide 

significant, with the exception of APOE in CAA. Variants in other loci were close to 

significance in association with CAA, including HDAC9, MCC and NCALD, and with VBI, 

AGBL3, CIP2A, CFAP58, PCSK5 and SEZ6L (Beecham et al., 2014). More recently, a 

meta-analysis of association studies focusing on AD endophenotypes reported CNTNAP2 as 

a risk factor for the vascular burden in AD, although this result was not genome-wide 

significant (Moreno-Grau et al., 2019).

4.2.2. APOE in VaD—Over the years APOE has been one of the main targets of genetic 

studies in VaD. Conflicting results can be found in the literature for the effect of APOE on 

VaD as some studies showed ε2 and ε4 were risk alleles through different mechanisms (one 

promoting hemorrhages and the other promoting amyloid-β accumulation), others showed 

that only one of the two alleles conferred risk, and others that APOE had no effect on risk of 

VaD (Engelborghs et al., 2003; Frank et al., 2002; McCarron and Nicoll, 2000; Nicoll et al., 

1996; Nicoll and McCarron, 2001; Rannikmäe et al., 2014; Yamada et al., 1996). Several 

reasons have been suggested to underlie these conflicting results, including the study of 

small sample sizes, diverse populations (APOE haplotypes are known to have very 

significant differences in the risk of AD across populations) or the study of VaD as a 

homogeneous clinical entity. Related to the latter, grouping VaD types with different 

etiologies might be masking the ε2 effect on hemorrhages, since this effect has been 

consistently shown for sporadic CAA (Charidimou et al., 2019; McCarron and Nicoll, 1998; 

Nicoll et al., 1997). Thal et al. have actually proposed to separate CAA in two types: type 1 

with a high APOE ε4 frequency and type 2 with a high frequency of ε2, and they saw that 

both types have the same disease severity when compared to controls (Thal et al., 2002). 

When endophenotypes, such as stroke subtypes, are taken into account to assess allelic risk, 

the same pattern is observed, where ε2 promotes hemorrhages and ε4 promotes amyloid-β 
accumulation (Sudlow et al., 2006). Some have suggested that the ε4 allele is only 

associated with an earlier onset of disease and not with disease severity both in CAA and 

stroke (Greenberg et al., 1996; Lagging et al., 2019).

Independently of the molecular mechanism involved in disease, the current burden of proof 

clearly indicates a significant role of APOE genetic variability in the risk of developing VaD, 

which has been corroborated by different meta-analyses (Skrobot et al., 2016; Sun et al., 

2015).

4.3. Considerations on the genetic architecture of VaD

VaD is often considered a different condition when compared with the other dementias 

described here. It is regarded more as a sporadic, ‘environment-associated’, and non-

degenerative type, mostly linked to traditional vascular risk factors. It encompasses a range 

of distinct diseases which have an end result of cognitive impairment. The heterogeneity of 

Guerreiro et al. Page 19

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the group makes it difficult to investigate underlying causes, although some genes are 

starting to be consistently replicated across studies. Interestingly, GWAS identified some 

loci containing the same genes that had been previously associated with disease using 

candidate gene approaches. In addition, some forms of VaD genetic disorders imply that 

continuous degenerative mechanisms underlie at least some forms of the disease. The 

involvement of APOE and inflammation-associated genes in the genetic architecture of VaD 

suggests that immune dysfunction is contributing to the condition, as seen in 

neurodegenerative disorders. The involvement of ADA2, TGFB1, TNF, IL1B and IL6 adds 

further support to this. Consistent with the association of the disease with vessel 

dysfunction, many of the genes known to have a role in VaD are related with vessel 

development or functioning (NOTCH3, HTRA1, COL4A1, COL4A2, FOXC1, VEGFA, 

AGT, FVL). However, for some other genes their functional role in the disease is currently 

not clear and may implicate additional mechanisms of disease (TREX1, GLA, MTHFR). 

Together, this evidence suggests a continuous dysfunction at the vascular and immune levels, 

challenging the notion of a more static or stepwise disorder (Fig. 4).

5. Discussion

Even though Mendelian forms of dementia are rare, family history is a frequent occurrence 

in dementia and sporadic cases are now known to have a significant genetic component. 

Given that dementia is a common disorder, it is important to fully understand the genetic 

architecture of this group of diseases (Loy et al., 2014).

In a familial setting the identification of genetic causal factors is essential for risk 

estimation. Even in the absence of effective therapies to prevent or delay dementias, 

knowing an individual’s genetic risk gives the opportunity for genetic counseling, informed 

preparation of life affairs (including reproductive options), and may contribute to achieve a 

more accurate in-life diagnosis (Cohn-Hokke et al., 2012).

Genetic information also has an important role in sporadic disease. It can be used to 

establish polygenic risk scores and can critically inform the selection of cohorts for 

enrollment in clinical trials as well as in the evaluation of the response to treatment 

(Berkowitz et al., 2018). Genetic studies of both familial and sporadic disease have been 

essential to understand the molecular mechanisms of disease and to the development of 

successful drugs (Nelson et al., 2015).

In order to use genetics in an effective way in these different scenarios it is important to have 

a complete knowledge and understanding of all genetic factors involved in each dementia. 

One important aspect to consider in this context is the many overlaps occurring across 

dementias.

5.1. Overlaps between dementias

Correlations between pathological and clinical aspects of dementias have never been perfect. 

As genetic changes are upstream of both pathology and clinical features, genetic knowledge 

has established important foundations on which to build our understanding of these diseases. 

Hence, disease classification is increasingly being based on underlying genetic defects or 
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focusing on disease-specific molecular pathways (Iourov et al., 2019). This happens, 

however, not without challenges. The genetic overlap between different forms of dementia 

(and other diseases) has been increasingly apparent with the application of modern genetic 

technologies to the study of familial and sporadic dementias (Guerreiro et al., 2014). Not 

only the same genes can be associated with clinically and pathologically different diseases, 

but the proteins abnormally aggregating in these diseases can also be the same.

A common overlap occurs between AD and other dementias, having the potential to 

significantly complicate the clinical differential diagnosis of dementias. Several studies have 

examined the accuracy of clinical diagnoses of AD based on autopsy results (considered the 

“gold standard”). One of these studies used data collected as part of the National 

Alzheimer’s Coordinating Center Uniform Data Set between 2005 and 2010 to identify 88 

participants misdiagnosed with AD and 438 participants accurately diagnosed with AD (Lim 

et al., 1999). Sensitivity and specificity of clinical diagnoses of AD were found to range 

between 70–87% and 44–71%, respectively (Beach et al., 2012) In general, between 12% 

and 23% of clinically diagnosed AD cases do not have sufficient pathology at autopsy to 

account for the presence of dementia. The most common misdiagnoses occurs with other 

forms of progressive dementias such as FTD, DLB and VaD (Gaugler et al., 2013) with 

Lewy body disease and cerebrovascular injury being the most common AD mimics (Shim et 

al., 2013). Misdiagnoses can have direct and significant impacts in patients and families. 

These can lead to wrong/unnecessary treatments and to poor clinical management. A 

number of medications have been identified as potentially unnecessary for patients with 

FTD (Kerchner et al., 2011) and DLB (Baskys, 2004), whereas patients with cerebrovascular 

disease will typically benefit from treatments with statins, antiplatelet agents and 

anticoagulants. Misdiagnoses can also have an impact on the selection of subjects for genetic 

studies and clinical trials.

It is worth mentioning that the different degrees of diagnostic accuracy may be dependent of 

factors such as 1) the cohort being studied (differences have been seen between community 

and clinical-based case series), 2) the diagnostic criteria used (more recent diagnostic criteria 

have a tendency to perform better as these are typically developed to address shortcomings 

of sensitivity and/or specificity of previous criteria), 3) the use of imaging or biomarker 

tests, and 4) the levels of expertise of the diagnosticians (even among experts, the diagnostic 

accuracy of clinical AD was found to be variable (Sabbagh et al., 2017)).

While there is a significant amount of evidence suggesting that cerebrovascular and AD 

pathologies exert an additive, synergistic effect on cognitive impairment, less is known about 

the impact of cerebrovascular disease in DLB and FTD. Autopsy studies revealed a 

frequency of 20–34% of cerebrovascular disease (CVD) in DLB (which is not significantly 

different from controls) (Jellinger, 2003) and that more advanced Lewy body pathology is 

less likely to show severe CVD, suggesting that cognitive impairment in DLB is independent 

of vascular disease (Ghebremedhin et al., 2010). In FTD, data on CVD is contradictory with 

some studies finding a role for SVD in FTD progression (Thal et al., 2015) and others not 

confirming this (Toledo et al., 2013). Diverging frequencies of CVD in FTD have also been 

found, ranging from 5% in FTD-tau to 17% in FTD-TDP (Toledo et al., 2013).
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Mixed pathologies are common in the brains of elderly individuals and their prevalence and 

severity increases with advancing age (Jellinger and Attems, 2010). In fact, these are so 

common that Visanji and colleagues recently proposed the term “concomitant pathology” 

instead of “co-pathology” to reflect the important contributions of each aberrantly deposited 

protein in the neurodegenerative process (Visanji et al., 2019).

Genetic pleiotropy (where one genetic locus contributes variance to different phenotypes) is 

also a common feature of dementias and neurodegenerative diseases in general. The 

contribution of pleiotropy can be appreciated across the different forms of genetic burden of 

disease. This has been evident from several GWAS finding common risk loci between 

different neurodegenerative diseases (Ferrari et al., 2017; Yokoyama et al., 2016), but also 

from low frequency and very rare variants. Many of these have been mentioned in the 

genetics of FTD, DLB and VaD sections.

5.2. APOE as a pleiotropic gene

One gene that has been mentioned multiple times across the different dementias discussed 

here is APOE. Common risk alleles with strong effects are mainly associated with AD risk, 

but associations have also been found for the risk of development of DLB (Guerreiro et al., 

2018) and, potentially, FTD (Ferrari et al., 2017) and for the age at onset in C9ORF72 repeat 

expansion carriers (van Blitterswijk et al., 2014). In addition to its role in different 

dementias, APOE has also been implicated in other diseases. It is one of the two loci most 

consistently associated with longevity (Shadyab and LaCroix, 2015). Its associations with 

cardiovascular diseases are also well replicated. APOE ε4 carriers have a 30% higher risk of 

ischemic stroke (Wei et al., 2017) and APOE genotypes are significantly associated with the 

risk of developing coronary artery disease and myocardial infarction (Wang et al., 2015; Xu 

et al., 2016). The risk conferred by APOE for the development of these diseases is 

undeniably linked to the strong correlation between APOE genotypes and the plasma levels 

of high- and low-density lipoprotein cholesterol, as well as triglycerides. However, this 

strong correlation makes it difficult to fully dissect if the risk is always mediated by changes 

in cholesterol levels or a proportion of risk can be independent of these changes (Corsetti et 

al., 2012; Rasmussen et al., 2016).

APOE is a truly pleomorphic gene: the recent analysis of the structure of genetic pleiotropy 

in the UK biobank hospital data has shown that 96.9% of the associated variants analysed 

affect more than one diagnostic term. The top 3 most pleomorphic variants identified in this 

study included a variant in the APOE locus (rs4420638) (Cortes et al., 2020). Making use of 

these data to analyse the two SNPs involved in the APOE ε2 ε3 ε4 haplotypes (rs429358 

and rs7412) we can easily see evidence for association with increased or decreased risk of 

many different phenotypes in the UK Biobank (Fig. 5). These analyses capture the known 

impact of these variants by finding the strong associations with AD and cardiovascular 

disease, and suggest potential interactions with unexpected diseases, such as the protective 

effect seen for diseases of the digestive system conferred by rs429358. Given the relatively 

small number of UK Biobank participants with other dementias, currently this dataset does 

not have enough resolution to assess the effect of APOE in specific dementias like FTD or 

Guerreiro et al. Page 22

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DLB. It is however a dataset that clearly allows the depiction of the broad and complex 

range of effects in different phenotypes.

6. Conclusion

On one hand the sharing of genes, proteins and molecular pathways between dementias and 

diseases in general can complicate the diagnosis not only by leading to similar clinical 

phenotypes and neuropathological features, but also by creating a challenging framework for 

the development of specific biomarkers. On the other hand, the identification of common 

genetic and molecular factors between dementias can help us understand these diseases and 

can lead to the possibility of using these common points as targets for the development of 

drugs that ultimately will have an effect on more than one dementia.

Notwithstanding the fact that very significant advances have been made in the last decade in 

the identification of disease associated variants, the genetic architecture of non-AD 

dementias is still far from being complete. Future studies attempting to identify the missing 

pieces of these architectures should apply next generation genomic technologies to the study 

of families and statistically well powered cohorts of deeply phenotyped cases and controls. 

Given the extension of genetic, pathological and clinical overlaps of neurodegenerative 

dementias, a potential alternative avenue of research is to investigate in a given phenotype 

the relevance of genes and genetic factors known to be involved in a different disease. The 

application of next generation genomic technologies can facilitate this approach by testing 

full genomes instead of candidate genes or genetic regions. In addition to ever increasing 

numbers of samples studied by GWAS, approaches based on endophenotypes and on the 

integration of functional data can have very positive results (Moreno-Grau et al., 2019).

In summary, replication of recently identified genetic regions and implication of more novel 

loci will be essential to better characterize the genetic architectures of these diseases. 

Advancing our understanding of the genetic factors driving concomitant proteinopathies is 

crucial for the development of disease-modifying interventions. These may be unique to 

each clinical entity, or, as suggested by the many overlaps and connecting points between the 

dementias described here, may be based on shared common therapeutic targets, raising the 

possibility of the development of single therapies providing disease modifying benefits that 

are horizontal to dementias or even neurodegenerative diseases.
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Fig. 1. 
Genetic architecture of FTD.

Circos plot of Mendelian and risk genes with confirmed roles in FTD. The links between 

genes and the colored outer layer correspond to biological processes annotated from Gene 

Ontology terms as obtained from GOSlim (https://go.princeton.edu/cgi-bin/

GOTermMapper) which prioritizes annotations based on a previously curated subset of GO 

terms. The terms shown here annotate genes in all three dementias to better highlight the 

functional differences between these diseases. Here we can see genes in FTD are well 

dispersed throughout the genome and have roles in a wide range of functions, with many of 

these genes having annotations in a variety of biological processes.
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Fig. 2. 
Survival analyses of age at death by means of Kaplan–Meier curves for APOE in an 

international cohort of 679 DLB cases.

On the left, the effect on age at death of the presence/absence of the APOE ε4 allele is 

shown. The analysis showed a significant difference in the ages at death between carriers 

and non-carriers of the APOE ε4 risk allele. On the right panel the effect on age at death of 

the different APOE haplotypes was found to be significantly different groups.
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Fig. 3. 
Genetic architecture of DLB.

Circos plot of genes with established roles in DLB. As in the FTD circos plot, links and 

colored outer layer represent GOSlim biological processes which are shared by all three 

dementias. While the number of genes with conclusive roles in DLB are much fewer than 

other dementias, these genes are involved in a wide variety of biological functions.
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Fig. 4. 
Genetic architecture of VaD.

Circos plot of established VaD genes. Links and colored outer layer were obtained from 

biological process Gene Ontology annotations shared by all three dementias as described in 

Fig. 1. Given the burden of proof for genetic risk associations with the different genes 

studied in VaD we only considered APOE to be represented here. All other genes are 

Mendelian causes of hereditary vasculopathies which typically cause arteriopathy and 

microvascular disease leading to vascular cognitive impairment and dementia.
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Fig. 5. 
Posterior decoding of genetic effect direction and strength of evidence for the rs429358 

(APOE ε4) and rs7412 (APOE ε2) variants in APOE.

In this figure the International Classification of Diseases, tenth revision (ICD-10) is depicted 

as a radial tree where the first orbit represents the 22 ICD-10 chapters, followed by an orbit 

representing blocks of categories, and then by 2 consecutive orbits representing the ICD-10 

categories including the observed annotation codes. This TreeWAS (https://treewas.org) 

refers to a Bayesian approach for mapping genetic risk across disease classification codes 

within a hierarchical ontology (Cortes et al., 2017). Each genetic variant in the TreeWAS 

Database was analysed to infer its association with a given diagnostic term. These terms are 

structured hierarchically, where a given term (ICD-10 clinical code) is nested within a 

broader disease/disorder category. Here, this tree structure is displayed with the “top node” 

or “root” as a circle in the middle and nested terms subtend from the root or their parent 

terms outwards. Each node is colored according to its dominant effect; protective (blue), risk 

(red), or no effect (gray) posterior probability, computed as Δp = p(protective) − p(risk). The 

analyses represented here relate to hospitalization episode statistics provided by the UK 

Biobank as a source of phenotypic data and is derived from linkage with the hospital episode 

statistics registry (UK Biobank data fields 41142 and 41078).

Guerreiro et al. Page 57

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://treewas.org


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guerreiro et al. Page 58

Ta
b

le
 1

G
en

es
 a

nd
 v

ar
ia

nt
s 

lin
ke

d 
to

 D
L

B
.

G
en

e
R

ef
er

en
ce

P
ro

po
se

d 
re

po
rt

ed
 t

yp
e 

of
 e

ff
ec

t 
in

 d
is

ea
se

R
ep

lic
at

ed
V

ar
ia

nt
s

SN
C

A
G

ue
rr

ei
ro

 e
t a

l. 
(2

01
8)

G
W

A
S 

ri
sk

 a
nd

 M
en

de
lia

n
Y

es
p.

A
la

53
T

hr
, p

.G
lu

46
Ly

s,
 r

s7
68

14
40

G
B

A
N

al
ls

 e
t a

l. 
(2

01
3)

G
W

A
S 

ri
sk

Y
es

p.
A

sp
44

8H
is

, p
.A

sn
40

9S
er

, p
.G

lu
36

5L
ys

, 
p.

A
rg

29
6G

ln
, p

.A
rg

87
G

ln
, r

s3
57

49
01

1,
 p

.G
lu

32
6L

ys
, 

p.
A

sp
14

0H
is

A
PO

E
T

su
an

g 
et

 a
l. 

(2
01

3)
G

W
A

S 
ri

sk
Y

es
p.

A
rg

17
6C

ys
, p

.C
ys

13
0A

rg
, r

s4
29

35
8

C
H

M
P2

B
K

eo
gh

 e
t a

l. 
(2

01
6)

D
om

in
an

t M
en

de
lia

n
N

o
p.

Il
e2

9V
al

PR
K

N
K

eo
gh

 e
t a

l. 
(2

01
6)

R
ec

es
si

ve
 M

en
de

lia
n

N
o

p.
A

rg
27

5T
rp

, p
.G

ly
43

0A
sp

E
IF

4G
1

K
eo

gh
 e

t a
l. 

(2
01

6)
D

om
in

an
t M

en
de

lia
n

N
o

p.
M

et
11

34
V

al
, p

.G
ly

68
6C

ys
, p

.A
la

50
2V

al

PR
N

P
K

oi
de

 e
t a

l. 
(2

00
2)

Sp
or

ad
ic

 c
as

e,
 in

co
m

pl
et

e 
pe

ne
tr

an
ce

N
o

p.
M

et
23

2A
rg

SO
R

L
1

G
eu

t e
t a

l. 
(2

01
9)

D
om

in
an

t M
en

de
lia

n
N

o
p.

A
sp

14
0A

sn
, p

.A
rg

17
99

G
ln

C
SF

1R
Sh

ar
m

a 
et

 a
l. 

(2
01

9)
D

om
in

an
t M

en
de

lia
n

N
o

p.
Il

e7
94

T
hr

PS
E

N
2

K
eo

gh
 e

t a
l. 

(2
01

6)
D

om
in

an
t M

en
de

lia
n

N
o

p.
A

sp
43

9A
la

SQ
ST

M
1

K
eo

gh
 e

t a
l. 

(2
01

6)
D

om
in

an
t M

en
de

lia
n

N
o

p.
A

la
33

V
al

, p
.P

ro
27

L
eu

, p
.M

et
40

4V
al

G
IG

Y
F2

K
eo

gh
 e

t a
l. 

(2
01

6)
D

om
in

an
t M

en
de

lia
n

N
o

p.
Se

r1
02

9C
ys

, p
.S

er
66

T
hr

A
PP

O
rm

e 
et

 a
l. 

(2
02

0)
R

ar
e,

 p
ot

en
tia

lly
 p

at
ho

ge
ni

c
N

o
p.

V
al

71
7I

le
, p

.G
lu

59
9L

ys
, p

.G
lu

67
4L

ys

C
H

C
H

D
2

O
rm

e 
et

 a
l. 

(2
02

0)
R

ar
e,

 p
ot

en
tia

lly
 p

at
ho

ge
ni

c
N

o
p.

G
ly

4A
rg

D
C

T
N

1
O

rm
e 

et
 a

l. 
(2

02
0)

R
ar

e,
 p

ot
en

tia
lly

 p
at

ho
ge

ni
c

N
o

p.
Il

e7
80

T
hr

G
R

N
O

rm
e 

et
 a

l. 
(2

02
0)

N
on

se
ns

e:
 r

ar
e,

 p
ot

en
tia

lly
 p

at
ho

ge
ni

c 
(p

at
ho

ge
ni

c 
in

 F
T

D
) 

M
is

se
ns

e:
 r

ar
e,

 
po

te
nt

ia
lly

 p
at

ho
ge

ni
c

N
o

p.
A

rg
49

3*
, p

.A
la

27
6V

al

M
A

PT
O

rm
e 

et
 a

l. 
(2

02
0)

R
ar

e,
 p

ot
en

tia
lly

 p
at

ho
ge

ni
c

N
o

p.
G

ly
86

Se
r

N
O

T
C

H
3

O
rm

e 
et

 a
l. 

(2
02

0)
R

ar
e,

 p
ot

en
tia

lly
 p

at
ho

ge
ni

c
N

o
p.

A
rg

57
8C

ys
, p

.A
rg

57
8H

is
, p

.A
rg

60
7H

is

T
B

K
1

O
rm

e 
et

 a
l. 

(2
02

0)
R

ar
e,

 p
ot

en
tia

lly
 p

at
ho

ge
ni

c
N

o
p.

A
rg

38
4T

rp
, p

.A
rg

38
4G

ln

T
IA

1
O

rm
e 

et
 a

l. 
(2

02
0)

R
ar

e,
 p

ot
en

tia
lly

 p
at

ho
ge

ni
c

N
o

p.
Pr

o3
62

L
eu

C
N

T
N

1
G

ue
rr

ei
ro

 e
t a

l. 
(2

01
8)

Su
gg

es
tiv

e 
G

W
A

S 
ri

sk
N

o
rs

73
14

90
8

G
A

B
R

B
3

G
ue

rr
ei

ro
 e

t a
l. 

(2
01

8)
Su

gg
es

tiv
e 

G
W

A
S 

ri
sk

N
o

rs
14

26
21

0

B
C

L
7C

/S
T

X
1B

G
ue

rr
ei

ro
 e

t a
l. 

(2
01

8)
Su

gg
es

tiv
e 

G
W

A
S 

ri
sk

N
o

rs
89

79
84

A
SH

1L
R

on
gv

e 
et

 a
l. 

(2
01

9)
G

W
A

S 
ri

sk
N

o
rs

12
73

43
74

SC
A

R
B

2
B

ra
s 

et
 a

l. 
(2

01
4a

)
Su

gg
es

tiv
e 

G
W

A
S 

ri
sk

N
o

rs
68

12
19

3

Z
FP

M
1

R
on

gv
e 

et
 a

l. 
(2

01
9)

Su
gg

es
tiv

e 
G

W
A

S 
ri

sk
N

o
rs

12
92

61
63

PS
E

N
1

G
ei

ge
r 

et
 a

l. 
(2

01
6)

Sp
or

ad
ic

, i
nc

om
pl

et
e 

pe
ne

tr
an

ce
, p

re
se

nt
 in

 e
st

im
at

ed
 1

0%
 o

f 
co

ho
rt

, l
ik

el
y 

ri
sk

N
o

p.
G

lu
31

8G
ly

, p
.G

ly
20

6A
la

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guerreiro et al. Page 59

G
en

e
R

ef
er

en
ce

P
ro

po
se

d 
re

po
rt

ed
 t

yp
e 

of
 e

ff
ec

t 
in

 d
is

ea
se

R
ep

lic
at

ed
V

ar
ia

nt
s

SN
C

B
O

ht
ak

e 
et

 a
l. 

(2
00

4)
D

om
in

an
t w

ith
 in

co
m

pl
et

e 
pe

ne
tr

an
ce

 o
r 

ri
sk

N
o

p.
V

al
70

M
et

, p
.P

ro
12

3H
is

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guerreiro et al. Page 60

Ta
b

le
 2

M
en

de
lia

n 
co

nd
iti

on
s 

th
at

 m
ay

 m
an

if
es

t w
ith

 is
ch

em
ic

 s
tr

ok
e 

an
d 

ca
n 

le
ad

 to
 v

as
cu

la
r 

co
gn

iti
ve

 im
pa

ir
m

en
t.

M
en

de
lia

n 
co

nd
it

io
n

G
en

e
In

he
ri

ta
nc

e 
pa

tt
er

n
F

ea
tu

re
s

R
ef

er
en

ce

M
ar

fa
n’

s 
sy

nd
ro

m
e

FB
N

1
A

ut
os

om
al

 d
om

in
an

t
In

he
ri

te
d 

in
 a

n 
au

to
so

m
al

 d
om

in
an

t p
at

te
rn

. T
he

 s
tr

ok
e 

m
ec

ha
ni

sm
s 

im
pl

ic
at

ed
 a

re
 la

rg
e 

ar
te

ri
al

 
di

ss
ec

tio
n 

or
 c

ar
di

oe
m

bo
lis

m
.

(M
as

ki
 e

t a
l.,

 2
01

1)

V
as

cu
la

r 
E

hl
er

s-
D

an
lo

s 
sy

nd
ro

m
e

C
O

L
3A

1
A

ut
os

om
al

 d
om

in
an

t
U

su
al

ly
 c

au
se

s 
st

ro
ke

 b
y 

ar
te

ri
al

 d
is

se
ct

io
n

(S
up

er
ti-

Fu
rg

a 
et

 a
l.,

 1
98

8)

Ps
eu

do
xa

nt
ho

m
a 

el
as

tic
um

A
B

C
C

6
A

ut
os

om
al

 r
ec

es
si

ve
Pa

tie
nt

s 
m

ay
 d

ev
el

op
 s

m
al

l a
s 

w
el

l a
s 

la
rg

e 
ar

te
ry

 d
is

ea
se

(C
ha

ss
ai

ng
 e

t a
l.,

 2
00

5)

H
om

oc
ys

tin
ur

ia
C

B
S

A
ut

os
om

al
 r

ec
es

si
ve

Sm
al

l a
nd

 la
rg

e 
ar

te
ry

 d
is

ea
se

, c
ar

di
oe

m
bo

lis
m

 o
r 

ar
te

ri
al

 d
is

se
ct

io
n 

ha
ve

 b
ee

n 
im

pl
ic

at
ed

 in
 

st
ro

ke
 a

nd
 v

as
cu

la
r 

co
gn

iti
ve

 d
ys

fu
nc

tio
n

(K
el

ly
 e

t a
l.,

 2
00

3)

Si
ck

le
-c

el
l d

is
ea

se
H

B
B

A
ut

os
om

al
 r

ec
es

si
ve

Pr
og

re
ss

iv
e 

st
en

os
is

 o
r 

oc
cl

us
io

n 
of

 la
rg

e/
m

ed
iu

m
 s

iz
e 

in
tr

ac
ra

ni
al

 a
rt

er
ie

s
(A

rm
st

ro
ng

 e
t a

l.,
 1

99
6)

Neurobiol Dis. Author manuscript; available in PMC 2021 June 16.


	Abstract
	Introduction
	Genetics of frontotemporal dementia
	MAPT, GRN and C9ORF72
	Rare genetic causes of FTD
	Other genes possibly related to FTD

	Genetic risk factors in FTD
	Considerations on the genetic architecture of FTD

	Genetics of dementia with Lewy bodies
	Well established DLB genes
	GWAS in DLB
	Other variants in DLB
	Considerations on the genetic architecture of DLB

	Genetics of vascular dementia
	Mendelian forms of VaD
	CADASIL
	CARASIL
	Fabry disease
	Cerebral amyloid angiopathy
	Other types of Mendelian VaD

	Sporadic forms of VaD
	VaD GWAS based on associated diseases and endophenotypes
	APOE in VaD

	Considerations on the genetic architecture of VaD

	Discussion
	Overlaps between dementias
	APOE as a pleiotropic gene

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1
	Table 2

